VLIV POVRCHU NA UŽITNÉ VLASTNOSTI VÝROBKU. Antonín Kříž
|
|
- Šimon Sedláček
- před 7 lety
- Počet zobrazení:
Transkript
1 , Jihlava, Česká republika VLIV POVRCHU NA UŽITNÉ VLASTNOSTI VÝROBKU Antonín Kříž Tento příspěvek vznikl na základě dlouhodobé spolupráce s průmyslovou společností HOFMEISTER s.r.o. a řešení průmyslového projektu FI-IM4/226, který je hrazen z rozpočtu MPO i spolufinancován z prostředků firmy. Tato prezentace je ke stažení na:
2 Na semináři Technologie tepelného zpracování kovových povrchů Jihlava byla presentována přednáška INTEGRITA POVRCHU V OBLASTI TEPELNÉHO ZPRACOVÁNÍ Byly uvedeny: souvislosti mezi stavem povrchu a tepelným zpracováním základní pojmy k integritě povrchu faktory ovlivňující integritu povrchu první praktické ukázky sledování integrity povrchu 2
3 DŮLEŽITOST POVRCHU Když povrchu rozumíme, tak lze odvodit celou řadu souvislostí a praktických dopadů. Finální vlastnosti výrobků jsou významně ovlivňovány vlastnostmi povrchových a podpovrchových vrstev. Objem provozních lomů v současnosti tvoří více než z 90% únavových poškození. Toto poškození má nejčastěji svoje iniciační místo na povrchu součásti. Výjimkou bývají některé významné strukturní, metalografické i konstrukční chyby (vměstky, trhliny, povrchově překalená vrstva materiálu, zápichy aj.), které mohou přesunout iniciaci dále od povrchu. Z tohoto důvodu je nutné vlastnostem povrchu věnovat značnou pozornost.
4 Pro komplexní posouzení povrchových stavů byla zavedena INTEGRITA POVRCHU Jejím cílem bylo komplexně podchytit povrchový stav, neboť zde působí mnoho vlivů, které ovlivňují výsledné vlastnosti. Tyto vlivy působí společně a lze je rozdělit na vnější a vnitřní. Vnější vlivy: Mechanické (provozní napětí) Chemické (koroze) Fyzikální (záření, bludné proudy apod.) Kombinace více vlivů (koroze pod napětím, elektrochemická koroze, ale také technologické procesy např. obrábění, tepelné zpracování, tváření) Vnitřní vlivy: Zbytková napětí Morfologie povrchu (drsnost) Materiálové a mechanické vlastnosti povrchu (tvrdost, zpevnění, strukturní stav, povrchová úprava např. vrstvy, povlaky) Přítomnost povrchových a podpovrchových vad a heterogenní struktura (uhlík v litině, vměstky, řediny) 4
5 INTEGRITA POVRCHU - norma ANSI B Symbol integrity povrchu 5
6 Jiný pohled na integritu povrchu Geometrická přesnost Drsnost povrchu a jeho profil Tvrdost Změna struktury Zbytková napětí Chemicko-tepelné změny opaly, oduhličení, nauhličení Trhliny praskliny Změny fyzikálních i chemických vlastností Pro porozumění řeči povrchu je nutné vnímat všechny výše uvedené faktory v požadovaných souvislostech. 6
7 INTEGRITA POVRCHU Integrita povrchu zahrnuje celou řadu faktorů, které je nutné nejen změřit, ale je zapotřebí jim také rozumět. Integrita povrchu dává dobré výsledky pouze, když všechny výsledky jsou ve správném souznění. Těžkosti tohoto souznění jsou zachyceny v tomto příspěvku.
8 Drsnost povrchu a jeho profil Využití konfokálního mikroskopu Olympus LEXT 3000 Profil v 3D náhledu 8
9 Měření příčné drsnosti Ra - 0,4509 µm Wt 0,4676 µm 9
10 Měření plošné drsnosti Lineární drsnost Ra 0,6 µm Plošná drsnost SRa - 0,39µm 10
11 Nosná (Abbotova) křivka profilu Dva odlišné povrchy se stejnou hodnotou Abbotovy křivky profilu 11
12 Profil povrchu 12
13 Změna struktury Narušení povrchu dřeva řezem Narušení povrchové litinové vrstvy grafitem 13
14 Zbytková napětí Měření zbytkových napětí je věnována celá řada publikací. Problém nastává nejen s volbou metody stanovující s určitou (ne)přesností, ale také s její interpretací a využitelností v samotné praxi. Pro zjištění zbytkových napětí se používají metody přímého a nepřímého zjištění: - mechanické (odleptávání, odvrtávání) založené zejména na měření deformací po odstranění části vzorku - optické - magnetické (pomocí Barkhausenova šumu) - ultrazvukové (princip: vztah mezi napětím a rychlostí ultrazvukových vln v materiálu -difrakce (využívající rozptyl buď rentgenového záření, nebo toku neutronů) 14
15 Měření zbytkových napětí RTG difrakční analýzou u otvorů z oceli C45 Struktura je heterogenní V oblasti feritu je větší deformace Rozložení tlakových zbytkových napětí po obvodě vyvrtaného otvoru 15 Rozložení zbytkových napětí u odlišně zhotovených otvorů soustružení, vrtání
16 Trhliny - praskliny 16
17 Změny fyzikálních i chemických vlastností Povrch vyvrtané litiny ČSN oblast 1 pouze vrtáno; oblast 2 přechodová oblast do tvářeného povrchu; oblast 3 tvářený povrch; 4 zahlazený povrch. Pološný podíl koroze 0,35 vzorek 240/1 podíl korozního napadení 0,3 vzorek 800/1 0,25 vzorek 240/2 0,2 vzorek 800/2 0,15 0,1 0, čas [m in] Koroze u vzorku broušeného papírem 240 papírem
18 Dalším úskalím je po správném vyhodnocení stavu povrchu vyřazení nevhodných výrobků na základě predikování jejich chování v provozu. Ačkoliv je již publikována celá řada literárních pramenů pojednávající o integritě povrchu, přesto se ještě nedostaly tyto poznatky do povědomí strojírenských firem, aby je bylo možné zařadit do kritéria posuzující kvalitu výrobku. Je nutné hledat souvislosti mezi laboratorně naměřenými výsledky popisující povrchový stav a reálnými vlastnostmi, nebo další možností je použít ověřenou metodu, která poskytuje přímé vazby na užitné vlastnosti. Jedním z těchto měření je metoda IMPACT TESTU. Tato analýza byla presentována na minulém ročníku konference METAL
19 19 Impact kráter snímek ŘEM
20 Co se může na povrchu přihodit?! Místy na obrobeném povrchu (především v případech konkurenčních nástrojů) jsou patrné objekty s odlišnou orientací stop po vrtacím nástroji. Jedná se o vytrhaný a překlopený materiál. Mechanismus odtrhávání Nejdříve dochází k popraskání povrchové vrstvy. Část této vrstvy se odtrhne a dojde k jejímu překlopení o 180 a opětnému zalisování 20
21 Co se na povrchu přihodilo! Obráběný materiál C45 Je viditelné praskání a odlupování zpevněné povrchové vrstvy. Průměrná tloušťka zpevněné vrstvy je 12,0 ± 4,3 μm. Tloušťka zpevněné vrstvy je u tohoto vrtáku nejvyšší (až 18 μm). 21
22 Praktické využití integrity povrchu Nástroj od firmy BAUBLIES Stupeň deformace v souvislosti s obrobeným povrchem Válečkovaný povrch obsahuje tlakové napětí a tím nabízí alternativu tepelnému, chemickému popř. CHMTZ zpracování. 22
23 Výsledky vztahující se k integritě povrchu vrtaných otvorů o délce 3D s přesností IT6-IT7 V projektu jsou řešeny nástroje pro obrábění hliníkové slitiny AA6082 ve stavu T6, nástrojové oceli , uhlíkové oceli , šedé litiny ČSN a niklové slitiny Inconel 718. Záměrně byly voleny takto odlišné materiály, protože záměrem firmy je postihnout celou výrobkovou řadu vrtáků pro všechny svoje stávající i budoucí zákazníky. Presentace praktických výsledků se věnuje dosaženým výsledkům, které byly získány z analýzy integrity povrchu vyvrtaných otvorů v litině ČSN
24 Podmínky experimentu Byly hodnoceny vyvrtané otvory zhotovené třemi různými vrtacími nástroji, které byly odlišné konstrukce. Jejich označení je A; B; C. Rozměry vrtaných válečků: d = 26 mm, l = 36 mm. Po vyvrtání otvorů o průměru 12mm byly válečky podélně rozřezány na jednotlivé elementy, tak aby na nich bylo možné analyzovat obrobený povrch. Byly provedeny tyto experimenty: - Topografie povrchu ve 2D a 3D; - Drsnost povrchu; - Mikrostruktura povrchu; - Mikrotvrdost; - Nanoindentační měření mikrotvrdosti; - Scratch test; - Korozní testy; - Impact test. Testované vzorky výřez z vyvrtaného dílu 24
25 Stav povrchu vrtaných otvorů Snímky povrchů jednotlivých otvorů byly vzájemně porovnány a to nejen vizuálně, ale také pomocí obrazové analýzy. Princip vytrhávání povrchové části vrtaného otvoru Stav povrchu elementu vrtaného nástrojem A B 25 C
26 Nástroj A 1 Stav povrchu Objem vytrhaného povrchu [%] 37,06 2 B 1 49,63 2 C ,68
27 Stopy na obrobeném povrchu bez vazby na podmínky obrábění a stav nástroje A. Nejnižší množství vytrhaného povrchu vykazuje element vrtaný nástrojem A a to 37 % z celkové měřené plochy. Naopak nejvyšší množství vytrhaného povrchu, zhruba 57 %, způsobuje vrtací nástroj C. Vrtací nástroj B vytváří přibližně 50 % vytrhaného povrchu. 27
28 Stav povrchu vrtaných otvorů ve 3D Povrch - nástroj A Povrch - nástroj B 28 Povrch - nástroj C
29 Při vizuálním hodnocení snímků pořízených konfokálním mikroskopem je zřejmé, že nejvyšší kvalitu povrchu dosahuje povrch vytvořený nástrojem A. Je to dáno především tím, že tato obrobená plocha disponuje nejmenším množstvím vytrhaného povrchu. Tento závěr potvrzují také níže uvedené snímky představující reprezentativní lokální profily povrchu (délka 640 mm) jednotlivých vrtaných otvorů. Profil povrchu otvoru vrtaném nástrojem A B C 29
30 Mikrostruktura povrchu V případě nástroje A je obrobený povrch více rovinný než v následujících případech nástrojů B; C. Lze také najít místa, kde je povrch narušen vytržením podpovrchového grafitu. Povrch nástroj A Povrch nástroj B Povrch nástroj C 30
31 Tenká zpevněná povrchová vrstva nástroj A 31
32 Povrchová a podpovrchová mikrotvrdost Tool - borer Průměr povrch Odchylk a Průměr jádro Odchylk a A 298,8 106,24 285,2 90,64 B , ,2 C 300,2 74,08 356,6 33,28 Nanoindentační měření mikrotvrdosti Umístění vtisků v jednotlivých oblastech Nanoindentační měření bylo provedeno při zatížení 250mN po dobu 12s. Hodnoceny byly tři elementy posledních válečků vrtaných analyzovanými nástroji. Měření bylo provedeno v oblasti základního materiálu tj. vrtáním 32 neovlivněné oblasti (a). Další oblastí byl obrobený povrch (b).
33 Ze všech třech hodnocených vzorků dosahuje element vrtaný nástrojem A v obráběné oblasti b nejvyšší nanoindentační mikrotvrdosti. Průměrná hodnota je HIT=6677±575 MPa. Nástroj B vytváří zpevněný povrch s průměrnou hodnotou nanoindentační mikrotvrdosti HIT=6528 ± 1079 MPa. Průměrný podíl elastické deformace u nástroje B je nejvyšší ze všech nástrojů, a to 27,2%. Nejnižší průměrný podíl elastické deformace 24,5 % vykazuje element vrtaný nástrojem C. Průměrná hodnota nanoindentační mikrotvrdosti HIT v případě nástroje C je HIT= 6529 ± 1079 MPa. Průměrné zvýšení nanoindentační mikrotvrdosti HIV z oblasti a do oblasti b je v případě nástrojů B a C shodný, a to o 47 %. U nástroje A je tento nárůst 55 %, tj. následkem vrtání a doprovázející plastické deformace došlo k největšímu zpevnění. 33
34 Výsledky nanoindentační mikrotvrdosti HIT v jednotlivých oblastech 34
35 Analýza povrchu metodou SCRACH TEST 3D snímek vrypu zdokumentovaný pomocí konfokálního mikroskopu Princip měření objemu vrypu 35
36 Tool A [mm ] A B C D Aritmetický průměr 0,0287 0,0283 0,0288 0,0261 0,02798±0,00063 Z hodnot objemu vrypů scrach testu na obrobeném povrchu litiny je zřejmé, že největší objem vrypu, a tedy i nejnižší povrchovou tvrdost vykazuje element obrobený nástrojem A. Naopak nejmenší objem vrypu byl naměřen na elementu vrtaném nástrojem B. 36?
37 Testy korozní odolnosti Korozním prostředím byl zvolen 3 % roztok NaCl v destilované vodě. Teplota okolí při testu se pohybovala od C. Dokumentace byla provedena pomocí stereolupy vždy po 5 minutách. Snímky byly hodnoceny pomocí obrazové analýzy LUCIA a získané výsledky byly zobrazeny do grafů. Nejrychleji korodovaly vzorky vrtané nástrojem B. Ostatní vyvrtané díry vykazovaly v průběhu testu velmi podobné vlastnosti. Tool B 0,7 0,35 0,6 0,3 0,5 START 0,4 CENT ER END 0,3 0,2 0,1 0,25 START 0,2 CENT ER END 0,15 0,1 0, čas [min] 37 zkorodovaná plocha zkorodovaná plocha Tool A čas [min]
38 Testování odolnosti povrchu při cyklické kontaktní analýze Vzorky byly podrobeny stejnému zatížení úderům s nejnižší nastavitelnou energií. Cílem testu bylo citlivě zachytit vlastnosti povrchových oblastí, u kterých se očekávalo odlišné ovlivnění jednotlivými řeznými nástroji. Z analýz kráterů vyplývá, že rozměry kráterů nedosahují výrazných rozdílů. Je to způsobeno tím, že stav obrobených povrchů nedosahuje výrazných odlišností, které by byly zvolenými podmínkami impact testu postižitelné. Při detailnějším prozkoumání rozměrů i charakterů defektů v kráteru byl povrch obrobený nástrojem C hodnocen lépe, než zbývající dva nástroje. 38
39 ZÁVĚR Nástroj A B C 1. Množství vytrhaných částic Nestejnoměrnost povrchu Tloušťka efektivního zpevnění Procentuální pokrytí povrchu zpevněnou vrstvou Teplotní ovlivnění během obrábění na povrchu obrobku Nezaznamenáno 6. Změny během vrtání jednoho otvoru Změny mezi prvním (zářez) a posledním otvorem Výsledky korozních testů Kontaktní namáhání Impact test Součet bodového hodnocení (nejvyšší počet nejlepší) Pořadí
Obrobený povrch a jeho vliv na užitné vlastnosti Antonín Kříž
Obrobený povrch a jeho vliv na užitné vlastnosti Antonín Kříž Seminář Inovace řezných nástrojů a technologií obrábění Cech brusičů a výrobců nástrojů HOFMEISTER s.r.o. - výrobce speciálního nářadí ZČU
VíceVliv povrchu na užitné vlastnosti výrobku
Vliv povrchu na užitné vlastnosti výrobku Antonín Kříž Tento příspěvek vznikl na základě dlouhodobé spolupráce s průmyslovou společností HOFMEISTER s.r.o. a řešení průmyslového projektu FI-IM4/226, který
VíceIntegrita povrchu. Antonín Kříž
Integrita povrchu Antonín Kříž Popis povrchu dřívější pohled na povrch K dosažení správné a spolehlivé funkce strojírenských výrobků je nutné, aby byly rozměry, tvar a vzájemná poloha ploch jejich jednotlivých
VíceVLIV ZPŮSOBŮ OHŘEVU NA TEPLOTNÍ DEGRADACI TENKÝCH OTĚRUVZDORNÝCH PVD VRSTEV ZJIŠŤOVANÝCH POMOCÍ VYBRANÝCH METOD
23. 25.11.2010, Jihlava, Česká republika VLIV ZPŮSOBŮ OHŘEVU NA TEPLOTNÍ DEGRADACI TENKÝCH OTĚRUVZDORNÝCH PVD VRSTEV ZJIŠŤOVANÝCH POMOCÍ VYBRANÝCH METOD Ing.Petr Beneš Ph.D. Doc.Dr.Ing. Antonín Kříž Katedra
VíceIntegrita povrchu a její význam v praktickém využití
Integrita povrchu a její význam v praktickém využití Michal Rogl Obsah: 7. Válečkování články O. Zemčík 9. Integrita povrchu norma ANSI B211.1 1986 11. Laserová konfokální mikroskopie Válečkování způsob
VíceZápadočeská univerzita v Plzni fakulta Strojní
Západočeská univerzita v Plzni fakulta Strojní 23. dny tepelného zpracování s mezinárodní účastí Návrh technologie laserového povrchového kalení oceli C45 Autor: Klufová Pavla, Ing. Kříž Antonín, Doc.
Více1.1.1 Hodnocení plechů s povlaky [13, 23]
1.1.1 Hodnocení plechů s povlaky [13, 23] Hodnocení povlakovaných plechů musí být komplexní a k určování vlastností základního materiálu přistupuje ještě hodnocení vlastností povlaku v závislosti na jeho
VíceVLASTNOSTI TENKÝCH VRSTEV PŘI VYŠŠÍCH TEPLOTÁCH. Antonín Kříž Petr Beneš Martina Sosnová Jiří Hájek
VLASTNOSTI TENKÝCH VRSTEV PŘI VYŠŠÍCH TEPLOTÁCH Antonín Kříž Petr Beneš Martina Sosnová Jiří Hájek Hlavní pozornost odborníků zabývajících se testováním tenkých vrstev orientuje na analýzy za normálních
VíceTEPLOTNÍ ODOLNOST TENKÝCH VRSTEV A JEJICH PŘÍNOS V OBRÁBĚNÍ TVRDÝCH OCELÍ. Antonín Kříž Petr Beneš Martina Sosonová Jiří Hájek
TEPLOTNÍ ODOLNOST TENKÝCH VRSTEV A JEJICH PŘÍNOS V OBRÁBĚNÍ TVRDÝCH OCELÍ Antonín Kříž Petr Beneš Martina Sosonová Jiří Hájek Na počátku byla co se kdy žs st a ne s obyčejná zvědavost, na de en po no ech
VíceZKOUŠKY MIKROLEGOVANÝCH OCELÍ DOMEX 700MC
Sborník str. 392-400 ZKOUŠKY MIKROLEGOVANÝCH OCELÍ DOMEX 700MC Antonín Kříž Výzkumné centrum kolejových vozidel, ZČU v Plzni,Univerzitní 22, 306 14, Česká republika, kriz@kmm.zcu.cz Požadavky kladené dnešními
VíceHodnocení opotřebení a změn tribologických vlastností brzdových kotoučů
Hodnocení opotřebení a změn tribologických vlastností brzdových kotoučů Vedoucí práce: Doc. Ing. Milan Honner, Ph.D. Konzultant: Doc. Dr. Ing. Antonín Kříž Bc. Roman Voch Obsah 1) Cíle diplomové práce
VíceKontaktní cyklické testování materiálů pomocí IMPACT testeru. Antonín Kříž; Petr Beneš
Kontaktní cyklické testování materiálů pomocí IMPACT testeru Antonín Kříž; Petr Beneš V mnoha průmyslových aplikacích jsou součásti vystaveny intenzivním účinkům kontaktního namáhání Při kontaktním namáhání
VícePRASKÁNÍ VRTÁKŮ PO TEPELNÉM ZPRACOVÁNÍ Antonín Kříž
Vakuové tepelné zpracování a tepelné zpracování nástrojů 22. - 23.11. 2011 - Jihlava PRASKÁNÍ VRTÁKŮ PO TEPELNÉM ZPRACOVÁNÍ Antonín Kříž Západočeská univerzita v Plzni Fakulta strojní Katedra materiálu
VíceKatedra obrábění a montáže, TU v Liberci při obrábění podklad pro výuku předmětu TECHNOLOGIE III - OBRÁBĚNÍ je při obrábění ovlivněna řadou parametrů řezného procesu, zejména řeznými podmínkami, geometrií
VíceObrábění slitiny AlSi1Mg0,5Mn nástroji s progresivními tenkými vrstvami
Obrábění slitiny AlSi1Mg0,5Mn nástroji s progresivními tenkými vrstvami Antonín Kříž, Miroslav Zetek, Jan Matějka, Josef Formánek, Martina Sosnová, Jiří Hájek, Milan Vnouček Příspěvek vznikl na základě
VíceMetalografie. Praktické příklady z materiálových expertíz. 4. cvičení
Metalografie Praktické příklady z materiálových expertíz 4. cvičení Příprava metalografických výbrusů Odběr vzorků nesmí dojít k změně struktury (deformace, ohřev) světelný mikroskop pro dosažení požadovaných
Více1.1 Povrchy povlaků - mikrogeometrie
1.1 Povrchy povlaků - mikrogeometrie 1.1.1 Požadavky na povrchy povlaků [24] V případě ocelových plechů je kvalita povrchu povlaku určována zejména stavem povrchu hladících válců při finálních úpravách
VíceÚVOD DO INTEGRITY POVRCHU naše činnost. Antonín Kříž; Petr Beneš
ÚVOD DO INTEGRITY POVRCHU naše činnost Antonín Kříž; Petr Beneš 2.11.2012 Integrita 15.10.2012 Studentské práce sledující integritu povrchu Bakalářská práce David HUDA Vlastnosti a struktury progresivních
VíceProfilová část maturitní zkoušky 2013/2014
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2013/2014 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 23-41-M/01 Strojírenství Předmět: STROJÍRENSKÁ
VíceIntegrita povrchu a její význam v praktickém využití
Integrita povrchu a její význam v praktickém využití Možnosti měření a měřící metody Jiří Šimeček Měření zbytkových napětí - přímá - nepřímá Používají se metody: - mechanické (odleptávání) založené zejména
VícePŘÍNOS METALOGRAFIE PŘI ŘEŠENÍ PROBLÉMŮ TEPELNÉHO ZPRACOVÁNÍ NÁSTROJOVÝCH OCELÍ. Antonín Kříž
PŘÍNOS METALOGRAFIE PŘI ŘEŠENÍ PROBLÉMŮ TEPELNÉHO ZPRACOVÁNÍ NÁSTROJOVÝCH OCELÍ Antonín Kříž Tento příspěvek vznikl na základě spolupráce s firmou Hofmeister s.r.o., řešením projektu FI-IM4/226. Místo,
VíceDRUHY A UTVÁŘENÍ TŘÍSEK
EduCom Tento materiál vznikl jako součást projektu EduCom, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. DRUHY A UTVÁŘENÍ TŘÍSEK Jan Jersák Technická univerzita v Liberci
VíceNÁVRH MATERIÁLU A POVRCHOVÉ ÚPRAVY PRO ŘEZNÉ NÁSTROJE URČENÝCH K OBRÁBĚNÍ PRYŽOVÝCH HADIC ZPEVNĚNÝCH KEVLAREM
NÁVRH MATERIÁLU A POVRCHOVÉ ÚPRAVY PRO ŘEZNÉ NÁSTROJE URČENÝCH K OBRÁBĚNÍ PRYŽOVÝCH HADIC ZPEVNĚNÝCH KEVLAREM Bc. Jiří Hodač Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika
VíceVLIV MIKROSTRUKTURY SLINUTÝCH KARBIDŮ NA ŽIVOTNOST NÁSTROJŮ A STROJNÍCH SOUČÁSTÍ
Sborník str. 363-370 VLIV MIKROSTRUKTURY SLINUTÝCH KARBIDŮ NA ŽIVOTNOST NÁSTROJŮ A STROJNÍCH SOUČÁSTÍ Antonín Kříž Západočeská univerzita, Univerzitní 22, 306 14, Prášková metalurgie - progresivní technologie
VíceÚvod. Povrchové vlastnosti jako jsou koroze, oxidace, tření, únava, abraze jsou často vylepšovány různými technologiemi povrchového inženýrství.
Laserové kalení Úvod Povrchové vlastnosti jako jsou koroze, oxidace, tření, únava, abraze jsou často vylepšovány různými technologiemi povrchového inženýrství. poslední době se začínají komerčně prosazovat
VíceZÁKLADNÍ STUDIUM VLASTNOSTÍ A CHOVÁNÍ SYSTÉMŮ TENKÁ VRSTVA SKLO POMOCÍ INDENTAČNÍCH ZKOUŠEK
ZÁKLADNÍ STUDIUM VLASTNOSTÍ A CHOVÁNÍ SYSTÉMŮ TENKÁ VRSTVA SKLO POMOCÍ INDENTAČNÍCH ZKOUŠEK THE BASIC EVALUATION OF PROPERTIES AND BEHAVIOUR OF SYSTEMS THIN FILMS GLASS BY INDENTATION TESTS Ivo Štěpánek,
VíceTEPLOTNÍ ODOLNOST PVD VRSTEV VŮČI LASEROVÉMU POVRCHOVÉMU OHŘEVU
TEPLOTNÍ ODOLNOST PVD VRSTEV VŮČI LASEROVÉMU POVRCHOVÉMU OHŘEVU Beneš, P. 1 Sosnová, M. 1 Kříž, A. 1 Vrstvy a Povlaky 2007 Solaň Martan, M. 2 Chmelíčková, H. 3 1- Katedra materiálu a strojírenské metalurgie-
VícePOPIS NOVÝCH STRUKTURNÍCH FÁZÍ A JEJICH VLIV NA VLASTNOSTI CÍNOVÉ KOMPOZICE STANIT
POPIS NOVÝCH STRUKTURNÍCH FÁZÍ A JEJICH VLIV NA VLASTNOSTI CÍNOVÉ KOMPOZICE STANIT Antonín Kříž Univerzitní 22, 306 14 Plzeň, e-mail: kriz@kmm.zcu.cz Příspěvek vznikl ve spolupráci s firmou GTW TECHNIK
VíceVliv povrchu na užitné vlastnosti výrobku
Vliv povrchu na užitné vlastnosti výrobku KŘÍŽ, Antonín, Doc.Dr.Ing., ZČU Plzeň, Univerzitní 22, 306 14 Plzeň, Česká republika Anotace Povrch součásti je třeba chápat v kontextu s jeho mnoha funkcemi.
VíceVÝZKUM MECHANICKÝCH VLASTNOSTÍ SVAROVÝCH SPOJŮ MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ T24 A P92. Ing. Petr Mohyla, Ph.D.
VÝZKUM MECHANICKÝCH VLASTNOSTÍ SVAROVÝCH SPOJŮ MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ T24 A P92 Ing. Petr Mohyla, Ph.D. Úvod Od konce osmdesátých let 20. století probíhá v celosvětovém měřítku intenzivní vývoj
VíceREGIONÁLNÍ TECHNOLOGICKÝ INSTITUT. Západočeská univerzita v Plzni Fakulta strojní
REGIONÁLNÍ TECHNOLOGICKÝ INSTITUT Západočeská univerzita v Plzni Fakulta strojní Výzkumné centrum RTI Regionální technologický institut - RTI je výzkumné centrum Fakulty strojní Západočeské univerzity
VíceNÁSTROJ NEFUNGUJE, KDO ZA TO MŮŽE?
NÁSTROJ NEFUNGUJE, KDO ZA TO MŮŽE? Příspěvek je ve sborníku na str. 67-72, přednáška na www.ateam.zcu.cz Antonín Kříž 3/37 4/37 Čas jsou peníze Systém tenká vrstva-substrát Vrstva Rozhraní Substrát Deponované
VíceHODNOCENÍ HLOUBKOVÝCH PROFILŮ MECHANICKÉHO CHOVÁNÍ POLYMERNÍCH MATERIÁLŮ POMOCÍ NANOINDENTACE
HODNOCENÍ HLOUBKOVÝCH PROFILŮ MECHANICKÉHO CHOVÁNÍ POLYMERNÍCH MATERIÁLŮ POMOCÍ NANOINDENTACE EVALUATION OF DEPTH PROFILE OF MECHANICAL BEHAVIOUR OF POLYMER MATERIALS BY NANOINDENTATION Marek Tengler,
VíceKatedra materiálu a strojírenské metalurgie DEGRADATION OF CONSTRUCTION MATERIAL OF A REACTOR FOR ACRYLATES PRODUCTION DEGRADACE KONSTRUKČNÍHO
Katedra materiálu a strojírenské metalurgie DEGRADATION OF CONSTRUCTION MATERIAL OF A REACTOR FOR ACRYLATES PRODUCTION DEGRADACE KONSTRUKČNÍHO MATERIÁLU REAKTORU PRO VÝROBU ESTERŮ KYSELINY AKRYLOVÉ Antonín
VíceKalení Pomocí laserového paprsku je možné rychle a kvalitně tepelně zušlechtit povrch materiálu až do hloubek v jednotkách milimetrů.
Kalení Pomocí laserového paprsku je možné rychle a kvalitně tepelně zušlechtit povrch materiálu až do hloubek v jednotkách milimetrů. Výhody laserového kalení: Nižší energetická náročnost (kalení pouze
VíceKoroze pivních korunek I - struktura II - technologie
Koroze pivních korunek I - struktura II - technologie Produkty koroze na hrdle pivní lahve světového výrobce piva Detail hrdla pivní láhve Koroze na vnitřní straně pivní korunky Možné zdroje koroze popř.
VíceCOMPARISON OF SYSTEM THIN FILM SUBSTRATE WITH VERY DIFFERENT RESISTANCE DURING INDENTATION TESTS. Matyáš Novák, Ivo Štěpánek
POROVNÁNÍ SYSTÉMŮ TENKÁ VRSTVA SUBSTRÁT S VELICE ROZDÍLNOU ODOLNOSTÍ PŘI INDENTAČNÍCH ZKOUŠKÁCH COMPARISON OF SYSTEM THIN FILM SUBSTRATE WITH VERY DIFFERENT RESISTANCE DURING INDENTATION TESTS Matyáš Novák,
VíceOPOTŘEBENÍ A TRVANLIVOST NÁSTROJE
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10; s platností do r. 2016 v návaznosti na platnost norem. Zákaz šíření a modifikace těchto materiálů. Děkuji Ing. D.
VíceČerné označení. Žluté označení H R B % C 0,1 0,2 0,3 0,4 0,5
Řešení 1. Definujte tvrdost, rozdělte zkoušky tvrdosti Tvrdost materiálu je jeho vlastnost. Dá se charakterizovat, jako jeho schopnost odolávat vniku cizího tělesa. Zkoušky tvrdosti dělíme dle jejich charakteru
VíceSVÚM a.s. Zkušební laboratoř vlastností materiálů Tovární 2053, Čelákovice
Pracoviště zkušební laboratoře: 1. Pracoviště Čelákovice 2. Pracoviště Praha Areál VÚ, Podnikatelská 565, 190 11 Praha-Běchovice 1. Pracoviště Čelákovice Pracoviště je způsobilé aktualizovat normy identifikující
VíceMETALOGRAFIE II. Oceli a litiny
METALOGRAFIE II Oceli a litiny Slitiny železa, uhlíku a popřípadě dalších prvků se nazývají oceli a litiny. Oceli jsou slitiny železa obsahující do 2,14 hm. % uhlíku, litiny s obsahem uhlíku nad 2,14 hm.
VíceVLIV TECHNOLOGIE ŽÁROVÉHO ZINKOVÁNÍ NA VLASTNOSTI ŽÁROVĚ ZINKOVANÝCH OCELÍ
Transfer inovácií 2/211 211 VLIV TECHNOLOGIE ŽÁROVÉHO ZINKOVÁNÍ NA VLASTNOSTI ŽÁROVĚ ZINKOVANÝCH OCELÍ Ing. Libor Černý, Ph.D. 1 prof. Ing. Ivo Schindler, CSc. 2 Ing. Petr Strzyž 3 Ing. Radim Pachlopník
VíceMendelova univerzita v Brně. Analýza vybraných mechanických vlastností konstrukčních materiálů pro dřevostavby
Mendelova univerzita v Brně Lesnická a dřevařská fakulta Ústav základního zpracování dřeva Analýza vybraných mechanických vlastností konstrukčních materiálů pro dřevostavby Diplomová práce Vedoucí práce:
VícePROBLEMATICKÉ SVAROVÉ SPOJE MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ
PROBLEMATICKÉ SVAROVÉ SPOJE MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ doc. Ing. Petr Mohyla, Ph.D. Fakulta strojní, VŠB TU Ostrava 1. Úvod Snižování spotřeby fosilních paliv a snižování škodlivých emisí vede k
VíceStudijní program: Technologie a materiály
Studijní program: Technologie a materiály Téma disertační práce Školitel Katedra 1. Bezkontaktní skenování povrchu strojních součástí Anotace: Ve strojírenské výrobě se začínají stále více prosazovat systémy
VíceOblasti průzkumu kovů
Průzkum kovů Oblasti průzkumu kovů Identifikace kovů, složení slitin. Studium struktury kovu-technologie výroby, defektoskopie. Průzkum aktuálního stavu kovu, typu a stupně koroze. Průzkumy předchozích
VícePod vodu iglidur H370. Produktová řada Odolný proti opotřebení - zejména pod vodou Vysoká teplotní odolnost 40 C až +200 C Vysoká chemická odolnost
Pod vodu Produktová řada Odolný proti opotřebení - zejména pod vodou Vysoká teplotní odolnost 40 C až +200 C Vysoká chemická odolnost 375 Pod vodu. Materiál je tím pravým řešením pro aplikace pod vodou.
VíceProduktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost
Elektricky vodivý iglidur Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost HENNLICH s.r.o. Tel. 416 711 338 ax 416 711 999 lin-tech@hennlich.cz
VíceVrstvy a povlaky 2007
Vrstvy a povlaky 2007 VLIV MECHANICKÝCH ÚPRAV SUBSTRÁTU TU NA ADHEZI TENKÝCH VRSTEV Martina Sosnová Antonín Kříž ZČU v Plzni Úvod Povrchové inženýrství je relativně mladým vědním oborem. Fascinace člověka
VíceElektricky vodivý iglidur F. Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost
Elektricky vodivý Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost 59 Elektricky vodivý. Materiál je extrémní tuhý a tvrdý, kromě
VícePOROVNÁNÍ VLIVU DEPOSICE TENKÝCH VRSTEV A NAVAŘOVÁNÍ NA DEGRADACI ZÁKLADNÍHO MATERIÁLU
POROVNÁNÍ VLIVU DEPOSICE TENKÝCH VRSTEV A NAVAŘOVÁNÍ NA DEGRADACI ZÁKLADNÍHO MATERIÁLU COMPARISON OF INFLUENCES OF DEPOSITION THIN FILMS AND WELDING ON DEGRADATION OF BASIC MATERIAL Monika Hadáčková a
VícePOVRCHY A JEJICH DEGRADACE
POVRCHY A JEJICH DEGRADACE Ing. V. Kraus, CSc. Opakování z Nauky o materiálu 1 Povrch Rozhraní dvou prostředí (není pouze plochou) Skoková změna sil ovlivní: povrchovou vrstvu materiálu (relaxace, rekonstrukce)
VíceAPLIKACE MIKROTVRDOSTI K HODNOCENÍ KVALITY PLASTOVÝCH DÍLŮ. vliv expozice v tenzoaktivním prostředí motorových paliv a geometrie dílu
APLIKACE MIKROTVRDOSTI K HODNOCENÍ KVALITY PLASTOVÝCH DÍLŮ vliv expozice v tenzoaktivním prostředí motorových paliv a geometrie dílu Laboratorní cvičení předmět: Vlastnosti a inženýrské aplikace plastů
VíceStanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 23-41-M/01 Strojírenství STROJÍRENSKÁ TECHNOLOGIE
Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 23-41-M/01 Strojírenství STROJÍRENSKÁ TECHNOLOGIE 1. Mechanické vlastnosti materiálů, zkouška pevnosti v tahu 2. Mechanické
VíceTrvanlivost,obrobitelnost,opotřebení břitu
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Obrábění Trvanlivost,obrobitelnost,opotřebení břitu
VíceStavebnictví Energetika Tlaková zařízení Chemickz průmysl Dopravní prostředky
Stavebnictví Energetika Tlaková zařízení Chemickz průmysl Dopravní prostředky čelní, boční a šikmé stehové (krátké svary pro zabezpečení polohy), těsnící ( u nádrží apod.), nosné (konstrukce), spojovací
VíceVýzkumný a zkušební ústav Plzeň s.r.o. Zkušební laboratoř Tylova 1581/46, 301 00 Plzeň
Pracoviště zkušební laboratoře: 1. Zkušebna Analytická chemie 2. Zkušebna Metalografie 3. Mechanická zkušebna včetně detašovaného pracoviště Orlík 266, 316 06 Plzeň 4. Dynamická zkušebna Orlík 266, 316
VícePosouzení stavu rychlořezné oceli protahovacího trnu
Posouzení stavu rychlořezné oceli protahovacího trnu ČSN 19 830 zušlechtěno dle předpisů pro danou ocel tj. kaleno a 3x popuštěno a) b) Obr.č. 1 a) Poškozený zub protahovacího trnu; b) Zdravý zub druhá
VíceJméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec,
BUM - 7 Únava materiálu Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec, Úkoly k řešení 1. Vysvětlete stručně co je únava materiálu.
VíceMateriálové laboratoře Chomutov s.r.o. Zkušební laboratoř MTL Luční 4624, 430 01 Chomutov
Laboratoř je způsobilá aktualizovat normy identifikující zkušební postupy. Laboratoř uplatňuje flexibilní přístup k rozsahu akreditace upřesněný v dodatku. Aktuální seznam činností prováděných v rámci
VíceFDA kompatibilní iglidur A180
FDA kompatibilní Produktová řada Je v souladu s předpisy FDA (Food and Drug Administration) Pro přímý kontakt s potravinami a léčivy Pro vlhká prostředí 411 FDA univerzální. je materiál s FDA certifikací
VíceSTUDIUM MECHANICKÝCH VLASTNOSTÍ A CHOVÁNÍ V OKOLÍ MAKROVTISKŮ NA SYSTÉMECH S TENKÝMI VRSTVAMI
STUDIUM MECHANICKÝCH VLASTNOSTÍ A CHOVÁNÍ V OKOLÍ MAKROVTISKŮ NA SYSTÉMECH S TENKÝMI VRSTVAMI EVALUATION OF MECHANICAL PROPERTIES AND BEHAVIOUR AROUND MACROINDENTS ON SYSTEMS WITH THIN FILMS Denisa Netušilová,
VíceZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické
ZKOUŠKY MECHANICKÝCH VLASTNOSTÍ MATERIÁLŮ Mechanické zkoušky statické a dynamické Úvod Vlastnosti materiálu, lze rozdělit na: fyzikální a fyzikálně-chemické; mechanické; technologické. I. Mechanické vlastnosti
VíceSEZNAM TÉMAT K ÚSTNÍ PROFILOVÉ ZKOUŠCE Z TECHNOLOGIE
SEZNAM TÉMAT K ÚSTNÍ PROFILOVÉ ZKOUŠCE Z TECHNOLOGIE Školní rok: 2012/2013 Obor: 23-44-L/001 Mechanik strojů a zařízení 1. Základní vlastnosti materiálů fyzikální vlastnosti chemické vlastnosti mechanické
VíceTest A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná.
Test A 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná. 2. Co je to µ? - Poissonův poměr µ poměr poměrného příčného zkrácení k poměrnému podélnému prodloužení v oblasti pružných
Víceiglidur H2 Nízká cena iglidur H2 Může být použit pod vodou Cenově výhodné Vysoká chemická odolnost Pro vysoké teploty
Nízká cena iglidur Může být použit pod vodou Cenově výhodné Vysoká chemická odolnost Pro vysoké teploty 399 iglidur Nízká cena. Pro aplikace s vysokými požadavky na teplotní odolnost. Může být podmíněně
VíceHouževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii.
Henry Kaiser, Hoover Dam 1 Henry Kaiser, 2 Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti
VíceMateriálové laboratoře Chomutov s.r.o. Zkušební laboratoř MTL Luční 4624, Chomutov
Laboratoř je způsobilá aktualizovat normy identifikující zkušební postupy. Laboratoř uplatňuje flexibilní přístup k rozsahu akreditace upřesněný v dodatku. Aktuální seznam činností prováděných v rámci
VíceZMENY POVRCHOVÝCH MECHANICKÝCH VLASTNOSTÍ SYSTÉMU S TENKÝMI VRSTVAMI PO KOMBINOVANÉM NAMÁHÁNÍ. Roman Reindl, Ivo Štepánek
ZMENY POVRCHOVÝCH MECHANICKÝCH VLASTNOSTÍ SYSTÉMU S TENKÝMI VRSTVAMI PO KOMBINOVANÉM NAMÁHÁNÍ Roman Reindl, Ivo Štepánek Západoceská univerzita v Plzni, Univerzitní 22, 306 14 Plzen, CR, ivo.stepanek@volny.cz
VícePředrestaurátorský průzkum plastiky Totem civilizace
Výzkum a vývoj, koroze a protikorozní ochrana, korozní inženýrství, povrchové úpravy a ochrana životního prostředí s.r.o. 170 00 Praha 7 - Holešovice, U Měšťanského pivovaru 934/4 Předrestaurátorský průzkum
VícePoškození strojních součástí
Poškození strojních součástí Degradace strojních součástí Ve strojích při jejich provozu probíhají děje, které mají za následek změny vlastností součástí. Tyto změny jsou prvotními technickými příčinami
VíceCharakteristika. Vlastnosti. Použití NÁSTROJE NA TLAKOVÉ LITÍ NÁSTROJE NA PROTLAČOVÁNÍ NÁSTROJE PRO TVÁŘENÍ ZA TEPLA VYŠŠÍ ŽIVOTNOST NÁSTROJŮ
DIEVAR DIEVAR 2 DIEVAR Charakteristika DIEVAR je Cr-Mo-V legovaná vysoce výkonná ocel pro práci za tepla s vysokou odolností proti vzniku trhlin a prasklin z tepelné únavy a s vysokou odolností proti opotřebení
VíceAnalýza PIN-on-DISC. Ing. Jiří Hájek Dr. Ing. Antonín Kříž ZÁPADOČESKÁ UNIVERZITA V PLZNI
Analýza PIN-on-DISC Ing. Jiří Hájek Dr. Ing. Antonín Kříž ZÁPADOČESKÁ UNIVERZITA V PLZNI 1/18 TRIBOLOGICKÝ PROCES Tribological process Factors that influence the process: loading, loading type, movement
VíceNízká cena při vysokých množstvích
Nízká cena při vysokých množstvích iglidur Vhodné i pro statické zatížení Bezúdržbový provoz Cenově výhodné Odolný vůči nečistotám Odolnost proti vibracím 225 iglidur Nízká cena při vysokých množstvích.
VíceSTUDIUM MECHANICKÉHO CHOVÁNÍ ROZDÍLNÝCH SYSTÉMŮ TENKÁ VRSTVA SKLO POMOCÍ INDENTAČNÍCH ZKOUŠEK
STUDIUM MECHANICKÉHO CHOVÁNÍ ROZDÍLNÝCH SYSTÉMŮ TENKÁ VRSTVA SKLO POMOCÍ INDENTAČNÍCH ZKOUŠEK EVALUATION OF MECHANICAL BEHAVIOUR OF DIFFERENT SYSTEMS THIN FILM GLASS BY INDENTATION TESTS Ivo Štěpánek,
VíceZKOUŠENÍ MATERIÁLU. Defektoskopie a technologické zkoušky
ZKOUŠENÍ MATERIÁLU Defektoskopie a technologické zkoušky Zkoušení materiálů bez porušení Nedestruktivní zkoušky (nezpůsobují trvalou změnu tvaru, rozměrů nebo struktury): metody zkoumání struktur (optická
VíceKOMPLEXNÍ VZDĚLÁVÁNÍ KATEDRA STROJNÍ SPŠSE a VOŠ LIBEREC
KOMPLEXNÍ VZDĚLÁVÁNÍ KATEDRA STROJNÍ SPŠSE a VOŠ LIBEREC CNC CAM CNC CNC OBECNĚ (Kk) SOUSTRUŽENÍ SIEMENS (Ry) FRÉZOVÁNÍ SIEMENS (Hu) FRÉZOVÁNÍ HEIDENHEIM (Hk) CAM EdgeCAM (Na) 3D OBJET PRINT (Kn) CNC OBECNĚ
VíceLŠVT 2007. Mechanické vlastnosti: jak a co lze měřm. ěřit na tenkých vrstvách. Jiří Vyskočil, Andrea Mašková HVM Plasma, Praha
Mechanické vlastnosti: jak a co lze měřm ěřit na tenkých vrstvách Jiří Vyskočil, Andrea Mašková HVM Plasma, Praha Prague, May 2005 OBSAH 1 mechanické vlastnosti objemových materiálů 1 tenké vrstvy a jejich
VíceVYSOKOVÝKONOVÉ LASEROVÉ ROBOTIZOVANÉ PRACOVIŠTĚ
VYSOKOVÝKONOVÉ LASEROVÉ ROBOTIZOVANÉ PRACOVIŠTĚ KULIČKOVÉ ŠROUBY KUŘIM, a.s. Vždy máme řešení! Courtesy of Trumpf Kalení Pomocí laserového paprsku je možné rychle a kvalitně tepelně zušlechtit povrch materiálu
VíceVysoké teploty, univerzální
Vysoké teploty, univerzální Vynikající koeficient tření na oceli Trvalá provozní teplota do +180 C Pro střední a vysoké zatížení Zvláště vhodné pro rotační pohyb HENNLICH s.r.o. Tel. 416 711 338 Fax 416
VícePROTAHOVÁNÍ A PROTLAČOVÁNÍ
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10; s platností do r. 2016 v návaznosti na platnost norem. Zákaz šíření a modifikace těchto materiálů. Děkuji Ing. D.
VíceIdentifikace zkušebního postupu/metody
Pracoviště zkušební laboratoře: 1. 621 Laboratoř chemická a radioizotopová 2. 622 Laboratoř metalografická 3. 623 Laboratoř mechanických vlastností 4. 624 Laboratoř korozní Laboratoř je způsobilá aktualizovat
VíceKOROZE A TECHNOLOGIE POVRCHOVÝCH ÚPRAV
KOROZE A TECHNOLOGIE POVRCHOVÝCH ÚPRAV Přednáška č. 04: Druhy koroze podle vzhledu Autor přednášky: Ing. Vladimír NOSEK Pracoviště: TUL FS, Katedra materiálu Koroze podle vzhledu (habitus koroze) 2 Přehled
VíceHODNOCENÍ MECHANICKÝCH VLASTNOSTÍ TENKOVRSTVÝCH SYSTÉMŮ Z GRAFU ZÁVISLOSTI MÍRY INFORMACE NA ZATÍŽENÍ
HODNOCENÍ MECHANICKÝCH VLASTNOSTÍ TENKOVRSTVÝCH SYSTÉMŮ Z GRAFU ZÁVISLOSTI MÍRY INFORMACE NA ZATÍŽENÍ ANALYSIS OF MECHANICAL PROPERTIES OF THIN FILMS SYSTEMS FROM DEPENDENCE OF KIND OF INFORMATION AND
VíceLETECKÉ MATERIÁLY. Úvod do předmětu
LETECKÉ MATERIÁLY Úvod do předmětu Historický vývoj leteckých konstrukčních materiálů Uplatnění konstrukčních materiálů souvisí s pevnostními koncepcemi leteckých konstrukcí Pevnostní koncepce leteckých
VíceHODNOCENÍ STÁRNUTÍ POVRCHU MATERIÁLU POMOCÍ INDENTACNÍCH MERENÍ
HODNOCENÍ STÁRNUTÍ POVRCHU MATERIÁLU POMOCÍ INDENTACNÍCH MERENÍ Marek Tengler, Ivo Štepánek Západoceská univerzita v Plzni, Univerzitní 22, 306 14 Plzen, CR, ivo.stepanek@volny.cz Abstrakt Príspevek se
VíceTEPELNÉ ZPRACOVÁNÍ KONSTRUKČNÍCH OCELÍ SVOČ - 2008. Jana Martínková, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika
TEPELNÉ ZPRACOVÁNÍ KONSTRUKČNÍCH OCELÍ SVOČ - 2008 Jana Martínková, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT Práce obsahuje charakteristiku konstrukčních ocelí
VíceOpakovací MATURITNÍ OTÁZKY Z PŘEDMĚTU TECHNOLOGIE ŠKOLNÍ ROK OBOR STROJNICTVÍ, ZAMĚŘENÍ PPK ZKRÁCENÉ POMATURITNÍ STUDIUM 1.
Opakovací MATURITNÍ OTÁZKY Z PŘEDMĚTU TECHNOLOGIE ŠKOLNÍ ROK 2016-2017 OBOR STROJNICTVÍ, ZAMĚŘENÍ PPK ZKRÁCENÉ POMATURITNÍ STUDIUM 1. Stavba kovů krystalografické mřížky, polymorfie Fe diagram tuhého roztoku
VíceVýzkumný a zkušební ústav Plzeň s.r.o. Zkušební laboratoř Tylova 1581/46, Plzeň
Pracoviště zkušební laboratoře: 1. Materiálová zkušebna včetně detašovaného pracoviště Orlík 266/15, Bolevec, 316 00 Plzeň 2. Dynamická zkušebna Orlík 266/15, Bolevec, 316 00 Plzeň korespondenční adresa:
VíceChromované pístní tyče tvoří základní pohyblivou část přímočarého hydromotoru. Nabízíme je v jakostech:
Chromované tyče Chromované pístní tyče tvoří základní pohyblivou část přímočarého hydromotoru. Nabízíme je v jakostech: ocel 20MnV6 (podle ČSN podobná oceli 13 220) Vanadiová ocel, normalizovaná, s vyšší
VíceHODNOCENÍ POVRCHOVÝCH ZMEN MECHANICKÝCH VLASTNOSTÍ PO ELEKTROCHEMICKÝCH ZKOUŠKÁCH. Klára Jacková, Ivo Štepánek
HODNOCENÍ POVRCHOVÝCH ZMEN MECHANICKÝCH VLASTNOSTÍ PO ELEKTROCHEMICKÝCH ZKOUŠKÁCH Klára Jacková, Ivo Štepánek Západoceská univerzita v Plzni, Univerzitní 22, 306 14 Plzen, CR, ivo.stepanek@volny.cz Abstrakt
VícePro vysoké rychlosti pod vodou
Pro vysoké rychlosti pod vodou iglidur Produktová řada Pro aplikace pod vodou Pro rychlý a konstantní pohyb Dlouhá životnost HENNLICH s.r.o. Tel. 416 711 338 Fax 416 711 999 lin-tech@hennlich.cz www.hennlich.cz
VíceTeplotně a chemicky odolný, FDA kompatibilní iglidur A500
Teplotně a chemicky odolný, FDA kompatibilní Produktová řada Samomazný a bezúdržbový Je v souladu s předpisy FDA (Food and Drug Administration) Pro přímý kontakt s potravinami a léčivy Teplotní odolnost
Víceiglidur UW500 Pro horké tekutiny iglidur UW500 Pro použití pod vodou při vysokých teplotách Pro rychlé a konstantní pohyby
Pro horké tekutiny iglidur Pro použití pod vodou při vysokých teplotách Pro rychlé a konstantní pohyby 341 iglidur Pro horké tekutiny. Kluzná pouzdra iglidur byla vyvinuta pro aplikace pod vodou při teplotách
VíceZKOUŠENÍ KOROZNÍ ODOLNOSTI PLAZMOVĚ NANÁŠENÝCH NITRIDICKÝCH VRSTEV NA OCELÍCH CORROSION RESISTANCE TESTING OF PLASMA NITRIDATION LAYERS ON STEELS
ZKOUŠENÍ KOROZNÍ ODOLNOSTI PLAZMOVĚ NANÁŠENÝCH NITRIDICKÝCH VRSTEV NA OCELÍCH CORROSION RESISTANCE TESTING OF PLASMA NITRIDATION LAYERS ON STEELS Marie Blahetová, Jan Oppelt, Stanislav Lasek, Vladimír
VíceKonstrukční, nástrojové
Rozdělení ocelí podle použití Konstrukční, nástrojové Rozdělení ocelí podle použití Podle použití oceli: konstrukční (uhlíkové, legované), nástrojové (uhlíkové, legované). Konstrukční oceli uplatnění pro
VíceMORFOLOGIE VÝSTŘIKU - VLIV TECHNOLOGICKÝCH PODMÍNEK. studium heterogenní morfologické struktury výstřiků
MORFOLOGIE VÝSTŘIKU - VLIV TECHNOLOGICKÝCH PODMÍNEK studium heterogenní morfologické struktury výstřiků Laboratorní cvičení předmět: Vlastnosti a inženýrské aplikace plastů Zadání / Cíl Na vstřikovaných
VíceBez PTFE a silikonu iglidur C. Suchý provoz Pokud požadujete dobrou otěruvzdornost Bezúdržbovost
Bez PTFE a silikonu iglidur Suchý provoz Pokud požadujete dobrou otěruvzdornost Bezúdržbovost HENNLIH s.r.o. Tel. 416 711 338 Fax 416 711 999 lin-tech@hennlich.cz www.hennlich.cz 613 iglidur Bez PTFE a
VíceJIŘÍ HÁJEK, ANTONÍN KŘÍŽ
SLEDOVÁNÍ TRIBOLOGICKÝCH TENKÝCH VRSTEV JIŘÍ HÁJEK, ANTONÍN KŘÍŽ VLASTNOSTÍ MOTIVACE EXPERIMENTU V SOUČASNÉ DOBĚ: PIN-on-DISC velmi důležitá analýza z hlediska správného využití příslušného typu systému
VíceOVMT Mechanické zkoušky
Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor
Více