obtížnost 2 I c, lnγ ± = A z + z I c
|
|
- Jaromír Netrval
- před 8 lety
- Počet zobrazení:
Transkript
1 Zkouškový test z FCH mikrosvěta 6. ledna 2015 VZOR/1 body obtížnost VERZESŘEŠENÍM Můžete potřebovat Střednívolnádráha: L=1/( 2Nσ)(N=číselnáhustota, σ=kolizníprůřez) Avogadrovakonstanta: N A = mol 1 Boltzmannovakonstanta: k= JK 1 Ebulioskopickákonstantavodypři25 C=0.51Kkgmol 1 Kryoskopickákonstantavodypři25 C=1.86Kkgmol 1 Povrchovénapětívodypři25 C=72mN/m Laplaceova-Youngovarovnice: p= 2γ r van thoffovarovniceproosmotickýtlak:π=crt Kelvinovarovnice:ln ps r p s = ± 2γV(l) m RTr Indexpolydisperzity(disperzita):PDI= hmotnostněstřednímolárníhmotnost číselně střední molární hmotnost Debyeův Hückelůvlimitnízákon(I c jeiontovásíla): lnγ i = Azi 2 I c, lnγ ± = A z + z I c 1. (10bodů) Při rozkladu (CH 3 ) 3 Ge-Ge(CH 3 ) 3 metodou CVD vznikají přibližně válcovité 5 útvaryoprůměru30nmadélce100nm.kolikobsahujíatomůge?hustotapevnéhoge je5.323gcm 3,molárníhmotnost72.6gmol 1. Řešení: asi 3 miliony V = π 4 d2 l= π 4 ( ) m 3 = m 3 V m = / = m 3 mol 1 N = V V m N A = (10bodů)Materiálmávelikostpórůzhruba100nm.Budevněmdocházetzaběžných 4 podmínek(t=300k, p=1bar)keknudsenovědifuzihelia?kolizníprůměrheliaje1.4å. Řešení: p N = k B T = = m 3 σ = πr 2 = π ( ) 2 m 2 = m 2 1 L = = m=480nm 2Nσ
2 Střední volná dráha je několikrát větší než velikost póru, převládajícím mechanismem bude Knudsenova difuze 3. (10 bodů) Polymer se skládá ze dvou globulí stejné velikosti 30 4 nm od sebe. Odhadněte jeho gyrační poloměr. Řešení: Těžiště je uprostřed. Podle vzorce(článek = globule) R 2 g =1 n (Ri R cm ) 2 = 1 2 [ ]=15 2 nm 2 R g =15nm 4. (5 bodů) Teplota je mírou 1 a celkové(kinetické a potenciální) energie molekul b vibrační a rotační energie molekul c potenciální energie molekul 5 d kinetické energie molekul Vysvětlení: Vzpomeňte si na odvození stavové rovnice ideálního plynu z nárazů molekul na stěnu.vyšlo(promonoatomárníplyn) pv= 2 3 E kin;tosemárovnat nrt 5. (5bodů)pHpufrupopřidání0.012moldm 3 HClsesnížiloz4.40na4.37.Jakájejeho 3 pufrační kapacita? Řešení: kapacitapufru= dc zásada d(ph) =0.4moldm 3 ph 1 6. (5bodů)LátkaAreagujenalátkuBmechanismem 6 A k 1 A k 3 B k2 kde k 3 k 1 a k 3 k 2.OdvoďtekinetickourovniciprokoncentracilátkyB.Vrovnicisenesmí vyskytovatkoncentracenestáléhomeziproduktu c A. Řešení: Předrovnováha: c A c A = k 1 k 2 Kin.rovnicepro c B : dc B= k dτ 3 c A dc Podosazeníza c A : B = k 3k 1 dτ k 2 c A (= dc A dτ,protožea jemaléstacionárnímnožství) 7. (5 bodů) Nakreslete schematicky závislost koncentrací látek A a B na čase u vratných reakcí 3 typu A B je-linazačátkuvreakčnísměsipouzelátkaa. B A
3 koncentrace 0 0 čas Řešení: 8. (5bodů)PřiodvozeníDebyeova-Hückelovalimitníhozákona, γ i =exp( Azi 2 I),bylypoužity následující předpoklady: 6 a ionty jsou solvatovány molekulami rozpouštědla, které jsou pevně vázány a tvoří solvatační slupku 2 b rozpouštědlo se nahrazuje kontinuem s permitivitou danou permitivitou čistého rozpouštědla 2 c ionty v okolí daného iontu se nahrazují průměrnou sféricky symetrickou nábojovou hustotou(iontová atmosféra) d koncentrace iontů je dostatečně vysoká(aby okolní ionty tvořily dostatečně tlustou iontovou atmosféru stínící centrální ion) 1 e ionty jsou nabité hmotné body Vysvětlení: Debyeova-Hückelova teorie pracuje se spojitými pojmy jako je průměrný náboj iontů okolo vybraného iontu, rozpouštědlo je též nahrazeno spojitým prostředím. Náboje jsou bodové(limitní zákon); mírného zpřesnění teorie se dosáhne uvažováním kulatých iontů vyjde pak γ i =exp[ Az 2 i I/(1+const I)] 9. (5bodů)? Napištereakci,kteráprobíhánaelektroděAg 2 SO 4 /Ag/SO 2 4,je-livgalvanickém 3 článku zapojena jako katoda(3 b.). Řešení:Ag 2 SO 4 (s)+2e 2Ag(s)+SO 2 4 (aq) Dále uveďte, na koncentraci jakých iontů je elektroda citlivá(2 b.): 0 a SO 2 4 aag + b H + c Ag + 2 d SO (5bodů)Vysvětletepojem koncentračnípolarizaceelektrody 2
4 Řešení: Je to rozdíl mezi rovnovážným a skutečným napětím elektrody způsobený rozdílnou koncentrací látek v roztoku a u elektrody. Tato rozdílná koncentrace je způsobena nedostatečnou rychlostí difuze reaktantů či produktů. 11. (5 bodů) Jaká je povrchová energie hladiny rybníka Rožmberk? Povrchové napětí vody 3 znečištěnéorganickýmilátkamije60mnm 1.Plocharybníkaje490ha. Řešení: E= γa= Nm m 2 =294kJ 12. (5bodů) Závislostadsorbovanéhomnožství n A látky 3 Anaparciálnímtlaku p A zakonstantníteplotyjedánagrafem podle obrázku. 1) Která adsorpční izoterma je vhodná pro popis této závislosti? 2) Na jakých předpokladech je založena? Řešení: Langmuirovaizoterma, n A = n max bp A /(1+bp A ).Předpokládáseadsorpcevmonomolekulární vrstvě na nezávislých interakčních centrech. Jsou-li všechna centra obsazena, dosahuje adsorbované množství maximální hodnoty. 13. (5 bodů)? Ve fázovém rozhraní je za termodynamické rovnováhy obecně nenulový gradient 4 a chemického potenciálu(složky) 2 b hustoty c teploty 3 d koncentrace(složky) Vysvětlení: Za termodynamické rovnováhy je teplota všude stejná, to samé platí pro tlak i chemické potenciály látek. Hustota a koncentrace se mohou lišit(představte si vodu a olej) 14. (5 bodů)? Která látka způsobí po rozpuštění ve vodě největší snížení povrchového napětí? 6 a NaCl 5 b CH 3 CH 2 CH 2 CH 2 CH 2 COONa c CH 3 CH 2 CH 2 CH 2 CH 2 CH 2 OH d CH 3 CH 2 CH 2 CH 2 OH Vysvětlení:Organickákyselinadisociujeazáporněnabitékupiny-COO jsouvelmihydrofilní (protoževodajepolární) vícenežskupiny-oh 15. (5 bodů)? Známe-li kontaktní úhel smáčení kapaliny na tuhé látce a povrchové napětí 5 kapaliny, můžeme z toho vypočítat: a povrchovou energii tuhé látky i mezifázovou energii tuhá látka kapalina b pouze mezifázovou energii tuhá látka kapalina c pouze aritmetický průměr povrchové energie tuhé látky a mezifázové energie tuhá látka kapalina 5 d pouze rozdíl povrchové energie tuhé látky a mezifázové energie tuhá látka kapalina Vysvětlení:VyplývátozYoungovyrovnice γ sg = γ ls + γ lg cosθprorovnováhusilpřistyku kapky se vzduchem a podložkou
5 16. (5 bodů) Závislost osmotického tlaku roztoku neznámého polymeru na hmotnostní koncentraci za teploty 300 K byla vystižena 5 vzorcem Vypočtěte střední molární hmotnost. Řešení: π/pa=148c w /(gdm 3 ) Π=kc w = kcm, k=148gdm 3 /Pa=148kgm 3 /Pa M= π kc = crt kc = RT k = kgmol 1. =16.9kgmol (5 bodů) Uveďte definiční vztah pro pohyblivost iontu(včetně popisu všech veličin) a 2 jednotku, ve které se měří(v soustavě SI). Řešení: u=v/e,kde vjerychlostiontuvel.poliointenzitě E.Jednotka=ms 1 /Vm 1 = m 2 s 1 V 1 (Celkem 100 bodů, obtížnost = 390/17) Bonusové otázky Bonusové otázky jsou těžší, všimněte si však, že body se počítají nad (10 bodů) Popište jevy, ke kterým dochází při rozpouštění vínanu sodnodraselného(seignettovasůl,e337,kooc-ch(oh)-ch(oh)-coona.4h 2 O)vevodě.Napišterovnice,pomocíkte- 7 rých byste spočítali ph takového roztoku(rovnice neřešte). Jaké údaje musíte najít v tabulkách? Řešení: Jedná se o sůl slabé kyseliny, bude docházet k hydrolýze, roztok bude zásaditý: KNaA(c) A 2 +K + +Na + [100%] A 2 +H 2 O HA +OH [x] HA +H 2 O H 2 A+OH [y] H 2 O H + +OH [z] Bilance: Rovnice: c x HA x y H 2 A y H + z OH x+y+z A 2 (x y)z = K 1 konst.aciditykys.vinnédo1.st. ztabulek y (c x)z = K 2 konst.aciditykys.vinnédo2.st. ztabulek x y (x+y+z)z = K w iontovýsoučinvody ztabulek Zapodmínek: c x >0, x y >0, y >0, z >0, x+y+z >0
6 Jiné řešení(vhodné pro Maple ap.): [HA ][H + ] [H 2 A] [A ][H + ] [HA ] = K 1 = K 2 [OH ][H + ] = K w [OH ]+[HA ]+2[A ] = [H + ]+[K + ]+[Na + ]=[H + ]+2c (bilancenáboje) [H 2 A]+[HA ]+[A ] = c (bilancea) Neznámé(musíbýtkladné):[HA ],[H + ],[H 2 A],[A ],[OH ] 19. (5bodů)? SystémjepopsánHelmholtzovouenergií F = F(T,V),kterájeodvozenaze 6 stavové rovnice. Jaké podmínky platí pro metastabilní stav v bodě(t,v)? 2 a F/ V může být kladné i záporné 1 b 2 F/ V 2 >0 2 c ExistujíobjemyV 1 av 2 takové,žef(t,v) >[(V 2 V)F(T,V 1 )+(V V 1 )F(T,V 2 )]/(V 2 V 1 ) a V 1 < V a V < V 2 Vysvětlení: Všechny 3 odpovědi jsou správné. Protože p = F/ V, znamená 1. nerovnost, tlak může být kladný i záporný. Tlak stabilní fáze je vždy kladný, ale kapalinu bez nečistot lze natáhnout idoznačnýchzápornýchtlaků,ovšemsystémnenívrovnováze vznikne- -libublina,expanduje.2. 2 F/ V 2 >0jepodmínkalokálnístability(konvexity).3.Poslední podmínkaobecněznamená,že(t,v)ležínadnadúsečkou(v 1,T) (V 2,T),např. V 1 a V 2 mohou být objemy koexistujících fází. Směs s těmito objemy je stabilnější než metastabilní fáze. (konec cvičného testu)
7 Otázky, které v minulých písemkách dopadly katastroficky Stanovte okamžitou reakční rychlost v čase τ = 4 min pro naměřenou závislost koncentrace na čase podle obrázku. Nezapomeňte na jednotky! 20. (5 bodů) c A (τ)/mol.dm τ/min Řešení: Reakční rychlost je záporná derivace koncentrace podle času. Stanovíme ji graficky tak, že si v daném bodě namalujeme tečnu. Směrnice tečny je derivace.
8 c A (τ)/mol.dm τ/min Potřebujemedvabody,např.pro τ=0minaτ=10: c tečna A (0min)=0.82moldm 3, c tečna A (10min)=0.22moldm 3. Ztohosměrnice= dc dτ = = 0.06moldm 3 min 1.Reakčnírychlostjetedy moldm 3 min (5 bodů) Alkalický článek lze vyjádřit schématem 7 Probíhá v něm celková reakce Zn(prášek) KOH(gel) MnO 2 Zn+2MnO 2 ZnO+Mn 2 O 3 Napištezvlášťreakcinaanoděareakcinakatodě: 1 Řešení: Na anodě se oxiduje zinek, Zn Zn 2+ +2e Totovšaknení(úplné)řešení,protožeZn 2+ okamžitěreagujespřítomnýmoh, Zn+2OH Zn(OH) 2 +2e Podle podmínek může hydroxid zinečnatý dále ztratit vodu, Zn(OH) 2 ZnO+H 2 O Dohromady je reakce na anodě: Zn+2OH ZnO+H 2 O+2e 1 Částoxidůbudeveskutečnostihydratovaná,Zn(OH) 2 amnooh,cožnemusíteuvažovat.vsystémuse však prakticky nevyskytují volné ionty kovů.
9 ObdobněredukciMn IV namn III lzenapsationtově Mn 4+ +e Mn 3+ Volnéiontysevšakvčlánkupraktickynevyskytují,místoMn 4+ reagujeburelmno 2 amísto Mn 3+ tojemn 2 O 3 (případněmnooh).dorovnice 2MnO 2 +2e +? Mn 2 O 3 +? tedydopravamusímepřidat2oh,abychommělistejnýnábojvlevoivpravo.dolevapak musíme přidat vodu, aby souhlasil počet kyslíků a vodíků. Souhrnná reakce na katodě: 2MnO 2 +2e +H 2 O Mn 2 O 3 +2OH
10 Další cvičný příklad 22. (10 bodů) Solární konstanta(energie dopadající ze slunce na jednotku plochy za jednotku 2 času)je(poodečteníztrátvatmosféře)zhruba1kw. a)kolikfotonůdopadnena1m 2 zasekundu?počítejtesprůměrnouvlnovoudélkou500nm. b)kolikmollátkybysetímtopočtemfotonůpřeměnilopřikvantovémvýtěžkuφ=1? Řešení: energie1fotonu=e ν = c/λ h= / = J a)početfotonů=n= E/E ν = / = b)látkovémnožství=n=n/n A = / =0.0042mol Další cvičné otázky 23. (5 bodů)? Roztok kyseliny chlorovodíkové měl ph=2. Po rozpuštění 0.1 mol NaCl v litru 7 takového roztoku bude ph 10 a b c d 2.00 Uveďte úvahu nebo výpočet! Řešení:Vzrosteiontovásíla klesne γ H + klesne a H += γ H +c H + stoupneph 24. (5 bodů) Která křivka vyjadřuje závislost měrné vodivosti 6 κ roztoku slabé kyseliny na koncentraci c?(zakroužkujte číslo křivky.) 1 κ 2 3 κ voda 0 0 c 4 Křivka1:κ=κ voda +λ c kationty nebo anionty = κ voda +λ cα.hodnota λ je(téměř)konstanta, avšak stupeň disociace α klesá s rostoucí koncentrací(přibližně jako α = K/c),aprotose počátečnístrmýnárůstzpomalí.(obrázekjeskutečnýprůběhpro γ=1 jistěbysteuměli spočítat a nakreslit graf.) 25. (5bodů)Vypočtěteiontovousíluroztoku,kterývzniknerozpuštěním0.001molH 2 SO 4 2 v kilogramu vody. Předpokládejte úplnou disociaci do druhého stupně. Řešení: I= 1 2 z 2 i m i = 1 2 (12 m H m SO 2 )= ( )=0.003molkg 1 nebo v koncentracích(číselně molalita molarita): I c = 1 2 z 2 i c i = 1 2 (12 c H c SO 2 )= ( )=0.003moldm (5 bodů)? Seřaďte následující kapaliny podle vzrůstajícího povrchového napětí: 4 n-pentan diethylether n-butanol Řešení: Molární hmotnosti jsou přibližně stejné, takže záleží na struktuře molekuly. 1. n-pentanjenepolární nejmenší(ztabulek:15.8mnm 1 při20 C) 2.diethyletherjemírněpolární(17.1mNm 1 ) 3. n-butanoljenejpolárnějšíamůžetvořitvodíkovévazby(25.4mnm 1 )
11 27. (5 bodů)? Které jevy lze použít k ověření platnosti Maxwellova Boltzmannova rozdělení 5 rychlostí? 2 a Rozšíření spektrálních čar Dopplerovým efektem 3 b Molekulové paprsky(s vhodným mechanickým zařízením přerušujícím tok) c NMRvplynnéfázi d Měření difuzního koeficientu ve směsi plynů Vysvětlení:(1) Pokud dáme do cesty molekulám vyletujícím z Knudsenovy cely vhodné rotující kotouče s otvory, můžeme vybrat molekuly o dané rychlosti a na detektoru stanovit, kolik jich je.(2) Vlnová délka čáry se mění podle složky rychlosti molekuly ve směru k pozorovateli. Je-li rozšíření čáry z jiných důvodů zanedbatelné, odpovídá profil čáry přímo Maxwellovu Boltzmannovu rozdělení a z šířky lze stanovit teplotu plynu.
test zápočet průměr známka
Zkouškový test z FCH mikrosvěta 6. ledna 2015 VZOR/1 jméno test zápočet průměr známka Čas 90 minut. Povoleny jsou kalkulačky. Nejsou povoleny žádné písemné pomůcky. U otázek označených symbolem? uvádějte
Zkouškový test z fyzikální a koloidní chemie
Zkouškový test z fyzkální a kolodní cheme VZOR/1 jméno test zápočet průměr známka Čas 9 mnut. Povoleny jsou kalkulačky. Nejsou povoleny žádné písemné pomůcky. Uotázeksvýběrema,b,c...odpověd b kroužkujte.platí:
VERZESŘEŠENÍM. Zkouškový test z fyzikální a koloidní chemie. obtížnost. Můžete potřebovat
Zkouškový test z fyzikální a koloidní chemie VZOR/1 obtížnost VERZESŘEŠENÍM Můžete potřebovat Avogadrovakonstanta: N A =6.22 1 23 mol 1 Planckovakonstanta: h=6.626 1 34 Js Ebulioskopickákonstantavody=.51Kkgmol
12. Elektrochemie základní pojmy
Důležité veličiny Elektroda, článek Potenciometrie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Důležité veličiny proud I (ampér - A) náboj Q (coulomb - C) Q t 0 I dt napětí, potenciál
Úvod do koroze. (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají)
Úvod do koroze (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají) Koroze je proces degradace kovu nebo slitiny kovů působením
N A = 6,023 10 23 mol -1
Pro vyjadřování množství látky se v chemii zavádí veličina látkové množství. Značí se n, jednotkou je 1 mol. Látkové množství je jednou ze základních veličin soustavy SI. Jeden mol je takové množství látky,
2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi
1. ZÁKLADNÍ POJMY 1.1 Systém a okolí 1.2 Vlastnosti systému 1.3 Vybrané základní veličiny 1.3.1 Množství 1.3.2 Délka 1.3.2 Délka 1.4 Vybrané odvozené veličiny 1.4.1 Objem 1.4.2 Hustota 1.4.3 Tlak 1.4.4
Hmotnost atomů a molekul 6 Látkové množství 11. Rozdělení směsí 16 Separační metody 20. Hustota, hmotnostní a objemový zlomek 25.
Obsah Obecná chemie II. 1. Látkové množství Hmotnost atomů a molekul 6 Látkové množství 11 2. Směsi Rozdělení směsí 16 Separační metody 20 3. Chemické výpočty Hustota, hmotnostní a objemový zlomek 25 Koncentrace
CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL.
CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. Látkové množství Značka: n Jednotka: mol Definice: Jeden mol je množina, která má stejný počet prvků, jako je atomů ve 12 g nuklidu
Složení soustav (roztoky, koncentrace látkového množství)
VZOROVÉ PŘÍKLADY Z CHEMIE A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava Doporučená literatura z chemie: Prakticky jakákoliv celostátní učebnice
kde k c(no 2) = 2, m 6 mol 2 s 1. Jaká je hodnota rychlostní konstanty v rychlostní rovnici ? V [k = 1, m 6 mol 2 s 1 ]
KINETIKA JEDNODUCHÝCH REAKCÍ Různé vyjádření reakční rychlosti a rychlostní konstanty 1 Rychlost reakce, rychlosti přírůstku a úbytku jednotlivých složek Rozklad kyseliny dusité je popsán stechiometrickou
Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:
Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie
2. KINETICKÁ ANALÝZA HOMOGENNÍCH REAKCÍ
2. KINETICKÁ ANALÝZA HOMOGENNÍCH REAKCÍ Úloha 2-1 Řád reakce a rychlostní konstanta integrální metodou stupeň přeměny... 2 Úloha 2-2 Řád reakce a rychlostní konstanta integrální metodou... 2 Úloha 2-3
OBECNÁ CHEMIE František Zachoval CHEMICKÉ ROVNOVÁHY 1. Rovnovážný stav, rovnovážná konstanta a její odvození Dlouhou dobu se chemici domnívali, že jakákoliv chem.
Elektrochemický potenciál Standardní vodíková elektroda Oxidačně-redukční potenciály
Elektrochemický potenciál Standardní vodíková elektroda Oxidačně-redukční potenciály Elektrochemie rovnováhy a děje v soustavách nesoucích elektrický náboj Krystal kovu ponořený do destilované vody + +
Sešit pro laboratorní práci z chemie
Sešit pro laboratorní práci z chemie téma: Příprava roztoků a měření ph autor: ing. Alena Dvořáková vytvořeno při realizaci projektu: Inovace školního vzdělávacího programu biologie a chemie registrační
Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti
Tepelná vodivost teplo přenesené za čas dt: T 1 > T z T 1 S tepelný tok střední volná dráha T součinitel tepelné vodivosti střední rychlost Tepelná vodivost součinitel tepelné vodivosti při T = 300 K součinitel
Osnova pro předmět Fyzikální chemie II magisterský kurz
Osnova pro předmět Fyzikální chemie II magisterský kurz Časový a obsahový program přednášek Týden Obsahová náplň přednášky Pozn. Stavové chování tekutin 1,2a 1, 2a Molekulární přístup kinetická teorie
Nultá věta termodynamická
TERMODYNAMIKA Nultá věta termodynamická 2 Práce 3 Práce - příklady 4 1. věta termodynamická 5 Entalpie 6 Tepelné kapacity 7 Vnitřní energie a entalpie ideálního plynu 8 Výpočet tepla a práce 9 Adiabatický
Směsi, roztoky. Disperzní soustavy, roztoky, koncentrace
Směsi, roztoky Disperzní soustavy, roztoky, koncentrace 1 Směsi Směs je soustava, která obsahuje dvě nebo více chemických látek. Mezi složkami směsi nedochází k chemickým reakcím. Fyzikální vlastnosti
Kapaliny Molekulové vdw síly, vodíkové můstky
Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová
Teorie kyselin a zásad poznámky 5.A GVN
Teorie kyselin a zásad poznámky 5A GVN 13 června 2007 Arrheniova teorie platná pouze pro vodní roztoky kyseliny jsou látky schopné ve vodném roztoku odštěpit vodíkový kation H + HCl H + + Cl - CH 3 COOH
Gymnázium, Milevsko, Masarykova 183 Školní vzdělávací program (ŠVP) pro vyšší stupeň osmiletého studia a čtyřleté studium 4.
Vyučovací předmět - Chemie Vzdělávací obor - Člověk a příroda Gymnázium, Milevsko, Masarykova 183 Školní vzdělávací program (ŠVP) pro vyšší stupeň osmiletého studia a čtyřleté studium 4. ročník - seminář
SADA VY_32_INOVACE_CH2
SADA VY_32_INOVACE_CH2 Přehled anotačních tabulek k dvaceti výukovým materiálům vytvořených Ing. Zbyňkem Pyšem. Kontakt na tvůrce těchto DUM: pys@szesro.cz Výpočet empirického vzorce Název vzdělávacího
Základní chemické výpočty I
Základní chemické výpočty I Tomáš Kučera tomas.kucera@lfmotol.cuni.cz Ústav lékařské chemie a klinické biochemie 2. lékařská fakulta, Univerzita Karlova v Praze a Fakultní nemocnice v Motole 2017 Relativní
DOPLŇKOVÝ STUDIJNÍ MATERIÁL CHEMICKÉ VÝPOČTY. Zuzana Špalková. Věra Vyskočilová
DOPLŇKOVÝ STUDIJNÍ MATERIÁL CHEMICKÉ VÝPOČTY Zuzana Špalková Věra Vyskočilová BRNO 2014 Doplňkový studijní materiál zaměřený na Chemické výpočty byl vytvořen v rámci projektu Interní vzdělávací agentury
Teorie transportu plynů a par polymerními membránami. Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha
Teorie transportu plynů a par polymerními membránami Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha Úvod Teorie transportu Difuze v polymerních membránách Propustnost polymerních membrán
Kapaliny Molekulové vdw síly, vodíkové můstky
Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová
Mol. fyz. a termodynamika
Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli
Acidobazické děje - maturitní otázka z chemie
Otázka: Acidobazické děje Předmět: Chemie Přidal(a): Žaneta Teorie kyselin a zásad: Arrhemiova teorie (1887) Kyseliny jsou látky, které odštěpují ve vodném roztoku proton vodíku H+ HA -> H+ + A- Zásady
CHEMIE. Pracovní list č. 7 - žákovská verze Téma: ph. Mgr. Lenka Horutová. Projekt: Student a konkurenceschopnost Reg. číslo: CZ.1.07/1.1.07/03.
www.projektsako.cz CHEMIE Pracovní list č. 7 - žákovská verze Téma: ph Lektor: Mgr. Lenka Horutová Projekt: Student a konkurenceschopnost Reg. číslo: CZ.1.07/1.1.07/03.0075 Teorie: Pro snadnější výpočet
STANOVENÍ CHLORIDŮ. Odměrné argentometrické stanovení chloridů podle Mohra
STANOVENÍ CHLORIDŮ Odměrné argentometrické stanovení chloridů podle Mohra Cíl práce Stanovte titr odměrného standardního roztoku dusičnanu stříbrného titrací 5 ml standardního srovnávacího roztoku chloridu
Úloha 3-15 Protisměrné reakce, relaxační kinetika... 5. Úloha 3-18 Protisměrné reakce, relaxační kinetika... 6
3. SIMULTÁNNÍ REAKCE Úloha 3-1 Protisměrné reakce oboustranně prvého řádu, výpočet přeměny... 2 Úloha 3-2 Protisměrné reakce oboustranně prvého řádu, výpočet času... 2 Úloha 3-3 Protisměrné reakce oboustranně
Kapaliny Molekulové vdw síly, vodíkové můstky
Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová
Chemické výpočty II. Vladimíra Kvasnicová
Chemické výpočty II Vladimíra Kvasnicová Převod jednotek pmol/l nmol/l µmol/l mmol/l mol/l 10-12 10-9 10-6 10-3 mol/l µg mg g 10-6 10-3 g µl ml dl L 10-6 10-3 10-1 L Cvičení 12) cholesterol (MW=386,7g/mol):
Roztoky - elektrolyty
Roztoky - elektrolyty Roztoky - vodné roztoky prakticky vždy vedou elektrický proud Elektrolyty látky, které se štěpí disociují na elektricky nabité částice ionty Původně se předpokládalo, že k disociaci
Chemické výpočty 11. Stechiometrické výpočty (včetně reakcí s ideálními plyny); reakce s přebytkem výchozí látky
Chemické výpočty 11 Stechiometrické výpočty (včetně reakcí s ideálními plyny); reakce s přebytkem výchozí látky Ing. Martin Pižl Skupina koordinační chemie místnost A213 E-mail: martin.pizl@vscht.cz Web:
VÝPO C TY. Tomáš Kuc era & Karel Kotaška
ZÁKLADNÍ CHEMICKÉ VÝPO C TY I Tomáš Kuc era & Karel Kotaška tomas.kucera@lfmotol.cuni.cz Ústav lékar ské chemie a klinické biochemie 2. lékar ská fakulta, Univerzita Karlova v Praze a Fakultní nemocnice
Oxidace a redukce. Hoření = slučování s kyslíkem = oxidace. 2 Mg + O 2 2 MgO S + O 2 SO 2. Redukce = odebrání kyslíku
Oxidace a redukce Hoření = slučování s kyslíkem = oxidace 2 Mg + O 2 2 MgO S + O 2 SO 2 Redukce = odebrání kyslíku Fe 2 O 3 + 3 C 2 Fe + 3 CO CuO + H 2 Cu + H 2 O 1 Oxidace a redukce Širší pojem oxidace
ANODA KATODA elektrolyt:
Ukázky z pracovních listů 1) Naznač pomocí šipek, které částice putují k anodě a které ke katodě. Co je elektrolytem? ANODA KATODA elektrolyt: Zn 2+ Cl - Zn 2+ Zn 2+ Cl - Cl - Cl - Cl - Cl - Zn 2+ Cl -
Chemie povrchů verze 2013
Chemie povrchů verze 2013 Definice povrchu složitá, protože v nanoměřítku (na úrovni velikosti atomů) je elektronový obal atomů difúzní většinou definován fyzikální adsorpcí nereaktivních plynů Vlastnosti
3. NEROVNOVÁŽNÉ ELEKTRODOVÉ DĚJE
3. NEROVNOVÁŽNÉ ELEKTRODOVÉ DĚJE (Elektrochemické články kinetické aspekty) Nerovnovážné elektrodové děje = děje probíhající na elektrodách při průchodu proudu. 3.1. Polarizace Pojem polarizace se používá
ZÁKLADNÍ CHEMICKÉ VÝPOČTY
ZÁKLADNÍ CHEMICKÉ VÝPOČTY Látkové množství - vyjadřování množství: jablka pivo chleba uhlí - (téměř každá míra má svojí jednotku) v chemii existuje univerzální veličina pro vyjádření množství látky LÁTKOVÉ
III. STRUKTURA A VLASTNOSTI PLYNŮ
III. STRUKTURA A VLASTNOSTI PLYNŮ 3.1 Ideální plyn a) ideální plyn model, předpoklady: 1. rozměry molekul malé (ve srovnání se střední vzdáleností molekul). molekuly na sebe navzálem silově nepůsobí (mimo
Galvanický článek. Li Rb K Na Be Sr Ca Mg Al Be Mn Zn Cr Fe Cd Co Ni Sn Pb H Sb Bi As CU Hg Ag Pt Au
Řada elektrochemických potenciálů (Beketova řada) v níž je napětí mezi dvojicí kovů tím větší, čím větší je jejich vzdálenost v této řadě. Prvek více vlevo vytěsní z roztoku kov nacházející se vpravo od
Vyjadřuje poměr hmotnosti rozpuštěné látky k hmotnosti celého roztoku.
Koncentrace roztoků Hmotnostní zlomek w Vyjadřuje poměr hmotnosti rozpuštěné látky k hmotnosti celého roztoku. w= m A m s m s...hmotnost celého roztoku, m A... hmotnost rozpuštěné látky Hmotnost roztoku
Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =
Atom vodíku Nejjednodušší soustava: p + e Řešitelná exaktně Kulová symetrie Potenciální energie mezi p + e V 2 e = 4πε r 0 1 Polární souřadnice využití kulové symetrie atomu Ψ(x,y,z) Ψ(r,θ, φ) x =? y=?
Počet atomů a molekul v monomolekulární vrstvě
Počet atomů a molekul v monomolekulární vrstvě ϑ je stupeň pokrytí ϑ = N 1 N 1p N 1 = ϑn 1p ν 1 = 1 4 nv a ν 1ef = γν 1 = γ 1 4 nv a γ je koeficient ulpění () F6450 1 / 23 8kT v a = πm = 8kNa T π M 0 ν
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Seminář chemie (SCH) Náplň: Obecná chemie, anorganická chemie, chemické výpočty, základy analytické chemie Třída: 3. ročník a septima Počet hodin: 2 hodiny týdně Pomůcky: Vybavení odborné učebny,
Vibrace atomů v mřížce, tepelná kapacita pevných látek
Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární
PROTOLYTICKÉ ROVNOVÁHY
PROTOLYTICKÉ ROVNOVÁHY Protolytické rovnováhy - úvod Obecná chemická reakce a A + b B c C + d D Veličina Symbol, jednotka Definice rovnovážná konstanta reakce K K = ac C a d D a a A a b B aktivita a a
3 Acidobazické reakce
3 Acidobazické reakce Brønstedova teorie 1. Uveďte explicitní definice podle Brønstedovy teorie. Kyselina je... Báze je... Konjugovaný pár je... 2. Doplňte tabulku a pojmenujte všechny sloučeniny. Kyselina
Rozpustnost Rozpustnost neelektrolytů
Rozpustnost Podobné se rozpouští v podobném látky jejichž molekuly na sebe působí podobnými mezimolekulárními silami budou pravděpodobně navzájem rozpustné. Př.: nepolární látky jsou rozpustné v nepolárních
Skupenské stavy látek. Mezimolekulární síly
Skupenské stavy látek Mezimolekulární síly 1 Interakce iont-dipól Např. hydratační (solvatační) interakce mezi Na + (iont) a molekulou vody (dipól). Jde o nejsilnější mezimolekulární (nevazebnou) interakci.
Fázové rozhraní - plocha,na které se vlastnosti systému mění skokem ; fáze o určité tloušťce
Fázové rozhraní Fázové rozhraní - plocha,na které se vlastnosti systému mění skokem ; fáze o určité tloušťce Homogenní - kapalina/plyn - povrch;kapalina/kapalina Nehomogenní - tuhá látka/plyn - povrch;
Inovace bakalářského studijního oboru Aplikovaná chemie CZ.1.07/2.2.00/ Výpočty z chemických vzorců
Výpočty z chemických vzorců 1. Hmotnost kyslíku je 80 g. Vypočítejte : a) počet atomů kyslíku ( 3,011 10 atomů) b) počet molů kyslíku (2,5 mol) c) počet molekul kyslíku (1,505 10 24 molekul) d) objem (dm
Dynamická podstata chemické rovnováhy
Dynamická podstata chemické rovnováhy Ve směsi reaktantů a produktů probíhá chemická reakce dokud není dosaženo rovnovážného stavu. Chemická rovnováha má dynamický charakter protože produkty stále vznikají
Adhezní síly v kompozitech
Adhezní síly v kompozitech Nanokompozity Pro 5. ročník nanomateriály Fakulta mechatroniky Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010 Vazby na rozhraní
Chemické výpočty I (koncentrace, ředění)
Chemické výpočty I (koncentrace, ředění) Pavla Balínová Předpony vyjadřující řád jednotek giga- G 10 9 mega- M 10 6 kilo- k 10 3 deci- d 10-1 centi- c 10-2 mili- m 10-3 mikro- μ 10-6 nano- n 10-9 piko-
1.3. Transport iontů v elektrickém poli
.3. Transport ontů v elektrckém pol Ionty se v roztoku vystaveném působení elektrckého pole pohybují katonty směrem ke katodě, anonty k anodě. Tento pohyb ontů se označuje jako mgrace. VODIVOST Vodvost
Fyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od 1. 9. 2009 do 31. 8. 2013
Učební osnova předmětu Fyzikální chemie Studijní obor: Aplikovaná chemie Zaměření: Forma vzdělávání: Celkový počet vyučovacích hodin za studium: Analytická chemie Chemická technologie Ochrana životního
Stanovení koncentrace složky v roztoku vodivostním měřením
Laboratorní úloha B/2 Stanovení koncentrace složky v roztoku vodivostním měřením Úkol: A. Stanovte vodivostním měřením koncentraci HCl v dodaném vzorku roztoku. Zjistěte vodivostním měřením body konduktometrické
Rozpustnost s. Rozpouštění = opakem krystalizace Veličina udávající hmotnost rozpuštěné látky v daném objemu popř. v hmotnosti nasyceného roztoku.
Rozpustnost 1 Rozpustnost s Rozpouštění = opakem krystalizace Veličina udávající hmotnost rozpuštěné látky v daném objemu popř. v hmotnosti nasyceného roztoku. NASYCENÝ = při určité t a p se již více látky
Oxidace a redukce. Objev kyslíku nový prvek, vyvrácení flogistonové teorie. Hoření = slučování s kyslíkem = oxidace. 2 Mg + O 2 2 MgO S + O 2 SO 2
Oxidace a redukce Objev kyslíku nový prvek, vyvrácení flogistonové teorie Hoření = slučování s kyslíkem = oxidace 2 Mg + O 2 2 MgO S + O 2 SO 2 Lavoisier Redukce = odebrání kyslíku Fe 2 O 3 + 3 C 2 Fe
Zkouškový test z fyzikální a koloidní chemie
Zkouškový test z fyzkální a kolodní cheme VZOR/1 jméno test zápočet průměr známka Čas 9 mnut. Povoleny jsou kalkulačky. Nejsou povoleny žádné písemné pomůcky. Uotázeksvýběrema,b,c...odpověd b kroužkujte.platí:
Sekundární elektrochemické články
Sekundární elektrochemické články méně odborně se jim říká také akumulátory všechny elektrochemické reakce jsou vratné (ideálně na 100%) řeší problém ekonomický (vícenásobné použití snižuje náklady) řeší
Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny
Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny Hustota toku Zatím jsme studovali pouze soustavy, které byly v rovnovážném stavu není-li soustava v silovém poli, je hustota částic stejná
Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2
Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn
VI. VÝPOČET Z CHEMICKÉ ROVNICE
VI. VÝPOČET Z CHEMICKÉ ROVNICE ZÁKLADNÍ POJMY : Chemická rovnice (např. hoření zemního plynu): CH 4 + 2 O 2 CO 2 + 2 H 2 O CH 4, O 2 jsou reaktanty; CO 2, H 2 O jsou produkty; čísla 2 jsou stechiometrické
SHRNUTÍ A ZÁKLADNÍ POJMY chemie 8.ročník ZŠ
SHRNUTÍ A ZÁKLADNÍ POJMY chemie 8.ročník ZŠ 1. ČÍM SE ZABÝVÁ CHEMIE VLASTNOSTI LÁTEK, POKUSY - chemie přírodní věda, která studuje vlastnosti a přeměny látek pomocí pozorování, měření a pokusu - látka
Autor: Tomáš Galbička www.nasprtej.cz Téma: Roztoky Ročník: 2.
Roztoky směsi dvou a více látek jsou homogenní (= nepoznáte jednotlivé částečky roztoku - částice jsou menší než 10-9 m) nejčastěji se rozpouští pevná látka v kapalné látce jedna složka = rozpouštědlo
) T CO 3. z distribučních koeficientů δ a c(co 2. *) c(h + ) ) 2c(H 2. ) 2c(CO 3
1 Teorie celkový oxid uhličitý: *) + c(h- ) + c( ) Výpočet forem CO 2 z distribučních koeficientů δ a c(h 2 *) = δ 0 c(h- ) = δ 1 c( ) = δ 2 Výpočet forem CO 2 z NK = c(oh - ) + 2c( ) + c(h- ) c(h + )
Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2
Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn
Ú L O H Y
Ú L O H Y 1. Vylučování kovů - Faradayův zákon; Př. 8.1 Stejný náboj, 5789 C, projde při elektrolýze každým z roztoků těchto solí: (a) AgNO 3, (b) CuSO 4, (c) Na 2 SO 4, (d) Al(NO 3 ) 3, (e) Al 2 (SO 4
ATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.
Nauka o materiálu. Přednáška č.10 Difuze v tuhých látkách, fáze a fázové přeměny
Nauka o materiálu Přednáška č.10 Difuze v tuhých látkách, fáze a fázové přeměny Difuze v tuhých látkách Difuzí nazýváme přesun atomů nebo iontů na vzdálenost větší než je meziatomová vzdálenost. Hnací
metoda je základem fenomenologické vědy termodynamiky, statistická metoda je základem kinetické teorie plynů, na níž si princip této metody ukážeme.
Přednáška 1 Úvod Při studiu tepelných vlastností látek a jevů probíhajících při tepelné výměně budeme používat dvě různé metody zkoumání: termodynamickou a statistickou. Termodynamická metoda je základem
IV. Chemické rovnice A. Výpočty z chemických rovnic 1
A. Výpočty z chemických rovnic 1 4. CHEMICKÉ ROVNICE A. Výpočty z chemických rovnic a. Výpočty hmotností reaktantů a produktů b. Výpočty objemů reaktantů a produktů c. Reakce látek o různých koncentracích
Látkové množství n poznámky 6.A GVN
Látkové množství n poznámky 6.A GVN 10. září 2007 charakterizuje látky z hlediska počtu částic (molekul, atomů, iontů), které tato látka obsahuje je-li v tělese z homogenní látky N částic, pak látkové
Pufry, pufrační kapacita. Oxidoredukce, elektrodové děje.
ÚSTAV LÉKAŘSKÉ BIOCHEMIE A LABORATORNÍ DIAGNOSTIKY 1. LF UK Pufry, pufrační kapacita. Oxidoredukce, elektrodové děje. Praktické cvičení z lékařské biochemie Všeobecné lékařství Martin Vejražka, Tomáš Navrátil
CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT. Protolytické děje VY_32_INOVACE_18_15. Mgr. Věra Grimmerová. grimmerova@gymjev.
Průvodka Číslo projektu Název projektu Číslo a název šablony klíčové aktivity CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ.
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ. Protokol o provedeném měření Druh měření Měření vodivosti elektrolytu číslo úlohy 2 Měřený předmět Elektrolyt Měřil Jaroslav ŘEZNÍČEK třída
Inovace profesní přípravy budoucích učitelů chemie
Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
[ ] d[ Y] rychlost REAKČNÍ KINETIKA X Y
REAKČNÍ KINETIKA Faktory ovlivňující rychlost chemických reakcí Chemická povaha reaktantů - reaktivita Fyzikální stav reaktantů homogenní vs. heterogenní reakce Teplota 10 C zvýšení rychlosti 2x 3x zýšení
Sešit pro laboratorní práci z chemie
Sešit pro laboratorní práci z chemie téma: Roztoky výpočty koncentrací autor: MVDr. Alexandra Gajová vytvořeno při realizaci projektu: Inovace školního vzdělávacího programu biologie a chemie registrační
Jana Fauknerová Matějčková
Jana Fauknerová Matějčková vyjadřování koncentrace molarita procentuální koncentrace osmolarita, osmotický tlak ředění roztoků převody jednotek předpona označení řád giga- G 10 9 mega- M 10 6 kilo- k 10
Chemické výpočty I. Vladimíra Kvasnicová
Chemické výpočty I Vladimíra Kvasnicová 1) Vyjadřování koncentrace molarita procentuální koncentrace převod jednotek 2) Osmotický tlak, osmolarita Základní pojmy koncentrace = množství rozpuštěné látky
Základy vakuové techniky
Základy vakuové techniky Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova konstanta), k = 1,38. 10-23 J/K.. Boltzmannova konstanta, T.. absolutní
Obsah Chemická reakce... 2 PL:
Obsah Chemická reakce... 2 PL: Vyčíslení chemické rovnice - řešení... 3 Tepelný průběh chemické reakce... 4 Rychlost chemických reakcí... 4 Rozdělení chemických reakcí... 4 1 Chemická reakce děj, při němž
VI. Disociace a iontové rovnováhy
VI. Disociace a iontové 1 VI. Disociace a iontové 6.1 Základní pojmy 6.2 Disociace 6.3 Elektrolyty 6.3.1 Iontová rovnováha elektrolytů 6.3.2 Roztoky ideální a reálné 6.4 Teorie kyselin a zásad 6.4.1 Arrhenius
Do známky zkoušky rovnocenným podílem započítávají získané body ze zápočtového testu.
Podmínky pro získání zápočtu a zkoušky z předmětu Chemicko-inženýrská termodynamika pro zpracování ropy Zápočet je udělen, pokud student splní zápočtový test alespoň na 50 %. Zápočtový test obsahuje 3
Plazmové metody. Základní vlastnosti a parametry plazmatu
Plazmové metody Základní vlastnosti a parametry plazmatu Atom je základní částice běžné hmoty. Částice, kterou již chemickými prostředky dále nelze dělit a která definuje vlastnosti daného chemického prvku.