ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

Save this PDF as:
Rozměr: px
Začít zobrazení ze stránky:

Download "ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE"

Transkript

1 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Geodetická astronomie 3/6 Aplikace keplerovského pohybu školní rok semestr skupina zpracoval datum klasifikace 2010/11 1 NG1-88 Jan Dolista

2 Aplikace keplerovského pohybu Zadání: V heliocentrickém ekliptikálním souřadnicovém systému jsou dány dráhové elementy komety k epoše MJD a dráhové elementy Země k epoše Pro zadané datum a stanovisko vypočtěte její geocentrické rovníkové souřadnice, vzdálenost od Země i od Slunce a velikost elongace. Graficky znázorněte její geocentrickou dráhu z vypočtených obzorníkových souřadnic s vyznačením její ev. pozorovatelnosti. Uveďte obecný postup řešení úlohy a výsledky uspořádejte do přehledné tabulky. Pozn.: Převod aktuálního data na MJD vč. hvězdného času pro půlnoc UT zjistíte např. na Dráhové elementy komety: Dráhové elementy Země: Ω = Ω = ω = ω = i = i = a = AU a = AU e = e = n = /den n = /den M 0 = 197, 510 Datum a souřadnice stanoviska: datum: φ = λ = 0 h 57 m 33.4 s Další potřebné vstupní hodnoty: ε = Vypracování: Veškeré výpočty byly provedeny v programu Octave. 1 Převod data Pomocí webového formuláře na bylo zadané datum převedeno na juliánské datum. To bylo dále převedeno na modifikované juliánské datum. MJD = JD MJD 0 = Zároveň byl ve stejném webovém formuláři zjištěn hvězdný čas pro světovou půlnoc S 0, tedy greenwichský hvězdný čas pro 0 h UT1. 2 Epochy výpočtu S 0 = 20 h 57 m 42 s Jelikož stanovisko se nachází v České republice, byly obzorníkové souřadnice hvězdy určovány v závislosti na Středoevropském čase (SEČ) a to v kroku jedné hodiny v rámci daného dne, tedy 0 24 h SEČ dne

3 Zadané keplerovské elementy komety a Země jsou však vztaženy k MJD, které je spojeno s časem UT1 (celočíselné MJD je v 0 h UT1), proto byly výpočetní časy převedeny na UT1. Z čehož plyne SEC = UT C + 1 h UT 1 = UT C + DUT 1 UT 1 = SEC 1 h + DUT 1, kde hodnota DUT 1 = ms byla pro dané datum vyhledána v bulletinu B dostupného na ftp://hpiers.obspm.fr/iers/bul/bulb_new/bulletinb.272. Dále bylo určeno MJD výpočetní epochy MJD epochy = MJD 0 + UT 1 24 h, jelikož je SEČ 0 24 h, je pro první epochu UT1 záporné a tedy MJD odpovídá konci předchozího dne. 3 Poloha komety a Země v heliocentrické ekliptikální soustavě Pro výpočetní epochy byla určena jak poloha komety v heliocentrické ekliptikální soustavě, tak poloha Země v této soustavě. Poloha byla určena na základě keplerovských elementů dráhy a výpočetní epochy. 3.1 Poloha komety Střední anomálie Jelikož pro kometu není zadána hodnota střední anomálie, je tato hodnota M 0 = 0, tedy kometa se v této epoše nachází v perihéliu. M = n (t t 0 ), kde t je MJD výpočetní epochy, t 0 je MDJ ke kterému jsou vztaženy keplerovské elementy a n je střední denní pohyb Excentrická anomálie E = M + e sin E Excentrická anomálie byla určena iteračně, kdy v první iteraci je hodnota excentrické anomálie volena E 0 = M + e sin M. V dalších iteracích je hodnota anomálie dána vztahem E i = M + e sin E i 1. Výpočet je opakován, dokud rozdíl ve dvou po sobě jdoucích iteracích není menší než Pravá anomálie v = 2atan ( 1 + e tg E ) 1 e Průvodič r = a(1 e cos E)

4 3.1.5 Vektor polohy v rovině dráhy r = r cos v sin v 0 Tento vektor obsahuje pravoúhlé souřadnice s počátkem v ohnisku elipsy dráhy, kladná osa x směřuje do perihélia a rovina xy leží v rovině dráhy Vektor souřadnic v heliocentrické ekliptikální soustavě Transformace z roviny dráhy do ekliptikální heliocentrické soustavy byla provedena trojitou rotací. Nejprve byla kladná osa x otočena z perihélia do výstupního uzlu a to rotací kolem osy z o úhel ω (argumet výstupního uzlu). V druhém kroku byla sklopena rovina dráhy do roviny ekliptiky, tedy rotace kolem nové osy x o úhel i (sklon dráhy). Posledním krokem bylo otočení nové osy x z výstupního uzlu do jarního bodu, rotace kolem nové osy z o úhel Ω (rektascenze výstupního uzlu). kde matice rotace R X ( Ω) = X kom e cos ( Ω) sin ( Ω) 0 sin ( Ω) cos ( Ω) R X ( ω) = Vzdálenost komety a Sluce = R Z ( Ω)R X ( i)r Z ( ω)r, R Z ( i) = cos ( ω) sin ( ω) 0 sin ( ω) cos ( ω) Vzdálenost Slunce a komety je velikost vektoru souřadnic d SK = X kom e. 3.2 Poloha Země cos ( i) sin ( i) 0 sin ( i) cos ( i) Poloha Země je vypočtena obdobně, jediným rozdílem je, že epocha k níž jsou vztaženy keplerovské elementy není epocha průchodu perihéliem. Střední anomálie je pak dána vztahem M = M 0 + n (t t 0 ), kde M 0 je střední anomálie v epoše, k níž jsou vztaženy keplerovské elementy dráhy. 4 Poloha komety a Země v heliocentrické rovníkové soustavě Transformace z ekliptikální do rovníkové soustavy byla provedena rotací kolem osy x o úhel ε (sklon ekliptiky) X r = R X ( ε)x e, kde R X ( ε) = cos ( ε) sin ( ε) 0 sin ( ε) cos ( ε) Částečnou kontrolou výpočtu je porovnání délky mezi Sluncem a kometou resp. Sluncem a Zemí v ekliptikální a rovníkové soustavě. Délka musí zůstat stejná.

5 5 Poloha komety v geocentrické rovníkové soustavě S Změna počátku byla provedena odečtením vektoru souřadnic Země od vektoru souřadnic komety. X = X kom r X Zeme r, Z pravoúhlých souřadnic komety byla vyjádřena rektascenze a deklinace ( ) y α = atan ( ) z δ = asin X Vzdálenost Země a komety je velikost vektoru souřadnic. d ZK = X. 6 Elongace komety Elongace je úhel mezi kometou a Sluncem pozorovaný ze Země. Ten byl vypočten z pravidla pro skalární součin u v = u v cos θ. Elongaci lze tedy vyjádřit kde X Slunce = X Zeme r elongace = arccos x X kom X kom X Slunce XSlunce, je vektor souřadnic slunce v geocentrické rovníkové soustavě. 7 Poloha komety v geocentrické rovníkové soustavě S r1 Pravoúhlé souřadnice v soustavě S r1 byly získány rotací kolem osy z o úhel s (místní hvězdný čas). X r1 = R Z (s)x, kde Místní hvězdný čas R Z (s) = cos (s) sin (s) 0 sin (s) cos (s) s = S 0 + (UT 1) (1 + μ) + λ, kde 1 + μ = je změna měřítka mezi hvězdným a slunečním časem. 8 Poloha komety v obzorníkové soustavě S o Pravoúhlé souřadnice v obzorníkové soustavě byly vypočteny rotací o úhel 90 φ (zeměpisná šířka stanoviska) X o = R x (90 φ)x r1, kde R Z (90 φ) = cos (90 φ) 0 sin (90 φ) sin (90 φ) 0 cos (90 φ) Následně byl vyjádřen azimut a zenitová vzdálenost ( ) yo a = atan ( ) zo z = asin X o Průběh azimutu a zenitové vzdálenosti byl vynesen do grafů. Zároveň byl v grafu zenitové vzdálenosti znázorněn obzorník, aby bylo možné určit, kdy je kometa z daného stanoviska pozorovatelná. x o

6

7 9 Číselné výsledky SEČ d SK d ZK α δ z a elongace 0 h AU AU 21 h 33 m s h AU AU 21 h 34 m s h AU AU 21 h 34 m s h AU AU 21 h 34 m s h AU AU 21 h 34 m s h AU AU 21 h 34 m s h AU AU 21 h 34 m s h AU AU 21 h 34 m s h AU AU 21 h 34 m s h AU AU 21 h 35 m s h AU AU 21 h 35 m s h AU AU 21 h 35 m s h AU AU 21 h 35 m s h AU AU 21 h 35 m s h AU AU 21 h 35 m s h AU AU 21 h 35 m s h AU AU 21 h 35 m s h AU AU 21 h 36 m s h AU AU 21 h 36 m s h AU AU 21 h 36 m s h AU AU 21 h 36 m s h AU AU 21 h 36 m s h AU AU 21 h 36 m s h AU AU 21 h 36 m s h AU AU 21 h 36 m s Závěr: Z keplerovských elementů komety a Země v heliocentrickém ekliptikálním systému byly určeny obzorníkové souřadnice v průběhu daného dne. Souřadnice byly určovány v kroku jedné hodiny. Zároveň byly určeny i geocentrické rovníkové souřadnice, elongace, vzdálenost komety od Slunce a vzdálenost komety od Země. Obzorníkové souřadnice komety byly vyneseny do grafu a byla určena její viditelnost. Kometa je z daného místa pozorovatelná, pokud se nachází nad obzorem, tedy zenitová vzdálenost je menší než 90 resp. menší než cca 80. Je totiž nutné uvažovat rozdíl mezi obzorníkem a skutečným obzorem, zvláště pokud je na obzoru kopcovitý terén nebo zástavba. Z grafů je patrné, že kometa je pozorovatelná v noci a to přibližně do 6 hodin ráno a následně přibližně od 19 hodin. Maximální výšky nad obzorem dosahuje kometa mezi půlnocí a jednou hodinou SEČ. Výpočty byly provedeny v programu Octave. Zdrojový kód k výpočtům není přílohou technické zprávy (v případě potřeby bude zaslán). V Kralupech nad Vltavou Jan Dolista

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 2/3 GPS - Výpočet drah družic školní rok

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 4/3 GPS - oskulační elementy dráhy družice

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 1/99 Výpočet zeměpisné šířky z měřených

Více

Filip Hroch. Astronomické pozorování. Filip Hroch. Výpočet polohy planety. Drahové elementy. Soustava souřadnic. Pohyb po elipse

Filip Hroch. Astronomické pozorování. Filip Hroch. Výpočet polohy planety. Drahové elementy. Soustava souřadnic. Pohyb po elipse ÚTFA,Přírodovědecká fakulta MU, Brno, CZ březen 2005 březnového tématu Březnové téma je věnováno klasické sférické astronomii. Úkol se skládá z měření, výpočtu a porovnání výsledků získaných v obou částech.

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 3/3 GPS - výpočet polohy stanice pomocí

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 5/ Určování astronomických zeměpisných

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 2/99 Tektonika zemských desek školní rok

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Fyzikální geodézie 3/7 Výpočet lokálního geoidu pro body

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Fyzikální geodézie 2/7 Gravitační potenciál a jeho derivace

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 2 2/6 Transformace souřadnic z ETRF2000 do

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 1/3 GPS - zpracování kódových měření školní

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 4/003 Průběh geoidu z altimetrických měření

Více

Praktikum z astronomie 0. Měření refrakce. Zadání

Praktikum z astronomie 0. Měření refrakce. Zadání 20. února 2007 Praktikum z astronomie 0 Zadání Astronomická refrakce Úkolem je určit polohu zapadajícího nebo vycházejícího nebeského tělesa měřením a výpočtem. str. 48 Teodolitem změřte polohu známého

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Základy fyzikální geodézie 3/19 Legendreovy přidružené funkce

Více

5a. Globální referenční systémy Parametry orientace Země (EOP) Aleš Bezděk

5a. Globální referenční systémy Parametry orientace Země (EOP) Aleš Bezděk 5a. Globální referenční systémy Parametry orientace Země (EOP) Aleš Bezděk Teoretická geodézie 4 FSV ČVUT 2017/2018 LS 1 Celková orientace zemského tělesa, tj. precese-nutace+pohyb pólu+vlastní rotace,

Více

Astronomická pozorování

Astronomická pozorování KLASICKÁ ASTRONOMIE Astronomická pozorování Základní úloha při pozorování nějakého děje, zejména pohybu těles je stanovení jeho polohy (rychlosti) v daném okamžiku Astronomie a poziční astronomie Souřadnicové

Více

Vzorce a recepty nebeské mechaniky

Vzorce a recepty nebeské mechaniky Vzorce a recepty nebeské mechaniky Verze 3.0 Petr Scheirich, 2004 http://nebmech.astronomy.cz Obsah 1 Úvod 1 2 Souřadnice na obloze 1 3 Pohyb po kuželosečce 4 4 Elipsa 6 5 Pohybpoelipse 7 6 Parabola 10

Více

Interpretace pozorování planet na obloze a hvězdné obloze

Interpretace pozorování planet na obloze a hvězdné obloze Interpretace pozorování planet na obloze a hvězdné obloze - role vztažné soustavy - modely Sluneční soustavy stejná pozorování je možné vysvětlit různými modely! heliocentrický x geocentrický model Tanec

Více

ČASOMÍRA ROTAČNÍ ČASY FYZIKÁLNĚ DEFINOVANÉ ČASY JULIÁNSKÉ DATUM

ČASOMÍRA ROTAČNÍ ČASY FYZIKÁLNĚ DEFINOVANÉ ČASY JULIÁNSKÉ DATUM ČASOMÍRA ROTAČNÍ ČASY FYZIKÁLNĚ DEFINOVANÉ ČASY JULIÁNSKÉ DATUM Hynčicová Tereza, H2IGE1 2014 ČAS Jedna ze základních fyzikálních veličin Využívá se k určení časových údajů sledovaných jevů Časovou škálu

Více

Obr. 4 Změna deklinace a vzdálenosti Země od Slunce v průběhu roku

Obr. 4 Změna deklinace a vzdálenosti Země od Slunce v průběhu roku 4 ZÁKLADY SFÉRICKÉ ASTRONOMIE K posouzení proslunění budovy nebo oslunění pozemku je vždy nutné stanovit polohu slunce na obloze. K tomu slouží vztahy sférické astronomie slunce. Pro sledování změn slunečního

Více

Interpretace pozorování planet na obloze a hvězdné obloze

Interpretace pozorování planet na obloze a hvězdné obloze Interpretace pozorování planet na obloze a hvězdné obloze - role vztažné soustavy - modely Sluneční soustavy stejná pozorování je možné vysvětlit různými modely! heliocentrický x geocentrický model Tanec

Více

Interpretace pozorování planet na obloze a hvězdné obloze

Interpretace pozorování planet na obloze a hvězdné obloze Interpretace pozorování planet na obloze a hvězdné obloze - role vztažné soustavy - modely Sluneční soustavy stejná pozorování je možné vysvětlit různými modely! heliocentrický x geocentrický model Tanec

Více

Sférická trigonometrie v matematické geografii a astronomii

Sférická trigonometrie v matematické geografii a astronomii Sférická trigonometrie v matematické geografii a astronomii Mgr. Hana Lakomá, Ph.D., Mgr. Veronika Douchová 00 Tento učební materiál vznikl v rámci grantu FRVŠ F1 066. 1 Základní pojmy sférické trigonometrie

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu úloha/zadání název úlohy Inženýrská geodézie II 1/5 Určení nepřístupné vzdálenosti

Více

Základní jednotky v astronomii

Základní jednotky v astronomii v01.00 Základní jednotky v astronomii Ing. Neliba Vlastimil AK Kladno 2005 Délka - l Slouží pro určení vzdáleností ve vesmíru Základní jednotkou je metr metr je definován jako délka, jež urazí světlo ve

Více

Datová analýza. Strana 1 ze 5

Datová analýza. Strana 1 ze 5 Strana 1 ze 5 (D1) Binární pulzar Astronomové díky systematickému hledání v posledních desetiletích objevili velké množství milisekundových pulzarů (perioda rotace 10 ms). Většinu těchto pulzarů pozorujeme

Více

GEODETICKÁ ASTRONOMIE A KOSMICKÁ GEODEZIE I

GEODETICKÁ ASTRONOMIE A KOSMICKÁ GEODEZIE I VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JAN FIXEL, RADOVAN MACHOTKA GEODETICKÁ ASTRONOMIE A KOSMICKÁ GEODEZIE I MODUL 01 SFÉRICKÁ ASTRONOMIE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU

Více

Hvězdářský zeměpis Obloha a hvězdná obloha

Hvězdářský zeměpis Obloha a hvězdná obloha Hvězdářský zeměpis Obloha a hvězdná obloha směr = polopřímka, spojující oči, kterými sledujeme svět kolem sebe, s daným objektem obzor = krajina, kterou obzíráme, v našem dohledu (budovy, stromy, kopce)

Více

Transformace dat mezi různými datovými zdroji

Transformace dat mezi různými datovými zdroji Transformace dat mezi různými datovými zdroji Zpracovali: Datum prezentace: BUČKOVÁ Dagmar, BUC061 MINÁŘ Lukáš, MIN075 09. 04. 2008 Obsah Základní pojmy Souřadnicové systémy Co to jsou transformace Transformace

Více

Korekce souřadnic. 2s [ rad] R. malé změny souřadnic, které je nutno uvažovat při stanovení polohy astronomických objektů. výška pozorovatele

Korekce souřadnic. 2s [ rad] R. malé změny souřadnic, které je nutno uvažovat při stanovení polohy astronomických objektů. výška pozorovatele OPT/AST L07 Korekce souřadnic malé změny souřadnic, které je nutno uvažovat při stanovení polohy astronomických objektů výška pozorovatele konečný poloměr země R výška h objektu závisí na výšce s stanoviště

Více

MASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA KATEDRA GEOGRAFIE. Planetární geografie seminář

MASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA KATEDRA GEOGRAFIE. Planetární geografie seminář MASARYKOA UNIERZITA PEDAGOGICKÁ FAKULTA KATEDRA GEOGRAFIE květen 2008 I Měření vzdáleností ve vesmíru 1) ýpočet hodnoty pc a ly ze známé AU a převod těchto hodnot. 1 AU = 150 10 6 km Z definice paralaxy

Více

OBSAH 1 Úvod Fyzikální charakteristiky Zem Referen ní plochy a soustavy... 21

OBSAH 1 Úvod Fyzikální charakteristiky Zem Referen ní plochy a soustavy... 21 OBSAH I. ČÁST ZEMĚ A GEODÉZIE 1 Úvod... 1 1.1 Historie měření velikosti a tvaru Země... 1 1.1.1 První určení poloměru Zeměkoule... 1 1.1.2 Středověké měření Země... 1 1.1.3 Nové názory na tvar Země...

Více

základy astronomie 1 praktikum 3. Astronomické souřadnice

základy astronomie 1 praktikum 3. Astronomické souřadnice základy astronomie 1 praktikum 3. Astronomické souřadnice 1 Úvod Znalost a správné používání astronomických souřadnic patří k základní výbavě astronoma. Bez nich se prostě neobejdete. Nejde ale jen o znalost

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu Geodézie v podzemních prostorách 10 úloha/zadání U1-U2/190-4 název úlohy Připojovací

Více

ČAS, KALENDÁŘ A ASTRONOMIE

ČAS, KALENDÁŘ A ASTRONOMIE ČAS, KALENDÁŘ A ASTRONOMIE Čas Založen na základě praktických zkušeností s následností dějů Je vzájemně vázán s existencí hmoty a prostoru, umožňuje rozhodnout o následnosti dějů, neexistuje možnost zpětné

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE název předmětu TOPOGRAFICKÁ A TEMATICKÁ KARTOGRAFIE číslo úlohy název úlohy 1 Mapové podklady

Více

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA Rovinné přetvoření Rovinné přetvoření, neboli, jak se také často nazývá, geometrická transformace je vlastně lineární zobrazení v prostoru s nějakou soustavou souřadnic. Jde v něm o přepočet souřadnic

Více

Zpracoval Zdeněk Hlaváč. 1. Definujte hlavní kružnici kulové plochy. Uveďte příklady hlavních kružnic na zeměkouli.

Zpracoval Zdeněk Hlaváč. 1. Definujte hlavní kružnici kulové plochy. Uveďte příklady hlavních kružnic na zeměkouli. Teoretické otázky ke zkoušce z NEBESKÉ MECHANIKY Zpracoval Zdeněk Hlaváč A) Základní formulace 1. Definujte hlavní kružnici kulové plochy. Uveďte příklady hlavních kružnic na zeměkouli. 2. Popište pojmy

Více

1.2 Sluneční hodiny. 100+1 příklad z techniky prostředí

1.2 Sluneční hodiny. 100+1 příklad z techniky prostředí 1.2 Sluneční hodiny Sluneční hodiny udávají pravý sluneční čas, který se od našeho běžného času liší. Zejména tím, že pohyb Slunce během roku je nepravidelný (to postihuje časová rovnice) a také tím, že

Více

Hvězdářská ročenka 2016

Hvězdářská ročenka 2016 Hvězdářská ročenka 2016 Hvězdárna a planetárium hl. m. Prahy Tato publikace vyšla s podporou Ediční rady Akademie věd České republiky. Hvězdářská ročenka 2016 Pod redakcí Jakuba Rozehnala připravili Martin

Více

Hvězdářská ročenka 2018

Hvězdářská ročenka 2018 Hvězdářská ročenka 2018 Hvězdárna a planetárium hl. m. Prahy Tato publikace vyšla s podporou Ediční rady Akademie věd České republiky. Hvězdářská ročenka 2018 Pod redakcí Jakuba Rozehnala připravili Jakub

Více

Fyzikální korespondenční seminář UK MFF http://fykos.mff.cuni.cz 21. III. E

Fyzikální korespondenční seminář UK MFF http://fykos.mff.cuni.cz 21. III. E 21. ročník, úloha III. E... zkoumáme pohyb Slunce (8 bodů; průměr 2,88; řešilo 16 studentů) Změřte co nejpřesněji výšku Slunce nad obzorem v pravé poledne a dobu od východu středu slunečního disku do jeho

Více

4. Matematická kartografie

4. Matematická kartografie 4. Země má nepravidelný tvar, který je dán půsoením mnoha sil, zejména gravitační a odstředivé (vzhledem k rotaci Země). Odstředivá síla způsouje, že tvar Země je zploštělý, tj. zemský rovník je dále od

Více

Seriál VII.IV Astronomické souřadnice

Seriál VII.IV Astronomické souřadnice Výfučtení: Astronomické souřadnice Představme si naši oblíbenou hvězdu, kterou chceme ukázat našemu kamarádovi. Kamarád je ale zrovna na dovolené, a tak mu ji nemůžeme ukázat přímo. Rádi bychom mu tedy

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE název předmětu TOPOGRAFICKÁ A TEMATICKÁ KARTOGRAFIE číslo úlohy název úlohy 2 Tvorba tematických

Více

pohyb hvězdy ve vesmírném prostoru vlastní pohyb hvězdy pohyb, změna, souřadné soustavy vzhledem ke stálicím precese,

pohyb hvězdy ve vesmírném prostoru vlastní pohyb hvězdy pohyb, změna, souřadné soustavy vzhledem ke stálicím precese, Změny souřadnic nebeských těles pohyb hvězdy ve vesmírném prostoru vlastní pohyb hvězdy vlastní pohyb max. 10 /rok, v průměru 0.013 /rok pohyb, změna, souřadné soustavy vzhledem ke stálicím precese, nutace,

Více

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015 Kartografie 1 - přednáška 1 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Úvod přednášky, cvičení, zápočty, zkoušky Jiří Cajthaml (přednášky, cvičení) potřebné znalosti: vzorce

Více

Kreslení elipsy Andrej Podzimek 22. prosince 2005

Kreslení elipsy Andrej Podzimek 22. prosince 2005 Kreslení elipsy Andrej Podzimek 22. prosince 2005 Kreslení elipsy v obecné poloze O co půjde Ukázat přesný matematický model elipsy Odvodit vzorce pro výpočet souřadnic důležitých bodů Nalézt algoritmus

Více

Čas a kalendář. důležitá aplikace astronomie udržování časomíry a kalendáře

Čas a kalendář. důležitá aplikace astronomie udržování časomíry a kalendáře OPT/AST L08 Čas a kalendář důležitá aplikace astronomie udržování časomíry a kalendáře čas synchronizace s rotací Země vzhledem k jarnímu bodu vzhledem ke Slunci hvězdný čas definován jako hodinový úhel

Více

SEZNAM ANOTACÍ. CZ.1.07/1.5.00/ III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA4 Analytická geometrie

SEZNAM ANOTACÍ. CZ.1.07/1.5.00/ III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA4 Analytická geometrie SEZNAM ANOTACÍ Číslo projektu Číslo a název šablony klíčové aktivity Označení sady DUM Tematická oblast CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA4 Analytická

Více

T a c h y m e t r i e

T a c h y m e t r i e T a c h y m e t r i e (Podrobné měření výškopisu, okolí NTK) Poslední úprava: 2.10.2018 9:59 Úkolem je vyhotovit digitální model terénu pomocí programového systému Atlas DMT (úloha U_7, vztažné měřítko

Více

Astronomická refrakce

Astronomická refrakce Astronomická refrakce Co mají společného zamilované páry, které v láskyplném objetí nedočkavě čekají na západ slunce a parta podivně vyhlížejících mladých lidí, kteří s teodolitem pobíhají po parku a hledají

Více

Obsah. 1 Sférická astronomie Základní problémy sférické astronomie... 8

Obsah. 1 Sférická astronomie Základní problémy sférické astronomie... 8 Obsah 1 Sférická astronomie 3 1.1 Základní pojmy sférické astronomie................. 3 1.2 Souřadnicové soustavy........................ 5 1.2.1 Azimutální souřadnicový systém............... 6 1.2.2 Ekvatoreální

Více

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení

Více

3. Souřadnicové výpočty

3. Souřadnicové výpočty 3. Souřadnicové výpočty 3.1 Délka. 3.2 Směrník. 3.3 Polární metoda. 3.4 Protínání vpřed z úhlů. 3.5 Protínání vpřed z délek. 3.6 Polygonové pořady. 3.7 Protínání zpět. 3.8 Transformace souřadnic. 3.9 Volné

Více

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621 ŘEŠENÉ PŘÍKLADY Z MA+ULA ČÁST Příklad Bod má vůči souřadné soustavě souřadnice uvedené níže. Vypočtěte jeho souřadnice vzhledem k soustavě, která je vůči otočená dle zadání uvedeného níže. Výsledky zaokrouhlete

Více

Orientace v terénu bez mapy

Orientace v terénu bez mapy Písemná příprava na zaměstnání Terén Orientace v terénu bez mapy Zpracoval: por. Tomáš Diblík Pracoviště: OVIÚ Osnova přednášky Určování světových stran Určování směrů Určování č vzdáleností Určení č polohy

Více

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu úloha/zadání název úlohy Inženýrská geodézie II /5 Analýza deformací školní rok

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA GEODÉZIE A POZEMKOVÝCH ÚPRAV název předmětu

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA GEODÉZIE A POZEMKOVÝCH ÚPRAV název předmětu ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA GEODÉZIE A POZEMKOVÝCH ÚPRAV název předmětu VÝUKA V TERÉNU Z GEODÉZIE 1, 2 - VY1 kód úlohy název úlohy K PŘÍMÉ

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

1.6.9 Keplerovy zákony

1.6.9 Keplerovy zákony 1.6.9 Keplerovy zákony Předpoklady: 1608 Pedagogická poznámka: K výkladu této hodiny používám freewareový program Celestia (3D simulátor vesmíru), který umožňuje putovat vesmírem a sledovat ho z různých

Více

Odchylka ekliptiky od roviny Galaxie

Odchylka ekliptiky od roviny Galaxie Jiří Kapr 1, Jakub Fuis 2, Tomáš Bárta 3 1 Gymnázium Plasy, Plasy 2 Gymnázium Botičská, Praha 3 Gymnázium Nad Štolou, Praha Týden Vědy, 2010 Jiří Kapr 1, Jakub Fuis 2, Tomáš Bárta 3 1 Gymnázium Plasy,

Více

Tachymetrie (Podrobné měření výškopisu)

Tachymetrie (Podrobné měření výškopisu) Tachymetrie (Podrobné měření výškopisu) Úkolem je vyhotovit digitální model terénu pomocí programového systému Atlas DMT (úloha U_8). Pro jeho vytvoření je potřeba znát polohu a výšku vhodně zvolených

Více

7. Gravitační pole a pohyb těles v něm

7. Gravitační pole a pohyb těles v něm 7. Gravitační pole a pohyb těles v něm Gravitační pole - existuje v okolí každého hmotného tělesa - představuje formu hmoty - zprostředkovává vzájemné silové působení mezi tělesy Newtonův gravitační zákon:

Více

Čas. John Archibald Wheeler: Čas - to je způsob, jakým příroda zajišťuje, aby se všechno neodehrálo najednou.

Čas. John Archibald Wheeler: Čas - to je způsob, jakým příroda zajišťuje, aby se všechno neodehrálo najednou. Čas John Archibald Wheeler: Čas - to je způsob, jakým příroda zajišťuje, aby se všechno neodehrálo najednou. Čas John Archibald Wheeler: Čas - to je způsob, jakým příroda zajišťuje, aby se všechno neodehrálo

Více

PLANETA ZEMĚ A JEJÍ POHYBY. Maturitní otázka č. 1

PLANETA ZEMĚ A JEJÍ POHYBY. Maturitní otázka č. 1 PLANETA ZEMĚ A JEJÍ POHYBY Maturitní otázka č. 1 TVAR ZEMĚ Geoid = skutečný tvar Země Nelze vyjádřit matematicky Rotační elipsoid rovníkový poloměr = 6 378 km vzdálenost od středu Země k pólu = 6 358 km

Více

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015 Kartografie 1 - přednáška 6 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Kartografická zobrazení použitá na našem území důležitá jsou zejména zobrazení pro státní mapová díla v

Více

HVĚZDNÁ OBLOHA, SOUHVĚZDÍ

HVĚZDNÁ OBLOHA, SOUHVĚZDÍ HVĚZDNÁ OBLOHA, SOUHVĚZDÍ Souhvězdí I. Souhvězdí je optické uskupení hvězd různých jasností na obloze, které mají přesně stanovené hranice Podle usnesení IAU je celá obloha rozdělena na 88 souhvězdí Ptolemaios

Více

Poznámky k sestavení diagramu zastínění

Poznámky k sestavení diagramu zastínění Poznámky k sestavení diagramu zastínění pojmy uvedené v tomto textu jsou detailně vysvětleny ve studijních oporách nebo v normách ČSN 73 4301 a ČSN 73 0581 podle ČSN 73 4301 se doba proslunění hodnotí

Více

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 (Souřadnicové výpočty 4, Orientace osnovy vodorovných směrů) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: graf funkce, derivace funkce a její

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

Pro mapování na našem území bylo použito následujících souřadnicových systémů:

Pro mapování na našem území bylo použito následujících souřadnicových systémů: SOUŘADNICOVÉ SYSTÉMY Pro mapování na našem území bylo použito následujících souřadnicových systémů: 1. SOUŘADNICOVÉ SYSTÉMY STABILNÍHO KATASTRU V první polovině 19. století bylo na našem území mapováno

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2 Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací

Více

Michal Zamboj. December 23, 2016

Michal Zamboj. December 23, 2016 Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj December 3, 06 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu

Více

Identifikace práce prosíme vyplnit čitelně tiskacím písmem

Identifikace práce prosíme vyplnit čitelně tiskacím písmem Identifikace práce prosíme vyplnit čitelně tiskacím písmem Žák/yně jméno příjmení identifikátor Identifikátor zjistíš po přihlášení na http://olympiada.astro.cz/korespondencni. Jeho vyplnění je nutné.

Více

VIDEOSBÍRKA DERIVACE

VIDEOSBÍRKA DERIVACE VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos 3x 3. Zderivuj funkci y = 3 e sin2 (x 2 ). Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y

Více

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí

Více

Michal Zamboj. January 4, 2018

Michal Zamboj. January 4, 2018 Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj January 4, 018 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu

Více

Identifikace práce prosíme vyplnit čitelně tiskacím písmem

Identifikace práce prosíme vyplnit čitelně tiskacím písmem Identifikace práce prosíme vyplnit čitelně tiskacím písmem Žák/yně jméno příjmení identifikátor Identifikátor zjistíš po přihlášení na http://olympiada.astro.cz/korespondencni. Jeho vyplnění je nutné.

Více

c jestliže pro kladná čísla a,b,c platí 3a = 2b a 3b = 5c.

c jestliže pro kladná čísla a,b,c platí 3a = 2b a 3b = 5c. Úloha 1 1 b. Od součtu neznámého čísla a čísla 17 odečteme rozdíl těchto čísel v daném pořadí. Vypočtěte a zapište výsledek v. Úloha 2 1 b. 25 Na číselné ose jsou obrazy čísel 0 a 1 vzdáleny 5 mm. Určete

Více

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Školní rok 2013/2014 Mgr. Lenka Mateová Kapitola Téma (Učivo) Znalosti a dovednosti (výstup)

Více

1.1 Oslunění vnitřního prostoru

1.1 Oslunění vnitřního prostoru 1.1 Oslunění vnitřního prostoru Úloha 1.1.1 Zadání V rodném městě X slavného fyzika Y má být zřízeno muzeum, připomínající jeho dílo. Na určeném místě v galerii bude umístěna deska s jeho obrazem. V den

Více

Čas a kalendář. RNDr. Aleš Ruda, Ph.D.

Čas a kalendář. RNDr. Aleš Ruda, Ph.D. Čas a kalendář RNDr. Aleš Ruda, Ph.D. Obsah přednášky 1) Čas a způsoby jeho 2) Místní a pásmový čas 3) Datová hranice 4) Kalendář 1. Čas a způsoby jeho podstata určování času rotace Země - druhy časů:

Více

SOUŘADNICE BODU, VZDÁLENOST BODŮ

SOUŘADNICE BODU, VZDÁLENOST BODŮ Registrační číslo projektu: CZ.1.07/1.1.14/01.001 SOUŘADNICE BODU, VZDÁLENOST BODŮ SOUŘADNICE BODU NA PŘÍMCE ČÍSELNÁ OSA na přímce je určena počátkem O a jednotkou měření. Libovolný bod A na číselné ose

Více

Program pro astronomy amatéry. Hvězdárna v Rokycanech Karel HALÍŘ duben 2006

Program pro astronomy amatéry. Hvězdárna v Rokycanech Karel HALÍŘ duben 2006 Program pro astronomy amatéry Hvězdárna v Rokycanech Karel HALÍŘ duben 2006 Zákryty hvězd tělesy sluneční soustavy Zákryty hvězd Měsícem Tečné zákryty Zákryty hvězd planetkami Stín hvězdy vržený na povrch

Více

DERIVACE. ln 7. Urči, kdy funkce roste a klesá a dále kdy je konkávní a

DERIVACE. ln 7. Urči, kdy funkce roste a klesá a dále kdy je konkávní a DERIVACE 1. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x 3. Zderivuj funkci y = 3 e sin2 (x 2 ) 4. Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y = cos2 x

Více

Globální matice konstrukce

Globální matice konstrukce Globální matice konstrukce Z matic tuhosti a hmotnosti jednotlivých prvků lze sestavit globální matici tuhosti a globální matici hmotnosti konstrukce, které se využijí v řešení základní rovnice MKP: [m]{

Více

Souřadnicové prostory

Souřadnicové prostory Prostor objektu Tr. objektu Tr. modelu Prostor scény Souřadnicové prostory V V x, y z x, y z z -z x, y Tr. objektu V =V T 1 T n M Tr. modelu Tr. scény x, y Tr. pohledu Tr. scény Tr. pohledu Prostor pozorovatele

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Geodézie a pozemková evidence

Geodézie a pozemková evidence 2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence Přednáška č.2 - Kartografická zobrazení, souřadnicové soustavy Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské

Více

Referenční plochy a souřadnice na těchto plochách Zeměpisné, pravoúhlé, polární a kartografické souřadnice

Referenční plochy a souřadnice na těchto plochách Zeměpisné, pravoúhlé, polární a kartografické souřadnice Referenční plochy a souřadnice na těchto plochách Zeměpisné, pravoúhlé, polární a kartografické souřadnice Kartografie přednáška 5 Referenční plochy souřadnicových soustav slouží k lokalizaci bodů, objektů

Více

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179

Více

Přednášející: Ing. M. Čábelka Katedra aplikované geoinformatiky a kartografie PřF UK v Praze

Přednášející: Ing. M. Čábelka Katedra aplikované geoinformatiky a kartografie PřF UK v Praze Seminář z geoinformatiky Úvod do geodézie Seminář z geo oinform matiky Přednášející: Ing. M. Čábelka cabelka@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie PřF UK v Praze Úvod do geodézie

Více

VIDEOSBÍRKA DERIVACE

VIDEOSBÍRKA DERIVACE VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x. Zderivuj funkci y = e sin2 (x 2 ). Zderivuj funkci y = x +2x 2 +sin x x 5. Zderivuj funkci y = cos2

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více