Krajské kolo 2013/14, kategorie EF (8. a 9. třída ZŠ) Identifikace ŘEŠENÍ
|
|
- Emilie Vávrová
- před 8 lety
- Počet zobrazení:
Transkript
1 Identifikace ŘEŠENÍ Žák/yně jméno příjmení identifikátor Identifikátor zjistíš po přihlášení na Jeho vyplnění je nutné. Škola ulice, č.p. město PSČ Hodnocení A: (max. 30 b) B I: (max. 15 b) B II: (max. 15 b) B III: (max. 25 b) C: (max. 15 b) Σ: (max. 100 b) Účast v AO se řídí organizačním řádem, č.j. MŠMT / , zveřejněným na webových stránkách AO. poštovní adresa pro zaslání vypracovaných úloh: Mgr. Lenka Soumarová Štefánikova hvězdárna Strahovská Praha 1 Termín odeslání: nejpozději pátek (rozhoduje datum poštovního razítka). A) Přehledový test řeší se elektronicky (online) (celkem max. 30 bodů) POKYNY: Úvodní test (30 otázek) se řeší online na Přihlašovací údaje přišly úspěšným řešitelům školního kola em, nebo je dostaneš od svého učitele, který je může zjistit v sekci pro učitele na Velmi doporučujeme řešení testu neodkládat na poslední dny před uzávěrkou. U problémů s řešením testu oznámených po bohužel nemůžeme zaručit jejich včasné vyřízení. B) Příklady řeší se písemně do vytištěného formuláře U všech příkladů uváděj postup řešení a odpověď. Pouhé uvedení správného výsledku k dosažení plného počtu bodů nestačí! I. Rudá planeta (celkem max. 15 bodů) Spatřit na vlastní oči planetu je vždycky hezký zážitek a o Marsu to díky jeho červenému zbarvení platí dvojnásob. Možná právě proto se astronom z následující úlohy vypravil pozorovat právě tento objekt. Jak zjistil, Mars vycházel při západu Slunce a zapadal při východu Slunce. Po krátké úvaze mu bylo jasné, v jaké pozici se Země a Mars vůči Slunci a sobě navzájem nacházejí. Na dvou obrázcích níže máš pro názornost schematicky nakreslenou polohu pozorovatele, jeho vodorovnou rovinu (horizont) a směr rotace Země pro obě situace. a) Do posledního obrázku doplň správnou pozici Marsu (dráha Marsu je již na obrázcích zakreslena):
2 b) Napiš, jak se takové postavení Marsu odborně nazývá. Mars se právě nalézá v: opozici c) Ve školním kole jsi počítal(a), jaká je úhlová rychlost oběhu Země a Marsu kolem Slunce. Přitom jsme sledovali pohyb obou planet vzhledem ke vzdáleným hvězdám. Správné hodnoty těchto veličin byly: Ω Z 0,99 /den; Ω M 0,52 /den. Rychlost, jakou se planety pohybují, je ovšem určitě jiná, pokud ji budeme vztahovat vzhledem k jiným objektům tyto objekty se nazývají vztažnou soustavou. Tak například ve vztažné soustavě spojené se spojnicí Slunce a Země bude úhlová rychlost oběhu Země kolem Slunce nulová, neboť v této soustavě mají tělesa stále stejné postavení. Jiná (ale nenulová) bude také úhlová rychlost Marsu v této vztažné soustavě, označíme ji Ω M. Vypočti ji! (Napovíme, že stačí provést jednoduchou početní operaci s výsledky ze školního kola.) V souřadné soustavě vztažené ke spojnici Slunce Země se Mars pohybuje úhlovou rychlostí o velikosti Ω M = Ω Z Ω M 0,47 /den. Žák jméno příjmení strana 2/8
3 d) S využitím tohoto výsledku spočítej, za jak dlouho se stejná konfigurace Slunce, Země a Marsu bude opakovat. Hledaný čas je T = 360 Ω M 766 dní. Opozice Marsu se bude opakovat po 766 dnech. II. Slunce v Galaxii (celkem max. 15 bodů) V astronomii máme jednoduchý a přesný zákon, pomocí kterého dokážeme určit hmotnost Slunce jen z toho, že známe dobu oběhu Země kolem něj (periodu) a délku velké poloosy této dráhy. Tento zákon nazýváme 3. Keplerův zákon a má následující tvar: a 3 G(M + m) = T2 4π 2 kde a je velká poloosa dráhy, T je perioda oběhu planety kolem Slunce, G je gravitační konstanta (někteří možná znáte ze školy označení κ), M je hmotnost jednoho tělesa, například Slunce, a m je hmotnost druhého, např. Země. a) Pokud předpokládáme, že astronomická jednotka je 150 milionů km a gravitační konstanta G = 6, m 3 s 2 kg 1, spočítej ze třetího Keplerova zákona společnou hmotnost Země a Slunce. (Nestačí najít hmotnosti v tabulkách nebo na internetu a sečíst je.) M + m = 4π2 a 3 GT 2 = 4π 2 (1, ) 3 6, ( ,25) 2 kg 2, kg b) Jak jistě víte, neputuje Slunce se svou planetární rodinou jen tak nazdařbůh vesmírem, ale obíhá kolem středu hvězdného ostrova nazývaného Galaxie. Najdi a napiš vzdálenost od Slunce ke galaktickému středu v kpc ( kiloparsecích ). Napiš, kolik přibližně činí tato vzdálenost v miliardách astronomických jednotek ( au) a v galaktických poloměrech (Galaxie má poloměr přibližně 16 kpc). Uznat vše v rozmezí: 7,6 8,7 kpc = 1,57 (~1,6) 1,79 (~1,8) miliard au = 0,48 0,54 R Galaxie Žák jméno příjmení strana 3/8
4 c) Předpokládejme, že sluneční soustava obíhá galaktický střed po kružnici. Vypočítej obvod dráhy Slunce v Galaxii, vyjádřený v kpc. o = 2πr = 47,75 (~48) 54,66 (~55) kpc d) Spočítej, kolik pozemských roků (365 dní) trvá galaktický rok, je-li rychlost Slunce v Galaxii 220 km/s. o[km] 220 km s 1 ( s rok 1 = milionů roků ) III. Galaktický střed (celkem max. 25 bodů) Výhodou 3. Keplerova zákona, který jsme si představili v minulé úloze, je, že lze uplatnit i mimo sluneční soustavu pokud například pozorujeme dvojhvězdu nebo jakýkoliv jiný osamocený systém dvou těles, kde obdobně jako u systému Slunce Země obíhají obě složky po elipsách. Dokonce někdy stačí, když vidíme a změříme pouze jednu složku takového systému, abychom dokázali vypočítat hmotnost obou. Astronomové pozorují v různých oborech spektra. Aby mohli změřit pohyby hvězd uvnitř hustých mlhovin, do kterých viditelné světlo nepronikne, používají např. infračervenou oblast spektra. Takový prachoplynný oblak je i okolo galaktického centra. rok x ( ) y ( ) 1992,226 0,104-0, ,321 0,097-0, ,531 0,087-0, ,256 0,075-0, ,428 0,077-0, ,543 0,052-0, ,365 0,036-0,167 rok x ( ) y ( ) 1999,465 0,022-0, ,474-0,000-0, ,523-0,013-0, ,502-0,026-0, ,252-0,013 0, ,334-0,007 0, ,408 0,009 0,023 rok x ( ) y ( ) 2002,575 0,032 0, ,650 0,037 0, ,214 0,072-0, ,353 0,077-0, ,454 0,081-0,036 Žák jméno příjmení strana 4/8
5 a) Při studiu oblasti blízko galaktického středu naměřili po dobu 11 let tato data pro jednu hvězdu. Zakresli souřadnice, které jsou uvedené v úhlových vteřinách ( ) v tabulce, do čtverečkové sítě nahoře, nebo přilož vytištěný graf z Excelu ve stejných rozsazích na osách (pak napiš ke grafu zde slovo Excel, ať víme, že je graf jinde). b) RUČNĚ zakresli elipsu, která je určená body z minulého příkladu. Elipsa NEMUSÍ přesně spojovat všechny body, radši dej větší důraz na to, aby byla hezky hladká tomu se říká prokládání bodů křivkou. c) Nyní najdi velkou poloosu, tedy polovinu nejdelšího rozměru elipsy. Změř a zapiš toto číslo v úhlových vteřinách ( ). Převeď ho také na světelné dny a pak i na metry, za předpokladu, že 1 úhlová vteřina odpovídá 48 světelným dnům a světlo se pohybuje rychlostí m s 1. 0,13 = 6,2 sv. dnů = 1, m Žák jméno příjmení strana 5/8
6 d) Nyní vám prozradíme, že perioda oběhu této hvězdy je 15,7 roku. Použij výsledků z předchozích bodů a vypočti společnou hmotnost hvězdy a tělesa, okolo kterého obíhá. Výsledek uveď v kilogramech a ve hmotnostech Slunce (M S = kg). M + m = 4π2 a 3 GT 2 = 4π 2 (1, ) 3 = 6, ( ,25 15,7) 2 kg kg M S e) Hvězda, kterou astronomové pozorovali, váží jen několik desítek hmotností Slunce, proto ji můžeme vůči hmotnosti centrálního tělesa zanedbat. Co může být centrálním tělesem, pokud je to objekt, který není vidět a který váží několik milionů hmotností Slunce nebo víc? Supermasivní černá díra / černá veledíra / černá díra / C) Pozorování řeší se písemně do vytištěného formuláře Určení MHV (celkem max. 15 bodů) Astronomové kromě samotných pozorování astronomických objektů také zjišťují, jak je kvalitní obloha, na které tyto objekty sledují. Obloha bývá více či méně přesvětlena umělými zdroji světla z našeho okolí, a tím je na ní vidět více či méně hvězd. Jasnost nejslabších hvězd, které jsou ještě vidět za daných podmínek, se nazývá mezní hvězdná velikost (MHV). Astronomové, kteří pozorují pouhým okem, si na obloze vytyčili celkem 30 úseků, většinou trojúhelníků, které používají k určování MHV. Jednoduchým spočítáním hvězd v obrazci a vyhledáním v převodní tabulce lze určit MHV docela spolehlivě. Obrazec by měl být v tu dobu v dostatečné výšce nad obzorem. Žák jméno příjmení strana 6/8
7 Zde je tvůj pozorovací úkol: Zadané dva obrazce (trojúhelníky) vyhledej na obloze a spočti, kolik hvězd v nich vidíš (počítají se i hvězdy, které tvoří vrcholy trojúhelníku). Počítání proveď raději několikrát rychle za sebou a pak zapiš číslo, které ti vyšlo nejčastěji. Určení MHV proveď ve dvou různých jasných nocích ze stejného stanoviště. Nepozoruj, když je Měsíc na obloze a je okolo úplňku. Jako bonus můžeš udělat jedno pozorování i během úplňku. Schválně, zda se budou výsledky odlišovat od bezměsíčných nocí. Do tabulky vyplň všechna volná pole. Čas udávej ve středoevropském čase, který máš na hodinkách. Polohu pozorovacího stanoviště udej jako GPS souřadnice, nebo jako adresu. V popisu pozorovacího stanoviště stručně charakterizuj povahu svého pozorovacího místa zda je to ve městě, vesnici či mimo, na okraji či v centru, zda jsou v okolí lampy, které přímo ruší pohled na oblohu atd. Do popisu meteorologické situace uveď, zda je obloha zcela jasná, či jen polojasná, v oparu. Dále teplotu vzduchu, případné další neobvyklé nebo zajímavé informace. Tabulka: zjištěné hodnoty vepiš do volných políček poloha pozorovacího stanoviště popis pozorovacího stanoviště pozorování 1 2 bonus datum čas.. :.. :.. : trojúhelník 1 trojúhelník 2 popis meteorologické počet * MHV počet * MHV situace Žák jméno příjmení strana 7/8
8 Trojúhelník 1: β Per δ Per ζ Per počet hvězd MHV 2,9 3,1 3,9 5,0 5,1 5,4 5,6 5,7 5,8 6,0 6,1 6,2 6,3 6,4 6,5 Trojúhelník 2: α Cep β Cep δ Cep počet hvězd MHV 2,6 3,3 4,0 4,5 4,6 4,9 5,2 5,4 5,5 5,9 6,0 6,1 6,2 6,3 6,4 Žák jméno příjmení strana 8/8
Krajské kolo 2013/14, kategorie EF (8. a 9. třída ZŠ) Identifikace
Identifikace Žák/yně jméno příjmení identifikátor Identifikátor zjistíš po přihlášení na http://olympiada.astro.cz/korespondencni. Jeho vyplnění je nutné. Škola ulice, č.p. město PSČ Hodnocení A: (max.
Identifikace práce prosíme vyplnit čitelně tiskacím písmem
Identifikace práce prosíme vyplnit čitelně tiskacím písmem Žák/yně jméno příjmení identifikátor Identifikátor zjistíš po přihlášení na /korespondencni. Jeho vyplnění je nutné. Škola ulice, č.p. město PSČ
Česká astronomická společnost http://www.astro.cz http://olympiada.astro.cz Krajské kolo 2013/14, kategorie GH (6. a 7. třída ZŠ) Identifikace
Identifikace Žák/yně jméno příjmení identifikátor Identifikátor zjistíš po přihlášení na /korespondencni. Jeho vyplnění je nutné. Škola ulice, č.p. město PSČ Hodnocení A: (max. 25 b) B I: (max. 20 b) B
Identifikace práce prosíme vyplnit čitelně tiskacím písmem
Identifikace práce prosíme vyplnit čitelně tiskacím písmem Žák/yně jméno příjmení identifikátor Identifikátor zjistíš po přihlášení na http://olympiada.astro.cz/korespondencni. Jeho vyplnění je nutné.
Identifikace práce prosíme vyplnit čitelně tiskacím písmem
Identifikace práce prosíme vyplnit čitelně tiskacím písmem Žák/yně jméno příjmení identifikátor Identifikátor zjistíš po přihlášení na http://olympiada.astro.cz/korespondencni. Jeho vyplnění je nutné.
Krajské kolo 2014/15, kategorie GH (6. a 7. třída ZŠ) Identifikace
Žk A olympida Identifikace jméno: příjmení: identifiktor: Škola nzev: město: PSČ: Hodnocení A B C Σ (100 b.) Účast v AO se řídí organizačním řdem, č.j. MŠMT 14 896/2012-51. Organizační řd a propozice aktulního
Krajské kolo 2014/15, kategorie EF (8. a 9. třída ZŠ) Identifikace
Žák A Astronomická Identifikace jméno: příjmení: identifikátor: Škola název: město: PSČ: Hodnocení A B C D Σ (100 b.) Účast v AO se řídí organizačním řádem, č.j. MŠMT 14 896/2012-51. Organizační řád a
Krajské kolo 2014/15, kategorie EF (8. a 9. třída ZŠ) řešení
Poštovní adresa pro zaslání vypracovaných úloh: Mgr. Lenka Soumarová, Štefánikova hvězdárna, Strahovská 205, 118 00 Praha 1 Termín odeslání: nejpozději 20. 3. 2015 (rozhoduje datum poštovního razítka)
Krajské kolo 2015/16, kategorie GH (6. a 7. třída ZŠ) Identifikace
Identifikace Na každý list se zadním nebo řešením napiš dolů svoje jméno a identifiktor. Neoznačené listy nebudou opraveny! Žk jméno: příjmení: identifiktor: Škola nzev: město: PSČ: Hodnocení A B C D E
pohyb hvězdy ve vesmírném prostoru vlastní pohyb hvězdy pohyb, změna, souřadné soustavy vzhledem ke stálicím precese,
Změny souřadnic nebeských těles pohyb hvězdy ve vesmírném prostoru vlastní pohyb hvězdy vlastní pohyb max. 10 /rok, v průměru 0.013 /rok pohyb, změna, souřadné soustavy vzhledem ke stálicím precese, nutace,
Ukázkové řešení úloh ústředního kola kategorie GH A) Příklady
Ukázkové řešení úloh ústředního kola kategorie GH A) Příklady 1. Rychlosti vesmírných těles, např. planet, komet, ale i družic, se obvykle udávají v kilometrech za sekundu. V únoru jsme mohli v novinách
Vzdálenosti ve sluneční soustavě: paralaxy a Keplerovy zákony
Vzdálenosti ve sluneční soustavě: paralaxy a Keplerovy zákony Astronomové při sledování oblohy zaznamenávají především úhly a pozorují něco, co se nazývá nebeská sféra. Nicméně, hvězdy nejsou od Země vždy
základy astronomie 2 praktikum 5 Dynamická paralaxa hvězd
základy astronomie praktikum Dynamická paralaxa hvězd 1 Úvod Dvojhvězdy jsou nenahraditelným zdrojem informací ze světa hvězd. Nejvýznamnější jsou z tohoto pohledu zákrytové dvojhvězdy, tedy soustavy,
Základní jednotky v astronomii
v01.00 Základní jednotky v astronomii Ing. Neliba Vlastimil AK Kladno 2005 Délka - l Slouží pro určení vzdáleností ve vesmíru Základní jednotkou je metr metr je definován jako délka, jež urazí světlo ve
Identifikace. Přehledový test (online)
Identifikace Na každý list se zadním nebo řešením napiš dolů svoje jméno a identifiktor. Neoznačené listy nebudou opraveny! Žk jméno: příjmení: identifiktor: Škola nzev: město: PSČ: Hodnocení A B C D E
Astronomie jednoduchými prostředky. Miroslav Jagelka
Astronomie jednoduchými prostředky Miroslav Jagelka 20.10.2016 Když si vystačíte s kameny... Stonehenge (1600-3100 BC) Pyramidy v Gize (2550 BC) El Castilllo (1000 BC) ... nebo s hůlkou Gnomón (5000 BC)
Korekce souřadnic. 2s [ rad] R. malé změny souřadnic, které je nutno uvažovat při stanovení polohy astronomických objektů. výška pozorovatele
OPT/AST L07 Korekce souřadnic malé změny souřadnic, které je nutno uvažovat při stanovení polohy astronomických objektů výška pozorovatele konečný poloměr země R výška h objektu závisí na výšce s stanoviště
7.Vesmír a Slunce Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
Planeta Země 7.Vesmír a Slunce Planeta Země Vesmír a Slunce Autor: Mgr. Irena Doležalová Datum (období) tvorby: únor 2012 červen 2013 Ročník: šestý Vzdělávací oblast: zeměpis Anotace: Žáci se seznámí se
Astronomie, sluneční soustava
Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267
R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles.
2.4 Gravitační pole R2.211 m 1 = m 2 = 10 g = 0,01 kg, r = 10 cm = 0,1 m, = 6,67 10 11 N m 2 kg 2 ; F g =? R2.212 F g = 4 mn = 0,004 N, a) r 1 = 2r; F g1 =?, b) r 2 = r/2; F g2 =?, c) r 3 = r/3; F g3 =?
VESMÍR Hvězdy. Životní cyklus hvězdy
VESMÍR Hvězdy Pracovní list HEUREKA! aneb podpora badatelských aktivit žáků ZŠ v přírodovědných předmětech ASTRONOMIE Úloha 1. Ze života hvězdy. Úloha 1a. Očísluj jednotlivé fáze vývoje hvězdy. Následně
Filip Hroch. Astronomické pozorování. Filip Hroch. Výpočet polohy planety. Drahové elementy. Soustava souřadnic. Pohyb po elipse
ÚTFA,Přírodovědecká fakulta MU, Brno, CZ březen 2005 březnového tématu Březnové téma je věnováno klasické sférické astronomii. Úkol se skládá z měření, výpočtu a porovnání výsledků získaných v obou částech.
Identifikace práce. Žák jméno příjmení věk. Bydliště ulice, č.p. město PSČ. Škola ulice, č.p. město PSČ
vyplňuje žák Identifikace práce Žák jméno příjmení věk Bydliště ulice, č.p. město PSČ vyplňuje škola Učitel jméno příjmení podpis Škola ulice, č.p. město PSČ jiný kontakt (např. e-mail) A. Přehledový test
VY_32_INOVACE_FY.20 VESMÍR II.
VY_32_INOVACE_FY.20 VESMÍR II. Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Galaxie Mléčná dráha je galaxie, v níž se nachází
Krajské kolo 2017/18, domácí, kategorie GH (6. a 7. třída ZŠ) Identifikace
Identifikace Na každý list se zadáním nebo řešením napiš dolů svoje jméno, příjmení a identifikátor. Neoznačené listy nebudou opraveny! Žák jméno: identifikátor: Škola název: město: PSČ: Hodnocení A B
Ukázkové řešení úloh ústředního kola kategorie EF A) Úvodní test
Ukázkové řešení úloh ústředního kola kategorie EF A) Úvodní test 1. Ve kterém městě je pohřben Tycho Brahe? [a] v Kodani [b] v Praze [c] v Gdaňsku [d] v Pise 2. Země je od Slunce nejdál [a] začátkem ledna.
9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km.
9. Astrofyzika 9.1 Uvažujme hvězdu, která je ve vzdálenosti 4 parseky od sluneční soustavy. Určete: a) jaká je vzdálenost této hvězdy vyjádřená v kilometrech, b) dobu, za kterou dospěje světlo z této hvězdy
Část A strana A 1. (14 b) (26 b) (60 b) (100 b)
Část A strana A 1 Bodové hodnocení vyplňuje komise! část A B C Celkem body (14 b) (26 b) (60 b) (100 b) Pokyny k testovým otázkám: U následujících otázek zakroužkuj vždy právě jednu správnou odpověď. Zmýlíš-li
Identifikace práce. POZOR, nutné vyplnit čitelně!
vyplňuje žák Identifikace práce POZOR, nutné vyplnit čitelně! Žák jméno příjmení věk Bydliště ulice, č.p. město PSČ jiný kontakt - e-mail vyplňuje škola Učitel jméno příjmení podpis Škola ulice, č.p. město
Interpretace pozorování planet na obloze a hvězdné obloze
Interpretace pozorování planet na obloze a hvězdné obloze - role vztažné soustavy - modely Sluneční soustavy stejná pozorování je možné vysvětlit různými modely! heliocentrický x geocentrický model Tanec
Interpretace pozorování planet na obloze a hvězdné obloze
Interpretace pozorování planet na obloze a hvězdné obloze - role vztažné soustavy - modely Sluneční soustavy stejná pozorování je možné vysvětlit různými modely! heliocentrický x geocentrický model Tanec
Astronomická pozorování
KLASICKÁ ASTRONOMIE Astronomická pozorování Základní úloha při pozorování nějakého děje, zejména pohybu těles je stanovení jeho polohy (rychlosti) v daném okamžiku Astronomie a poziční astronomie Souřadnicové
Identifikace práce. B III: (max. 18b)
vyplňuje žák čitelně tiskacím písmem. Identifikace práce Žák identifikátor / jméno příjmení rok narození* (*nehodící se škrtni, identifikační číslo obdržíš po vyřešení části online) Pokud jsi část řešil(a)
Interpretace pozorování planet na obloze a hvězdné obloze
Interpretace pozorování planet na obloze a hvězdné obloze - role vztažné soustavy - modely Sluneční soustavy stejná pozorování je možné vysvětlit různými modely! heliocentrický x geocentrický model Tanec
O tom, co skrývají centra galaxíı. F. Hroch. 26. březen 2015
Kroužíme kolem černé díry? O tom, co skrývají centra galaxíı F. Hroch ÚTFA MU, Brno 26. březen 2015 Kroužíme kolem černé díry? Jak zkoumat neviditelné objekty? Specifika černých děr Objekty trůnící v centrech
Obr. 4 Změna deklinace a vzdálenosti Země od Slunce v průběhu roku
4 ZÁKLADY SFÉRICKÉ ASTRONOMIE K posouzení proslunění budovy nebo oslunění pozemku je vždy nutné stanovit polohu slunce na obloze. K tomu slouží vztahy sférické astronomie slunce. Pro sledování změn slunečního
Identifikace ŘEŠENÍ. A) Digitárium
Identifikace ŘEŠENÍ Žák/yně jméno příjmení identifikátor Škola ulice, č.p. město PSČ Hodnocení A: (max. 12 b) B: (max. 16 b) C I: (max. 12 b) C II: (max. 14 b) C III: (max. 17 b) C IV: (max. 14 b) C V:
Výfučtení: Vzdálenosti ve vesmíru
Výfučtení: Vzdálenosti ve vesmíru Není jednotka jako jednotka Na měření rozměrů nebo vzdáleností různých objektů je nutné zavést nějakou jednotku vzdálenosti. Jednou ze základních jednotek soustavy SI
VY_12_INOVACE_115 HVĚZDY
VY_12_INOVACE_115 HVĚZDY Pro žáky 6. ročníku Člověk a příroda Zeměpis - Vesmír Září 2012 Mgr. Regina Kokešová Slouží k probírání nového učiva formou - prezentace - práce s textem - doplnění úkolů. Rozvíjí
MASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA KATEDRA GEOGRAFIE. Planetární geografie seminář
MASARYKOA UNIERZITA PEDAGOGICKÁ FAKULTA KATEDRA GEOGRAFIE květen 2008 I Měření vzdáleností ve vesmíru 1) ýpočet hodnoty pc a ly ze známé AU a převod těchto hodnot. 1 AU = 150 10 6 km Z definice paralaxy
7. Gravitační pole a pohyb těles v něm
7. Gravitační pole a pohyb těles v něm Gravitační pole - existuje v okolí každého hmotného tělesa - představuje formu hmoty - zprostředkovává vzájemné silové působení mezi tělesy Newtonův gravitační zákon:
Pozorování dalekohledy. Umožňují pozorovat vzdálenější a méně jasné objekty (až stonásobně více než pouhým okem). Dají se použít jakékoli dalekohledy
Vesmírná komunikace Pozorování Za nejběžnější vesmírnou komunikaci lze označit pozorování vesmíru pouhým okem (možno vidět okolo 7000 objektů- hvězdy, planety ).Je to i nejstarší a nejběžnější prostředek.
Soutěžní úlohy části A a B (12. 6. 2012)
Soutěžní úlohy části A a B (1. 6. 01) Pokyny k úlohám: Řešení úlohy musí obsahovat rozbor problému (náčrtek dané situace), základní vztahy (vzorce) použité v řešení a přesný postup (stačí heslovitě). Nestačí
GRAVITAČNÍ POLE. Všechna tělesa jsou přitahována k Zemi, příčinou tohoto je jevu je mezi tělesem a Zemí
GRAVITAČNÍ POLE Všechna tělesa jsou přitahována k Zemi, příčinou tohoto je jevu je mezi tělesem a Zemí Přitahují se i vzdálená tělesa, například, z čehož vyplývá, že kolem Země se nachází gravitační pole
Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 6.1Slunce, planety a jejich pohyb, komety Vesmír - Slunce - planety a jejich pohyb, - komety, hvězdy a galaxie 2 Vesmír či kosmos (z
Venuše druhá planeta sluneční soustavy
Venuše druhá planeta sluneční soustavy Planeta Venuše je druhá v pořadí vzdáleností od Slunce (střední vzdálenost 108 milionů kilometrů neboli 0,72 AU) a zároveň je naším nejbližším planetárním sousedem.
Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERITA OSTRAVA FAKULTA STROJNÍ FYIKA I Gravitační pole Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová
NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV: VY_32_INOVACE_200_Planetárium AUTOR: Ing. Gavlas Miroslav ROČNÍK,
NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV: VY_32_INOVACE_200_Planetárium AUTOR: Ing. Gavlas Miroslav ROČNÍK, DATUM: 9., 25.11. 2011 VZDĚL. OBOR, TÉMA: Fyzika, Planetárium
Jak najdeme a poznáme planetu, kde by mohl být život?
Společně pro výzkum, rozvoj a inovace - CZ/FMP.17A/0436 Jak najdeme a poznáme planetu, kde by mohl být život? Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Mendelova univerzita v Brně, Laboratoř metalomiky
Finále 2018/19, kategorie GH (6. a 7. třída ZŠ) řešení. A Přehledový test. (max. 20 bodů)
A Přehledový test (max. 20 bodů) POKYNY: U každé otázky zakroužkuj právě jednu správnou odpověď. Pokud se spleteš, původní odpověď zřetelně škrtni a zakroužkuj jinou. Je povolena maximálně jedna oprava.
Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost
Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Projekt je realizován v rámci Operačního programu Vzdělávání pro konkurence
Vzdálenosti ve vesmíru
Vzdálenosti ve vesmíru Proč je dobré, abychom je znali? Protože nám udávají : Výchozí bod pro astrofyziku: Vzdálenosti jakéhokoli objektu ve vesmíru je rozhodující parametr k pochopení mechanizmu tvorby
Identifikace práce. POZOR, nutné vyplnit čitelně! vyplňuje hodnotící komise A I: A II: B I: B II: C: D I: D II: Σ:
vyplňuje žák Identifikace práce POZOR, nutné vyplnit čitelně! Žák jméno příjmení věk Bydliště ulice, č.p. město PSČ jiný kontakt (např. e-mail) vyplňuje škola Učitel jméno příjmení podpis Škola ulice,
Vzdálenost středu Galaxie
praktikum Vzdálenost středu Galaxie Připomínám každému, kdo bude měřit hvězdný vesmír, že hvězdné kupy jsou signální světla. Ukazují cestu do centra Galaxie i na její okraje... Kulové hvězdokupy jsou svého
1.6.9 Keplerovy zákony
1.6.9 Keplerovy zákony Předpoklady: 1608 Pedagogická poznámka: K výkladu této hodiny používám freewareový program Celestia (3D simulátor vesmíru), který umožňuje putovat vesmírem a sledovat ho z různých
Sluneční soustava OTEVŘÍT. Konec
Sluneční soustava OTEVŘÍT Konec Sluneční soustava Slunce Merkur Venuše Země Mars Jupiter Saturn Uran Neptun Pluto Zpět Slunce Slunce vzniklo asi před 4,6 miliardami let a bude svítit ještě přibližně 7
Slunce zdroj energie pro Zemi
Slunce zdroj energie pro Zemi Josef Trna, Vladimír Štefl Zavřete oči a otočte tvář ke Slunci. Co na tváři cítíte? Cítíme zvýšení teploty pokožky. Dochází totiž k přenosu tepla tepelným zářením ze Slunce
Kategorie EF pondělí 26. 1. 2015
Kategorie EF pondělí 26. 1. 2015 téma přednášky časová dotace přednášející Zatmění Slunce a Měsíce 1 vyučovací hodina (45 minut) Lumír Honzík Podobnost trojúhelníků 2 v. h. Ivana Štejrová Keplerovy zákony
PLANETY SLUNEČNÍ SOUSTAVY
PLANETY SLUNEČNÍ SOUSTAVY Sluneční soustava je planetárn rní systém m hvězdy známé pod názvem n Slunce, ve kterém m se nachází naše e domovská planeta Země. Tvoří ji: Slunce 8 planet, 5 trpasličích planet,
Astronavigace. Zdeněk Halas KDM MFF UK, Aplikace matem. pro učitele
Základní princip Zdeněk Halas KDM MFF UK, 2011 Aplikace matem. pro učitele Zdeněk Halas (KDM MFF UK, 2011) Aplikace matem. pro učitele 1 / 13 Tradiční metody Tradiční navigační metody byly v nedávné době
ČLOVĚK A ROZMANITOST PŘÍRODY VESMÍR A ZEMĚ. GRAVITACE
ČLOVĚK A ROZMANITOST PŘÍRODY VESMÍR A ZEMĚ. GRAVITACE Sluneční soustava Vzdálenosti ve vesmíru Imaginární let fotonovou raketou Planety, planetky Planeta (oběžnice) ve sluneční soustavě je takové těleso,
Všechny galaxie vysílají určité množství elektromagnetického záření. Některé vyzařují velké množství záření a nazývají se aktivní.
VESMÍR Model velkého třesku předpovídá, že vesmír vznikl explozí před asi 15 miliardami let. To, co dnes pozorujeme, bylo na začátku koncentrováno ve velmi malém objemu, naplněném hmotou o vysoké hustotě
Test obsahuje látku 5. ročníku z učiva o vesmíru. Ověřuje teoretické znalosti žáků. Časově odpovídá jedné vyučovací hodině.
Vzdělávací oblast : Předmět : Téma : Člověk a jeho svět Přírodověda Vesmír Ročník: 5. Popis: Očekávaný výstup: Druh učebního materiálu: Autor: Poznámky: Test obsahuje látku 5. ročníku z učiva o vesmíru.
Černé díry ve vesmíru očima Alberta Einsteina
Černé díry ve vesmíru očima Alberta Einsteina Martin Blaschke otevření Světa techniky ve dnech 14. - 20. 3. 2014 Ústav fyziky, Slezská univerzita v Opavě 1 / 21 Černá díra, kde jsme to jen slyšeli? Město
základy astronomie 1 praktikum 3. Astronomické souřadnice
základy astronomie 1 praktikum 3. Astronomické souřadnice 1 Úvod Znalost a správné používání astronomických souřadnic patří k základní výbavě astronoma. Bez nich se prostě neobejdete. Nejde ale jen o znalost
Od středu Sluneční soustavy až na její okraj
Od středu Sluneční soustavy až na její okraj Miniprojekt SLUNEČNÍ SOUSTAVA Gymnázium Pierra de Coubertina, Tábor Náměstí Františka Křižíka 860 390 01 Tábor Obsah: 1. Úvod 2. Cíl miniprojektu 3. Planetární
Datová analýza. Strana 1 ze 5
Strana 1 ze 5 (D1) Binární pulzar Astronomové díky systematickému hledání v posledních desetiletích objevili velké množství milisekundových pulzarů (perioda rotace 10 ms). Většinu těchto pulzarů pozorujeme
Úvod do nebeské mechaniky
OPT/AST L09 Úvod do nebeské mechaniky pohyby astronomických těles ve společném gravitačním poli obecně: chaotický systém nestabilní numerické řešení speciální případ: problém dvou těles analytické řešení
GRAVITAČNÍ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
GRAVITAČNÍ POLE Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Gravitace Vzájemné silové působení mezi každými dvěma hmotnými body. Liší se od jiných působení. Působí vždy přitažlivě. Působí
Krajské kolo 2014/15, kategorie CD (1. a 2. ročník SŠ) 2 I P = I 0 A g,
příklad 1 Přenesme se do roku 1930 kdy bylo poprvé na fotografických deskách identifikované nové těleso sluneční soustavy později označované (až do roku 006) za devátou planetu s názvem Pluto. V okamžiku
Identifikace. Přehledový test (online)
Identifikace Na každý list se zadáním nebo řešením napiš dolů svoje jméno, příjmení a identifikátor. Neoznačené listy nebudou opraveny! Žák jméno: identifikátor: Škola název: město: PSČ: Hodnocení A B
[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles.
5. GRAVITAČNÍ POLE 5.1. NEWTONŮV GRAVITAČNÍ ZÁKON Gravitace Gravitace je všeobecná vlastnost těles. Newtonův gravitační zákon Znění: Dva hmotné body se navzájem přitahují stejně velkými gravitačními silami
Trochu astronomie. v hodinách fyziky. Jan Dirlbeck Gymnázium Cheb
Trochu astronomie v hodinách fyziky Jan Dirlbeck Gymnázium Cheb Podívejte se dnes večer na oblohu, uvidíte Mars v přiblížení k Zemi. Bude stejně velký jako Měsíc v úplňku. Konec světa. Planety se srovnají
1 Co jste o sluneèních hodinách nevìdìli?
1 Co jste o sluneèních hodinách nevìdìli? 1.1 Měsíční hodiny Drahomíra Pecinová Sluneční hodiny různých typů můžeme doplnit měsíčními hodinami a rozšířit tak jejich použití i na noci, kdy svítí Měsíc.
Nabídka vybraných pořadů
Hvězdárna Valašské Meziříčí, p. o. Vsetínská 78 757 01 Valašské Meziříčí Nabídka vybraných pořadů Pro 1. stupeň základních škol Pro zvídavé školáčky jsme připravili řadu naučných programů a besed zaměřených
4.2.6 Tabulkové hodnoty orientovaných úhlů
.. abulkové hodnoty orientovaných úhlů Předpoklady: 0 Pedagogická poznámka: Největším problémem při zavádění goniometrických funkcí pro orientovaný úhel je rychlá orientace v poloze koncového ramene a
EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663
EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:
Astronomie. Astronomie má nejužší vztah s fyzikou.
Astronomie Je věda, která se zabývá jevy za hranicemi zemské atmosféry. Zvláště tedy výzkumem vesmírných těles, jejich soustav, různých dějů ve vesmíru i vesmírem jako celkem. Astronom, česky hvězdář,
Krajské kolo 2012/13, kategorie GH (6. a 7. třída ZŠ) Identifikace práce. Žák/yně jméno příjmení rok narození. Bydliště ulice, č.p.
Krajské kolo 0/3, kategorie GH (6. a. třída ZŠ) vyplňuje žák/yně čitelně tiskacím písmem. Identifikace práce Žák/yně jméno příjmení rok narození Bydliště ulice, č.p. město PSČ jiný kontakt - e-mail vyplňuje
Průvodce pozorováním noční oblohy pro projekt Globe at Night
Průvodce pozorováním noční oblohy pro projekt Globe at Night Celosvětový projekt GLOBE at Night nabízí možnost zapojit se do jednoduchého pozorování, které pomáhá mapovat světelné znečištění po celém světě.
Průvodce pozorováním noční oblohy pro projekt Globe at Night
Průvodce pozorováním noční oblohy pro projekt Globe at Night Celosvětový projekt GLOBE at Night nabízí možnost zapojit se do jednoduchého pozorování, které pomáhá mapovat světelné znečištění po celém světě.
ročník 9. č. 21 název
č. 21 název Země - vznik anotace V pracovních listech se žáci seznámí se vznikem Země. Testovou i zábavnou formou si prohlubují znalosti na dané téma. Součástí pracovního listu je i správné řešení. očekávaný
EXPERIMENTEM K POZNÁNÍ A SPOLUPRÁCI - II
Pozvánka na netradiční vzdělávací akci EXPERIMENTEM K POZNÁNÍ A SPOLUPRÁCI - II Milí přátelé, srdečně Vás zveme na netradiční víkendovou prakticky orientovanou vzdělávací akci, kterou pořádají a Krajská
Metodický list. Ověření materiálu ve výuce: Datum ověření: Třída: VII. A Ověřující učitel: Mgr. Martin Havlíček
Tvořivá škola, registrační číslo projektu C.1.07/1.4.00/21.3505 Příjemce: ákladní škola Ruda nad Moravou, okres Šumperk, Sportovní 300, 789 63 Ruda nad Moravou ařazení materiálu: Metodický list Šablona:
Základy astronomie I podzim 2016 vyučující: doc. RNDr. Miloslav Zejda, Ph.D. cvičící: Mgr. Lenka Janeková, Mgr. Jan Rokos
test Základy astronomie I podzim 2016 vyučující: doc. RNDr. Miloslav Zejda, Ph.D. cvičící: Mgr. Lenka Janeková, Mgr. Jan Rokos http://www.physics.muni.cz/~zejda/student.html#za1 Astronomie (=
Kroužek pro přírodovědné talenty při Hvězdárně Valašské Meziříčí Lekce XV METEORY
Kroužek pro přírodovědné talenty při Hvězdárně Valašské Meziříčí Lekce XV METEORY Meziplanetární hmota Komety Prachové částice Planetky Meteory a roje METEORICKÝ PRACH miniaturní částice vyplňující meziplanetární
Úvod do nebeské mechaniky
OPT/AST L09 Úvod do nebeské mechaniky pohyby astronomických těles ve společném gravitačním poli obecně: chaotický systém nestabilní numerické řešení speciální případ: problém dvou těles analytické řešení
Přírodní zdroje. K přírodním zdrojům patří například:
1. SVĚTELNÉ ZDROJE. ŠÍŘENÍ SVĚTLA Přes den vidíme předměty ve svém okolí, v noci je nevidíme, je tma. V za temněné učebně předměty nevidíme. Když rozsvítíme svíčku nebo žárovku, vidíme nejen svítící těleso,
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Geodetická astronomie 3/6 Aplikace keplerovského pohybu
Fyzikální korespondenční škola 2. dopis: experimentální úloha
Fyzikální korespondenční škola 2. dopis: experimentální úloha Uzávěrka druhého kola FKŠ je 28. 2. 2010 Kde udělal Aristotelés chybu? Aristotelés, jeden z největších učenců starověku, z jehož knih vycházela
KINEMATIKA. 17. ROVNOMĚRNÝ POHYB PO KRUŽNICI II. Frekvence, perioda. Mgr. Jana Oslancová VY_32_INOVACE_F1r0217
KINEMATIKA 17. ROVNOMĚRNÝ POHYB PO KRUŽNICI II. Frekvence, perioda Mgr. Jana Oslancová VY_32_INOVACE_F1r0217 OPAKOVÁNÍ Otázka 1: Uveď příklady takových hmotných bodů, které vykonávají rovnoměrný pohyb
4.2.6 Tabulkové hodnoty orientovaných úhlů
.. abulkové hodnoty orientovaných úhlů Předpoklady: 0 Pedagogická poznámka: Největším problémem při zavádění goniometrických funkcí pro orientovaný úhel je rychlá orientace v poloze koncového ramene a
základy astronomie 2 praktikum 6. Vlastnosti Galaxie
základy astronomie 2 praktikum 6. Vlastnosti Galaxie 1 Úvod Za jasné bezměsíčné noci můžeme na pozorovacím stanovišti bez rušivého osvětlení pozorovat stříbřitý pás Mléčné dráhy. O tom, že je tvořen ohromným
Vzdálenosti a východ Slunce
Vzdálenosti a východ Slunce Zdeněk Halas KDM MFF UK, 2011 Aplikace matem. pro učitele Zdeněk Halas (KDM MFF UK, 2011) Vzdálenosti a východ Slunce Aplikace matem. pro učitele 1 / 8 Osnova Zdeněk Halas (KDM
VESMÍR. Prvouka 3. ročník
VESMÍR Prvouka 3. ročník Základní škola a Mateřská škola Tečovice, příspěvková organizace Vzdělávací materiál,,projektu pro školu výuky v ZŠ Tečovice Název vzdělávacího materiálu VY_32_INOVACE_12 Anotace
Gymnázium Dr. J. Pekaře Mladá Boleslav. Zeměpis I. ročník PLANETY SLUNEČNÍ SOUSTAVY. Jméno a příjmení: Martin Kovařík. David Šubrt. Třída: 5.
Gymnázium Dr. J. Pekaře Mladá Boleslav Zeměpis I. ročník PLANETY SLUNEČNÍ SOUSTAVY Jméno a příjmení: Martin Kovařík David Šubrt Třída: 5.O Datum: 3. 10. 2015 i Planety sluneční soustavy 1. Planety obecně
Naše Galaxie dávná historie poznávání
Mléčná dráha Naše Galaxie dávná historie poznávání galaxie = gravitačně vázaný strukturovaný a organizovaný systém z řeckého γαλαξίας Galaxie x Mléčná dráha Mléčná dráha antika: Anaxagoras (cca 500 428
Země třetí planetou vhodné podmínky pro život kosmického prachu a plynu Měsíc
ZEMĚ V POHYBU Anotace: Materiál je určen k výuce přírodovědy v 5. ročníku ZŠ. Seznamuje žáky se základními informacemi o Zemi, jejích pohybech a o historii výzkumu vesmíru. Země Země je třetí planetou