Vzácná Země a pouť života
|
|
- Zuzana Hrušková
- před 8 lety
- Počet zobrazení:
Transkript
1 Vzácná Země a pouť života aneb střípky z astrobiologie Vladimír Kopecký Jr. Fyzikální ústav Matematicko-fyzikální fakulty Univerzity Karlovy v Praze kopecky@karlov.mff.cuni.cz Jedinečný Měsíc Kde se Měsíc vzal? Měsíc vznikl před ca. 4,5 Gy srážkou Země s tělesem o velikosti Marsu (ca. ½ průměru Země) Z vyvržené hmoty se postupně zformovalo těleso Měsíce Základní myšlenka pochází od Hartmanna & Davise z roku 1975) Možnost zachycení tělesa o velikosti Měsíce (ca. 0,27 průměru Země) je opravdu nepravděpodobná Jedinečný Měsíc K čemu je Měsíc dobrý? Stabilizuje rotační osu Země Způsobuje proměnné prostředí v přílivových zónách vytváří tak přechodné prostředí Odebral část momentu hybnosti zpomalil rotaci Země na únosnou míru (původní rotace by působila trvalé větry 200 km/h) Při vzniku přidal něco hmoty Zemi Měsíc funguje pouze proto, že jde o dvojplanetu Země Měsíc (těžiště leží 1400 km pod povrchem Země) Existence a vznik soustavy Země Měsíc je krajně nepravděpodobná 1
2 Jedinečný Měsíc Co by bylo kdyby Měsíce nebylo Model klimatických změn na Zemi bez Měsíce. Nepřítomnost Měsíce dovoluje masivní změny sklonu rotační osy od současné stabilní polohy 23,5 (vlevo) až po 90 (vpravo). Vyneseny jsou průběhy teplot pro polohu blízko rovníku 5 a poblíž pólu 85 (plná čára = severní, přerušovaná = jižní hemisféra). Na pólech může teplota oscilovat během roku od bodu mrazu až po 80 C. S. C. Morris: Life s solution. Cambridge University Press (2003) p. 91. Jedinečný Měsíc Nic není zadarmo Poměr velikostí Země vs. Měsíc vede k vázané rotaci Měsíc byl před 3,9 Gy vzdálen pouze km, nyní je km Rotace Země se postupně zpomaluje z ~2 hodin na ~52 hodin (při plně vázané rotaci) Rychlá rotace spolu s mnohem větším přílivem mohla hrát roli při vzniku života nahrazuje průběh PCR reakcí R. Lathe, Icarus 168 (2004) Jedinečnost Země Velikost planety Menší Země (slabší gravitace) Slabší atmosféra Vyšší vyvrásněná horstva Následně nižší povrchová teplota Silnější litosféra (možný zánik deskové tektoniky) Větší Země (silnější gravitace) Pravděpodobně pokryta globálním oceánem Neexistence kontinentů výrazně sníží oběh živin S. C. Morris: Life s solution. Cambridge University Press (2003) p
3 Obyvatelnost Země Uhličitano-křemičitanový stabilizující cyklus Koncentrace CO 2 v atmosféře je kontrolována pomalou interakcí s horninami (v časech >10 6 let) Křemičitany by odebraly veškeré CO 2 za 400 Myr Uličitano-křemičitanový cyklus navrhl H. Urey roku 1952 CO 2 je odstraňováno z atmosféry interakcí s Ca a Mg křemičitany (např. s wollastonitem CaSiO 3 ) a následně ukládáno v podobě uhličitanů: CaSiO 3 + 2CO 2 +H 2 O Ca HCO 3 + SiO 2 Rozpuštěné, zvětrané křemičitany jsou odnášeny proudy do moře, kde je organismy (existuje i abiotický ekvivalent reakce) využijí k tvorbě schránek: Ca HCO 3 CaCO 3 + CO 2 + H 2 O Sumární reakce vede k odstranění části CO 2 z atmosféry a jeho uložení ve formě sedimentů: CaSiO 3 + CO 2 CaCO 3 + SiO 2 J. F. Kasting et al., Icarus 101 (1993) Obyvatelnost Země Uhličitano-křemičitanový stabilizující cyklus CO 2 2CO 2 CO 2 CaSiO 3 H4 SiO 4 + Ca HCO 3 SiO 2 CaCO 3 P. Westbroek: Život jako geologická síla. Argo Dokořán (2002). Jedinečnost Země Správné místo v planetární soustavě Země se nachází v dlouhodobě obyvatelné zóně kolem Slunce Planetární soustava má Jupiter a obří plynné planety daleko od Slunce, kde vychytávají komety & spol. Biologické cykly na planetě mají pufrovací schopnost, tj. jasnost Slunce stoupla o 30 % od vzniku soustavy, ale teplota Země se nezvýšila S. C. Morris: Life s solution. Cambridge University Press (2003) p
4 Vývoj Země Geologické členění dob Povrch Země se zformoval krátce (100 My) po jejím vzniku před 4,5 Gy Již před 4,35 Gy měla Země zřejmě globální oceán Kyslíková atmosféra vznikla před 2,32 Gy Během vývoje prošla Země několika krizemi globální zalednění (např. Huronská glaciace ca. 2,5 Gy, impakty planetek např. před 65 My) Počátky života Historický přehled J. L. Bada and A. Lazcano, Science 300 (2003) Počátky života Prebiotická evoluce 1924 A. I. Oparin ukazuje, že prvotní organismy musely být heterotrofní a užívat anaerobní fermentaci, navrhuje vznik života za přítomnosti NH 3, uhlovodíků a sloučeni C+kov (karbidů) 1927 J. B. S. Haldane ukazuje na nepřítomnost O 2 a O 3 v prvotní atmosféře 1938 Oparin přichází s ideou redukční atmosféry, přítomnosti UV záření a výbojů v prvotní atmosféře 1953 S. L. Miller a H. Urey (Univ. of Chicago) syntéza aminokyselin 1961 J. Oró (Univ. of Houston) syntéza bází nukleových kyselin Aleksandr Ivanovič Oparin ( ) J. B. S. Haldane ( ) Stanley L. Miller ( ) 4
5 Počátky života Prebiotická evoluce složení atmosféry Atmosféra Složení Redukční CH 4, NH 3, N 2, H 2 O, H 2 CO 2, N 2, H 2 O, H 2 CO 2, H 2, H 2 O Neutrální CO 2, N 2, H 2 O Oxidační CO 2, N 2, H 2 O, O 2 Původní Oparinův návrhredukční atmosféry obsahoval CH 4, NH 3, H 2 O, H 2 Shodné složení plynů užil i Miller ve svém experimentu Neutrální a oxidační atmosféry nevedou k abiotické syntéze aminokyselin Původní experimentální aparatura S. L. Millera Aminokyseliny Prebiotická syntéza aminokyselin V roce 1952 provádí S. L. Miller experiment (v laboratoři H. C. Ureyho) se silně redukční atmosférou S. L. Miller, Science 117 (1953) Aminokyseliny Prebiotická syntéza aminokyselin Harada a Fox modifikovali Millerův experiment Odstranili elektrody a nahradili je píckou s ohřevem C a s přidáním křemenného písku jako katalyzátoru Zvyšuje se podíl proteinogenních aminokyselin (Ala, Gly, Asp, Glu, Lys, Trp, His, Asn) Pokusy jsou kritizovány (teplota <120 C je přijatelnější) K. Harada and S. W. Fox, Nature 201(1964) 335. J. G. Lawless & C. D. Boynton, Nature 243 (1973)
6 Evoluce jak ji známe Centrální dogma molekulární biologie 1865 Gregor Mendel postuluje zákony genetiky 1940 jeden gen jeden enzym (George Beadle & Edward Tatum) 1958 Francis Crick formuluje ústřední dogma molekulární biologie 1961 aminokyseliny specifikovány třípísmennými kodony (Sidney Brener & Francis Crick& George Gamow) 1961 rozluštění prvního kódu UUU (M. Nirenberg & H. Matthaei) 1966 finální rozluštění genetického kódu Transkripce DNA??? RNA Replikace Translace Protein Počátky života Scénáře vzniku života Proteiny, nikoli nukleové kyseliny koacerváty semipermeabilní membrány, Oparin (1924) mikrosféry protenoidy (shluky aminokyselin), Fox Nukleové kyseliny, nikoli proteiny genová hypotéza ribozymy, koenzymy, možná afinita k protenoidům (1986) Koexistence proteinů a nukleových kyselin hypercykly teoretický model autoreplikujících se systémů, Eigen (1960) Úplně jiný základ anorganické jíly silikátové shluky, možnost katalýzy, Cairns-Smith (1980) NK translace Enzym NK translace Enzym translace NK Enzym translace NK Enzym Svět RNA Biochemické epochy světa Časová škála událostí na ranné Zemi. Udáno v Gy před současností. Vyznačení událostí je přibližné a RNA svět je třeba posunout hlouběji do minulosti. G. F. Joyce, Nature 418 (2002)
7 Počátky života Spletité cesty života Proteiny při vzniku života Samosereplikující peptid 32-mer α-helix (coiled-coil) podobný leucinovému zipu autokatalyzuje ve vodném prostředí vznik svého obrazu složením 15- (nukleofilní fragment) a 17-meru (elektrofilní fragment) D. H. Lee et al., Nature 382 (1996) Proteiny při vzniku života Samosereplikující peptid Elektrofilní fragment atakuje prostřednictvím thiobenzyl esteru COSBn terminální SH amino skupinu nukleofilního fragmentu Vznikne cystein thioester intermediát, který se přemění na termodynamicky favorizovanou peptidovou vazbu a spojí oba fragmenty Katalytická cesta může probíhat: A) prostřednictvím ternárního komplexu B), C) za vzniku binárních komplexů (nízká výtěžnost, problémy s agregací) D) přímou interakcí obou fragmentů, což je v porovnání s autokatalýzu proces s malou výtěžností D. H. Lee et al., Nature 382 (1996)
8 Proteiny při vzniku života Chirální selektivita Schématické znázornění chiroselektivních replikačních cyklů Homochirální peptidy T DD a T LL jsou produkovány autokatalýzou Heterochirální (T DL a T LD ) peptidy vznikají nekatalyzovanou kondenzací nukleofilního (N) a elektrofilního (E) peptidu Teplátem řízená ligace homochirálních fragmentů vede k aplifikaci homochirální produktů obecně A. Sagatelian et al., Nature 409 (2001) Proteiny při vzniku života Chirální selektivita Stupeň formování produktu v závislosti na čase Produkce homochirálních produktů (T LL a T DD ), a heterochirálních produktů (T LD a T DL ), je ukázána jako funkce času pro roztok obsahující 100 µm koncentraci N L, N D, E D a E L Spodní křivka (,, resp.) je kontrola v přítomnosti 3M GndHCl A. Sagatelian et al., Nature 409 (2001) Proteiny při vzniku života Chirální selektivita Formování coiled-coil struktury a odpovídající HPLC retenční časy Příkrá disproporce ukazuje, že vznik coiledcoil helikální struktury je přísně chiroselektivní Stejné mechanismy vedly ke vzniku homochirálního života na Zemi A. Sagatelian et al., Nature 409 (2001)
9 Proteiny při vzniku života Peptidové nukleové kyseliny (PNA) Kostra PNA je tvořena polymerem N-(2aminoethyl)gylcinem (AEG) AEG může snadno nahradit nestabilní cukry PNA se váží na DNA formujíce dvoj- či trojšroubovice příbuzné Watson-Crickově helixu PNA mohou být prekurzorem světa RNA PNA mají terapeutické využití v antisense strategii a genetické diagnostice K. N. Ganesh and P. E. Nielsen, Current Org. Chem. 4 (2000) DNA jak ji neznáme Expandovaná DNA Modifikované báze vznikají přidáním jednoho aromatického kruhu navíc Báze si zachovávají své vlastnosti Expandovaná DNA je mnohem stabilnější než DNA klasická Hybrid i čistá forma expandované DNA je plně funkční Neexistuje žádné známé omezení na užití expandované DNA H. Liu et al. Science 302 (2003) Počátky života Vznikl život na ledové Zemi 9
10 Počátky života nebo v horkém zřídle? Počátky života v Darwinově teplém rybníčku Život jak ho neznáme Je život opravdu tak jednoduchý fenomén? Průměrný protein má 200 aminokyselin Počet všech kombinací aminokyselin je 20200, tj. zhruba Vesmír má 1080 částic Rychlá chemický reakce trvá 1 femtosekundu (10-15 s) Počet všech myslitelných párových srážek od velkého třesku je = Vesmír by potřeboval 1067 životů aby stvořil všechny kombinace tohoto proteinu Vesmír se neopakuje je nergodický 10
11 Počátky života Kdy život začal? Genetický předchůdce všech živých organismů se mohl vyvinout až po posledním velkém sterilizujícím impaktu Jedinečnost Země Na kosmické střelnici V počátcích existence planety mohly být kataklyzmatické dopady těles časté Důsledky gigantického impaktu (těleso >500 km) Vypaření hornin v místě dopadu (T atmosféry 2000 C) Vypaření oceánů (atmosféra 1500 C po staletí) Extrémní skleníkový efekt (Tsurf teplota povrchu, Teff oblačnosti z vesmíru) Život musel možná vzniknout opakovaně! Evoluce jak ji známe Jsou mikrofosile autentické? Lze syntetizovat mikronové silně uspořádané křemíkové struktury na které se postupně naváží uhlíkaté sloučeniny dojem je dokonalý J. M. García-Ruiz et al., Science 302 (2003)
12 Strom života Standardní uspořádání Strom života Možná nová schémata vývoje života Čtyři schémata uspořádání mikrobiálního světa a) Tři říše s postupným vývojem stanoveným na základě analýzy ribosomální RNA b) Dvě říše striktně oddělující svět prvojadených a bezjaderných mikroorganismů c) Tři říše které si vzájemně ve svém vývoji vyměňovaly geny d) Prstenec života, zahrnující výměnu genů, ale i oddělení eukaryotů od prokaryotů M. C. Rivera, J. A. Lake, Nature 431 (2004) Evoluce jak ji známe Extremofilní organismy 12
13 Extremofilové Extremofilní organismy definice Extremofilní organismus je ten, který prospívá v extrémních podmínkách Polyextremofilní organismus prospívá nejlépe v podmínkách dvou a více extrémů Extrémem se rozumí fyzikální (např. teplota, tlak, radiace) či chemické podmínky (např. salinita, vysychání, ph, redox potenciál, oxidační prostředí) Mezi extrémy by se mohly též zařadit biologické faktory (např. nutriční extrémy, populační hustota, parazitace, atp.) Extremofilové Kdo je extremofil? Jaké podmínky jsou skutečně extrémní? Naše definice jsou antropocentrické Z pohledu mikrobů je člověk extremofil libující si v oxidačním prostředí Musí extremofil opravdu milovat (-fil) své extrémní prostředí? Mnoho organismů spíše toleruje extrémní podmínky než aby je aktivně vyhledávalo Musí být organismus extremofilem po celý život a ve všech fázích svého vývoje? Deinococcus radiodurans vlivem extrémního zatížení ztrácí odolnost vůči radiaci Zvířata tolerují během zimního spánku překvapivě nízké teploty Želvušky krátkodobě snáší teploty od 253 C do 151 C, X-ray, vakuum, tlaky 600 MPa Evoluce jak ji známe Limity života Nejtepleji: 113 C, Pyrococcus furiosus (Islandské a Italské sopky) Nejstudeněji: -15 C, Crypotendolithotrop h (Antarktida) Nejhlouběji: 2 míle pod zemí, bakterie v hloubkových vrtech Nejvyšší radiace: 15 Mrads, Deinococcus radiodurans (všudypřítomný) 13
14 Evoluce jak ji známe Limity života Nejkyseleji: ph=0,0, Picrophylus oshimae Nejzásaditěji: ph=11, alkalofilní bakterie Nejslaněji: 30 %, halophilní bakterie Nejvyšší tlak: 1200 atm., společenství na dně Mariálnského příkopu Nejdelší latence: milionů let (jantar), Bacillus Nejvzdálenější pobyt ve vesmíru: Surveyor III (3 roky) Streptococcus Nejdelší pobyt ve vesmíru: 6 let, Bacillus subtilis Evoluce jak ji známe Pozoruhodný svět v temnotách Svět černých kuřáků objeven ponorkou Alvin v roce 1977 Jde o horká termální zřídla (ca. 350 C) ve velkých hloubkách (>3000 m) bohatá na sloučeniny síry Doposud objeveno okolo 30 zón termálních podmořských zřídel Ekosystém je založen na sirných baktériích Červy rodu Riftia pachyptila nepřijímá potravu a žije pouze ze symbiózy s bakteriemi Extrémní teplota Rozdělení organismů dle optimální teploty růstu Mikroorganismy lze rozdělit do skupin dle optimální teploty pro růstu. Teplotní rozsah možného růstu je relativně široký. Ve formě spor mohou mikroby přestát mnohem nepříznivější okolnosti. L. M. Prescott et al.: Microbiology, McGraw-Hill (1999). 14
15 Extrémně vysoká teplota Kdo pak to rád horké? Většina hypertermofilních organismů jsou zástupci archae Chlorofyl degraduje při 75 C fotosyntéza je vyloučena Zdrojem energie je nitrifikace či příbuzné reakce Průměrná DNA denaturuje při ca. 70 C DNA thermofilů je stabilizována (před hydrolýzou a depurinací) KCl a MgCl 2 G+C nejsou častější v DNA pouze v ribozomální RNA a trna Proteiny denaturují při ca. 60 C Proteiny thermofilů nemají jiné teplotní optimum Jsou rigidnější a teplotní křivka je plošší Teplota tání nukleové kyseliny v závislosti na obsahu G+C párů (guanin + cytosin) L. J. Rothschild & R. L. Mancinelli, Nature 409 (2001) Extrémně vysoká teplota Jak přežít vysoké teploty Biomolekuly disintegrují při teplotách C Fluidita membrán se při vysokých teplotách zvyšuje Archae využívá modifikované biomolekuly Zvýšené množství heat-shock proteinů Zvýšené množství disacharidů Rigidnější lipidy v membránách Glykopeptidy ke zpevnění membrán napříč Molekuly příbuzné těm, jež jsou užívány při sporulaci za účelem snížení fluidity membrány (např. kys. dipicolinovou DPA) O N O OH OH L. M. Prescott et al.: Microbiology, McGraw-Hill (1999). Extrémně vysoká teplota Jak přežít vysoké teploty Modifikace membránových lipidů u archae L. M. Prescott et al.: Microbiology, McGraw-Hill (1999). 15
16 Extrémně nízká teplota Aktivita enzymů při teplotě 100 C Funkčnost enzymů vyžaduje kapalné rozpouštědlo Některé enzymy ztrácejí při nízkých teplotách funkčnost díky dynamickému přechodu do jiné konformace Při nižších teplotách je aktivita enzymů ovlivněna fluiditou roztoku pro substrát/produkt Nebyl nalezen žádný limit v oblasti nízkých teplot pro fungování enzymů Arrheniův graf pro aktivitu alkalin fosfatázy v roztoku methanol/ethylenglykol/voda (70/10/20 %) J. M. Bragger et al., Biochim. Biophys. Acta 1480 (2000) Extrémně nízká teplota Nemrznoucí proteiny Existují proteiny, které umožňují život vyšším živočichům za nízkých teplot (především rybám) Existují antifreeze proteiny a glykoproteiny IV typů Molekulová váha 2,6 33 kda V sekvenci převažuje Ala ca. 60 % (někdy Cys), ve struktuře helix Mechanizmus účinku není přesně znám, snad vazba na specifické konformace ledu F. Sicheri & D. S. C. Yang, Nature 375 (1995) Extrémně nízká teplota Jezero Vostok Roku 1974 se podařilo u antarktické stanice Vostok nalézt jezero ukryté pod vrstvou ~4 km ledu Jde o rozlehlé ( km 2 tj. ca. jezero Ontario) sladkovodní jezero km Průměrná hloubka 125 m Odhaduje se, že vodní svět jezera je izolován již miliony let (> 10 Myr) A. P. Kapitsa et al., Nature 381 (1996)
17 Extrémní radiace Velký rekordman Deinococcus radiodurans (půdní bakterie, všeobecně rozšířená) je zřejmě největším extremofilem vůbec Snáší vysoké dávky ozáření 20 kgy gama záření UV ozáření více než 1000 J/m milionů rad (100 rad, tj. 1 J záření / 1 kg buněk, je pro člověka letální dávka resp. 5 krad/h; pozadí je 0,5 rad/rok) Přežívá i extrémně vysoké tlaky a zrychlení Jde zřejmě o vedlejší efekt rezistence vůči vysychání Bakterie obsahuje velké množství antioxidantů a detoxyfikačních enzymů Mikrokolonie Deinococcus Má unikátní mechanismus pro opravu DNA, který umožňuje její správně radiodurans organizovaného do tetrád či ve formě diplokoka. poskládání z fragmentů L. J. Rothschild & R. L. Mancinelli, Nature 409 (2001) Extrémní tlak Jak přežít tlaky Zvýšený tlak posunuje hranici kapalnosti vody (na dně moře ca. 10 km voda vře při 400 C) a tak i možnost optimálního růstu mikrobů využíváno velmi zřídkavě Vysoký tlak snižuje fluiditu buněčných membrán (reakcí je zvýšení obsahu mastných kyselin v membránách) Vysoký tlak může pomoci stabilizovat konformace proteinů, některé však destabilizuje a navíc může ohrozit i stabilitu DNA Mezi tlaky by měl být zařazen i vliv gravitace, sic! L. J. Rothschild & R. L. Mancinelli, Nature 409 (2001) Extrémní tlak Mikrobiální život za tlaku GPa Bakterie žijí při tlacích do 1060 MPa Aktivita byla sledována pomocí oxidace mravenčanu Bakterie zamrzlé ve VI-ledu přežívají tlak až do 1600 MPa Z 10 6 baktérií přežilo 30 h expozici GPa tlaku 10 4 Stres způsobený vysokým tlakem zároveň selektuje jedince odolné k vyšším teplotám Použitý tlak MPa odpovídá hloubce ~50 km pod povrchem Země nebo ~160 km pod hladinou moře A. Sharma et al., Science 295 (2002)
18 Extrémní koncentrace solí Experimenty v kosmu Experiment BioPan vystavil halofilní organismy na dobu dvou týdnů kosmickému prostředí. Vlevo erchae Dunaliella, uprostřed Synechococcus (z pacifické solné zóny), vpravo mikrofotografie Holoarculy uzavřené v krystalu NaCl. Evoluce jak ji známe Strastiplná cesta života na Zemi Před 4,6 miliardami let se zformovala Země Před 4,2 miliardami let vznikly oceány a kontinenty Před 3,8 miliardami let vznikl život Před 3,5 miliardami let zahájil fotosyntézu Před 530 miliony let proběhla kambrická exploze vícebuněčného života Před 300 miliony let život osídlil souš Před 65 miliony let ovládli savci souš Před 5 miliony let vznikl rod Homo Před 43 lety vstoupil člověk do vesmíru Fosilie (3,5 miliardy let) z africké lávy 10 µm Nejstarší známé fosilie cyanobakterií (3,5 miliardy let) ze západní Austrálie Stromatolity ze Žraločí zátoky Nejstarší české mikrofosilie (1,5 miliardy let) Co je život? Vynález sexuality 1946 Joshua Lederberg (Nobelova cena 1958) objevuje konjugaci u bakterií Sexualita života je převážně únikem před parazity, ale šancí pro komplexní život Jednou nastartovaný evoluční proces je nevratný a neopakovatelný Pokud by se evoluční proces spustil znovu jeho výsledky by byly velmi odlišné 18
19 Evoluce jak ji známe Kambrická exploze Kambrické explozi živočišných forem předcházelo prekambrické vymírání Ediakarské fauny Náhle objevení se rozmanitých forem nelze vysvětlit neschopností tvorby snadno fosilizujících částí Burgeszké břidlice uchovaly tvory, kteří evidentně experimentovali s tělními plány anomalocaris dickinsonia halucigenia pikaia opabinia Evoluce jak ji známe Morfologická konvergence Morfologie živočichů je silně ovlivněna fyzikálními a chemickými podmínkami prostředí Existuje pouze jedno ideální řešení ke kterému organismy směřují Řešení problému je ovlivněno pouze evolučními možnostmi Evoluce jak ji známe Ne vše je si možné dovolit Jisté cesty vývoj jsou s ohledem na fyzikální a chemické možnosti organismů předem zapovězeny! Některé směry vývoj představují příliš velký evoluční hendikep 19
20 Co je život? Koevoluce s planetou V sedmdesátých letech přichází James Lavelock s teorií Gaia V roce 2002 ukazují P. Ward a D. Brownlee v knize Rare Earth jedinečnost pozemského prostředí Evoluce života jde ruku v ruce s vývojem prostředí Prostředí ovlivňuje organismy Organismy ovlivňují prostředí (ve svůj prospěch i neprospěch) Jedinečnost Země Na kosmické střelnici Záznam v podobě kráterů na Měsíci ukazuje frekvenci dopadů planetek a komet v závislosti na čase Intenzivní éra bombardování skončila před 3,8 Gy (v jejím závěru vznikla měsíční moře) Další výrazný pokles impaktů lze vysledovat pře 1 Gy Velké ničivé impakty se dnes odehrávají v řádech desítek milionů let Katastrofické dopady těles mají přímý vliv na evoluci Pravděpodobnost dopadu tělesa na Zemi je 96 % a těleso má 100 větší dopadovou energii Jedinečnost Země Na kosmické střelnici proč? Existuje korelace velikosti a charakteru kráterů starých 3,8 Gy na vnitřních tělesech sluneční soustavy Charakter kráterů odpovídá tělesům z hlavního pásu planetek Pozdější dopady mají charakter těles blízkozemních planetek Sluneční soustavou pravděpodobně před 3,8 Gy zamíchaly posuny drah planet Vzájemná migrace Saturnu a Jupiteru Vystřelení Neptunu na periferii mohlo vést ke staršímu bombardovaní vnitřku sluneční soustavy R. G. Strom, Science 309 (2005)
21 Masová vymírání Dopady asteroidů kvartér terciér terciér Iridiová vrstva jasně odděluje hranici kvartér terciér (K-T) Před 65 miliony lety dopadlo na Zemi těleso o velikosti 10 km do oblasti severozápadního Yucatanu (Mexický záliv) Došlo k nukleární zimě, vznikly velké cunami, teplota prudce oscilovala 50 % živočichů a rostlin vymřelo Tunguský meteorit (1908) měl velikost ~30 m, ale co kdyby Masová vymírání Dopady asteroidů kvartér terciér terciér Ve vyznačených oblastech byl dosažen tok 12,5 kw/m 2 po dobu 20 min což vedlo k masivním požárům. Protažení koridorů je dáno posunem dopadových oblastí úlomků. Malý obrázek ze světa dinosaurů D. A. Kring, D. D. Durda, Scientific American No. 6 (2005) Masová vymírání Dopady asteroidů 21
22 Masová vymírání Geologické a neznámé pochody Pozdní Trias ( My) masivní výlevy lávy, vznik Atlantského oceánu Perm Trias (251 My) prudký výkyv teploty?, změna mořské hladiny?, masivní výlev lávy?, dopad planetky vyloučen, vymřelo 95 % druhů Pozdní Devon (364 My) důvod neznámý Ordovik Silur (439 My) glaciace Masová vymírání Opravdu neznámé důvody? Tři velká vymírání jsou spojena s masivním výlevem lávy K-T Dekanský trap (lávová pole v Indii) Pozdní Trias rozpad Pangey Perm Trias Sibiřský trap Sopečná činnost uvolňuje CO 2 a SO 2, tvoří kyselé deště Pokles hladiny moří až o 200 m exponuje biologické usazeniny, ty se oxidují a vzniká CO 2, což vede ke skleníkovému efektu (možná příčina vymírání Perm Trias) Mimo K-T nejsou důkazy o ničivém dopadu planetky, je možné, že K-T byl největší impakt za posledních 600 My Diskutují se i další vlivy exploze supernov, vymizení magnetického pole (větší mutabilita) Masová vymírání Impakty,, erupce a hlavní masová vymírání 22
23 Masová vymírání Hypoxie a globální oteplení Impakt na hranici Perm-Trias (251 My) je vyloučen vymírání trvalo 10 ky až 1 My Je spojeno s nárůstem CO 2 při tvorbě Sibiřských trapů a následným skleníkovým efektem Nastala globální hypoxie Došlo ke zmenšení a izolaci populací Části Země se staly neobyvatelné R. B. Huey, P. D. Ward, Science 308 (2005) Jedinečnost Země Nejasnosti s teplotou a atmosférou Vývoj teploty a složení pozemské atmosféry čase Není doposud jasné, zda-li teploty na dávné Zemi nebyly vyšší Zastoupení izotopů kyslíku v horninách ukazuje, že teplota mohla být z počátku mnohem vyšší: před 3 Gy 70 C, před 2 Gy 60 C, a teprve před 1,5 Gy klesla na 40 C Vyšší teploty by mohly pomoci vysvětlit evoluci života Jedinečnost Země Zemně jako sněhová koule Glaciace Marinoan před 635 My byla zřejmě globální a trvala 12 My Detekována masivní sedimentací iridia Mohla pozastavit vývoj života a kabrickou explozi Po jejím konci se ropoutala klimatická změna vítr 70 km/h, obří vlnobití Možné jsou další globální glaciace např. Sturtian před 710 My P. A. Allen, P. F. Hoffman, Nature 433 (2005)
24 Masová vymírání Nové otázky Analýzou Sepkovského kompedia rodů mořských živočichů s pevnou skořápkou (0 542 My) byla nalezena perioda vymírání 62±3 My a 140±15 My Cyklus 62 My a 140 My je signifikantní na hladině v pozici 3, a magnitudě , respektive 5, a 0,13 Slunce prochází s periodou ~140 My rameny Galaxie a s periodou My křižuje Galaktickou rovinu Vysvětlení neznáme R. A. Rohde, R. A. Muler, Nature 434 (2005) Masová vymírání Nové otázky A) průchod spirálními rameny Galaxie B) tok kosmického záření (CRF) se v periodě zpožďuje za průchody ramenem C) kvalitativní znázornění epoch zalednění spolu s chladnými a teplými obdobími (glaciál 3 je spolu s průchodem ramenem 4 nejistý) D) histogram zastoupení 40 K/ 41 K v Fe meteoritech, které odráží minima CRF N. J. Shaviv, Phys. Rev. Lett. 89 (2002) Obyvatelnost Země Biomatematická stránka modelu Biologická produktivita Země s časem postupně rostla Možná již je za vrcholem Zcela jistě bude v budoucnu klesat a to v důsledku nedostatku CO 2 a zvyšování teploty planety Je možné, že mikroby dokáží zamezit poklesu produktivity na nulovou úroveň po dlouhou dobu P. Ward & D. Brownlee: Život a smrt planety Země. Argo Dokořán (2004). 24
25 Vývoj Země Ztráta oceánů Oceánská voda neustále uniká do vesmíru Z vesmíru lze pozorovat fluorescenci H v Laymanově čáře alfa (UV záření) Závoj unikajícího vodíku se táhne do vzdáleností tisíců km Oceány se vypařují tempem 1 mm za 1My Vypařování (přechodu do stratosféry) zabraňuje rychlý pokles teploty v atmosféře s výškou (ca. 9,8 na 1 km) Při zvýšení teploty se mohou oceány vypařit velmi rychle Vývoj Země Nárůst teploty Postupné narůstání jasnosti Slunce povede ke zvyšování teploty zemského povrchu Nárůst teploty bude způsobovat kolaps zpětnovazebných termoregulačních cyklů S. C. Morris: Life s solution. Cambridge University Press (2003). Vývoj Země Nárůst teploty Nárůst povrchové teploty bez skleníkového efektu by měl být lineární odezvou na zvyšování jasnosti Slunce Vypařování oceánů způsobí na Zemi lavinovitý skleníkový efekt a zánik života Pokud Země ztratí oceány do 1,5 Gy, pak bude nárůst teploty pozvolnější a skleníkový efekt se nerozeběhne P. Ward & D. Brownlee: Život a smrt planety Země. Argo Dokořán (2004). 25
26 Vývoj Země Nárůst teploty Období, kdy může existovat komplexní život je velmi krátké Planeta Země vždy byla planetou mikrobů Jsou vyšší živočichové pouze krátkodobou anomálií života? Jaké jsou důsledky těchto jevů pro existenci mimozemského života? P. Ward & D. Brownlee: Život a smrt planety Země. Argo Dokořán (2004). Spektrální charakteristiky Základní rysy obyvatelné atmosféry Pokud se v budoucnu podaří detekovat spektra exoplanet, bude možné analyzovat složení atmosféry Přítomnost CO 2 je možným znakem planety terestrického typu s hustší atmosférou Přítomnost O 3 svědčí o přítomnosti stínící vrstvy a kyslíkaté atmosféry Přítomnost CH 4 za současné přítomnosti O 2 ukazuje na možný organický původ (možné jsou podzemní rezervoáry) Spektrální charakteristiky Univerzální chlorofyl? Spektrální distribuce chlorofylu nekopíruje průběh záření Slunce Maximum slunečního záření zůstává nevyužito! Může jít o fyzikálněchemické důvody?! Fototrofie na jiných planetách může mít stejné spektrální charakteristiky S. C. Morris: Life s solution. Cambridge University Press (2003) p
27 Hledání mimozemšťanů Hurá, život ve vesmíru nalezen Sonda Galileo otestovala své přístroje při průletu kolem Země v prosinci 1990 Fotografie ukázaly oblačnost a projevy počasí Nalezla jasné stopy po O 2 Spektrum vykazovalo jasnou a a ostrou absorpční hranu v červené oblasti Podařilo se detekovat CH 4 v silné termodynamické nerovnováze Výše zmíněné svědčí o přítomnosti života Navíc byly zaznamenány periodické oscilace v radiových signálech, které navíc měli přesné frekvence Jde o praktickou demonstraci sondy, která úspěšně nalezla inteligentní život ve vesmíru C. Sagan et al., Nature 365 (1993) Hledání mimozemšťanů Hlavně neztrácet optimismus Radiová komunikace vyžaduje trvalé vysílání či příjem Signál (radiový či optický) postupně mizí v šumu Nejlepší metodou je posílat artefakty Kde jsou ufoni? Neexistují Schovávají se Nezajímají se o nás Jsou rezignovaní (Cesty jsou příliš obtížné a vesmír je nehostinný) Jsou blízko C. Wright et al., Nature 431 (2004) Doporučená literatura M. Gargaud, B. Barbier, H. Martin, J. Reisse, eds.: Lectures in astrobiology. Springer, Berlin Heidelberg {Obsáhlé kompendium astrobiologie} J. I. Lunine: Astrobiology. A multidisciplinary approach. Pearson & Addison Weasley, San Francisco {Jedna z nejlepších učebnic astrobiologie} A. M. Shaw: Astrochemistry: from astronomy to astrobiology. Wiley, Chichester {Přehledová kniha o astrobiologii s důrazem na astrochemii} J. W. Schopf, ed.: Life s origin. The beginnings of biological evolution. University of California Press, Berkeley {Přehled prebiotické evoluce} P. Ward, D. Brownlee: Rare Earth. Why is complex life uncommon in the universe. Copernicus Books, New York {Skvěla kniha objasňující nepravděpodobnost komplexního života ve vesmíru} P. Ward, D. Brownlee: Život a smrt planety Země. Argo & Dokořán, Praha {Nádherné čtení popisující konec života na Zemi a důvody k němu vedoucí} 27
28 Země je opravdu jedinečná ale alespoň si můžeme užít soukromí 28
Vzácná Země aneb važme si toho co na Zemi máme!
Vzácná Země aneb važme si toho co na Zemi máme! Vladimír Kopecký Jr. Fyzikální ústav Univerzity Karlovy v Praze Oddělení fyziky biomolekul http:// //atrey.karlin.mff.cuni.cz/~ofb/kopecky.html kopecky@karlov
Extremofilové. Extremofilové aneb někdo to rád horké (případně i studené, kyselé atp.) Evoluce jak ji známe
Extremofilové aneb někdo to rád horké (případně i studené, kyselé atp.) Extremofilní organismy Vladimír Kopecký Jr. Fyzikální ústav Univerzity Karlovy v Praze Oddělení fyziky biomolekul http:// //atrey.karlin.mff.cuni.cz/~ofb/kopecky.html
Již před 4,35 Gy měla Země zřejmě globální oceán
Vzácná Země aneb važme si toho co na Zemi máme! Vladimír Kopecký Jr. Fyzikální ústav Univerzity Karlovy v Praze Oddělení fyziky biomolekul http://atrey.karlin.mff.cuni.cz/~ofb/kopecky.html kopecky@karlov.mff.cuni.cz
Vladimír Kopecký Jr. Lipozomy ph 8,5. Micely ph >10. J. W. Szostak et al. Nature 409 (2001)
aneb evoluce na plné obrátky Vladimír Kopecký Jr. Fyzikální ústav Matematicko-fyzikální fakulty Univerzity Karlovy v Praze http://biomolecules.mff.cuni.cz kopecky@karlov.mff.cuni.cz Vznik prvních buněk
Vladimír Kopecký Jr. Extremofilní organismus je ten, který prospívá v extrémních podmínkách
Extremofilové aneb někdo to rád horké (případně i studené, kyselé atp.) Vladimír Kopecký Jr. Fyzikální ústav Univerzity Karlovy v Praze Oddělení fyziky biomolekul http://biomolecules.mff.cuni.cz kopecky@karlov.mff.cuni.cz
Vladimír Kopecký Jr. Lipozomy ph 8,5. Micely ph >10. J. W. Szostak et al. Nature 409 (2001)
Počátky života aneb evoluce na plné obrátky Vladimír Kopecký Jr. Fyzikální ústav Matematicko-fyzikální fakulty Univerzity Karlovy v Praze http://biomolecules.mff.cuni.cz kopecky@karlov.mff.cuni.cz Počátky
Byl jednou jeden život. Lekce č. 6 Magda Špoková, Bára Gregorová
Byl jednou jeden život Lekce č. 6 Magda Špoková, Bára Gregorová Co je to život? Co je to život? Různá kritéria Růst Schopnost se rozmnožovat Metabolismus Reakce na okolní podněty Organizace Schopnost adaptace
OPAKOVÁNÍ SLUNEČNÍ SOUSTAVY
OPAKOVÁNÍ SLUNEČNÍ SOUSTAVY 1. Kdy vznikla Sluneční soustava? 2. Z čeho vznikla a jakým způsobem? 3. Která kosmická tělesa tvoří Sluneční soustavu? 4. Co to je galaxie? 5. Co to je vesmír? 6. Jaký je rozdíl
www.zlinskedumy.cz Inovace výuky prostřednictvím šablon pro SŠ
Název projektu Číslo projektu Název školy Autor Název šablony Název DUMu Stupeň a typ vzdělávání Vzdělávací oblast Vzdělávací obor Tematický okruh Inovace výuky prostřednictvím šablon pro SŠ CZ.1.07/1.5.00/34.0748
Vladimír Kopecký Jr. Fotometrie soustavy Kepler-16b. Fotometrie soustavy Kepler-16b. L. R. Doyle et al., Science 333 (2011)
Hledání života ve vesmíru aneb život za kosmickými humny? Vladimír Kopecký Jr. Fyzikální ústav Univerzity Karlovy v Praze Oddělení fyziky biomolekul http://atrey.karlin.mff.cuni.cz/~ofb/kopecky.html kopecky@karlov.mff.cuni.cz
VY_32_INOVACE_06_III./17._PLANETY SLUNEČNÍ SOUSTAVY
VY_32_INOVACE_06_III./17._PLANETY SLUNEČNÍ SOUSTAVY Planety Terestrické planety Velké planety Planety sluneční soustavy a jejich rozdělení do skupin Podle fyzikálních vlastností se planety sluneční soustavy
Základy biologie a ekologie VZNIK A VÝVOJ ŽIVOTA
Základy biologie a ekologie VZNIK A VÝVOJ ŽIVOTA Výsledky vzdělávání Učivo Ţák Základy biologie charakterizuje názory na vznik a vývoj vznik a vývoj ţivota na Zemi ţivota na Zemi, porovná délku vývoje
Kde všude může být ve vesmíru doma?
Kde všude může být ve vesmíru doma? Vladimír Kopecký Jr. Fyzikální ústav Matematicko-fyzikální fakulty Univerzity Karlovy v Praze http://biomolecules.mff.cuni.cz/kopecky_vladimir kopecky@karlov.mff.cuni.cz
Přírodopis 9. Naše Země ve vesmíru. Mgr. Jan Souček. 2. hodina
Přírodopis 9 2. hodina Naše Země ve vesmíru Mgr. Jan Souček VESMÍR je soubor všech fyzikálně na sebe působících objektů, který je současná astronomie a kosmologie schopna obsáhnout experimentálně observační
VESMÍR. za počátek vesmíru považujeme velký třesk před 13,7 miliardami let. dochází k obrovskému uvolnění energie, která se rozpíná
VESMÍR za počátek vesmíru považujeme velký třesk před 13,7 miliardami let dochází k obrovskému uvolnění energie, která se rozpíná vznikají první atomy, jako první se tvoří atomy vodíku HVĚZDY první hvězdy
HROMADNÁ VYMÍRÁNÍ V GEOLOGICKÉ MINULOSTI ZEMĚ
Možnosti života ve Vesmíru HROMADNÁ VYMÍRÁNÍ V GEOLOGICKÉ MINULOSTI ZEMĚ Radek Mikuláš Geologický ústav AVČR, Praha Hromadné vymírání = událost, při které rychle klesá rozmanitost životních forem Jak objektivně
05 Biogeochemické cykly
05 Biogeochemické cykly Ekologie Ing. Lucie Kochánková, Ph.D. Prvky hlavními - biogenními prvky: C, H, O, N, S a P v menších množstvích prvky: Fe, Na, K, Ca, Cl atd. ve stopových množstvích I, Se atd.
1- Úvod do fotosyntézy
1- Úvod do fotosyntézy Prof. RNDr. Petr Ilík, Ph.D. KBF a CRH, PřF UP FS energetická bilance na povrch Země dopadá 2/10 10 energie ze Slunce z toho 30% odraz do kosmu 47% teplo 23% odpar vody 0.02% pro
Charakteristika, vznik a podmínky existence života (3)
Charakteristika, vznik a podmínky existence života (3) podmínky existence života. (1/2) podmínky existence života. 1 Přehled názorů a hypotéz Kreační hypotéza creo = tvořím => život byl stvořen Bohem,
Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 6.1Slunce, planety a jejich pohyb, komety Vesmír - Slunce - planety a jejich pohyb, - komety, hvězdy a galaxie 2 Vesmír či kosmos (z
Tělesa sluneční soustavy
Tělesa sluneční soustavy Měsíc dráha vzdálenost 356 407 tis. km (průměr 384400km); určena pomocí laseru/radaru e=0,0549, elipsa mění tvar gravitačním působením Slunce i=5,145 deg. měsíce siderický 27,321661
Pouť k planetám. Která z možností je správná odpověď? OTÁZKY
Co způsobuje příliv a odliv? hejna migrujících ryb vítr gravitace Měsíce Je možné přistát na povrchu Saturnu? Čím je tvořen prstenec Saturnu? Mají prstenec i jiné planety? Jak by mohla získat prstenec
Nukleové kyseliny. DeoxyriboNucleic li Acid
Molekulární lární genetika Nukleové kyseliny DeoxyriboNucleic li Acid RiboNucleic N li Acid cukr (deoxyrobosa, ribosa) fosforečný zbytek dusíkatá báze Dusíkaté báze Dvouvláknová DNA Uchovává genetickou
BIOLOGIE OCEÁNŮ A MOŘÍ
BIOLOGIE OCEÁNŮ A MOŘÍ 1. ekologické faktory prostředí světlo salinita, hustota, tlak teplota obsah rozpuštěných látek a plynů 2 1.1 sluneční světlo ubývání světla do hloubky odraz světla od vodní hladiny,
Podmínky působící na organismy: abiotické - vlivy neživé části prostředí na organismus biotické - vlivy ostatních živých organismů na život jedince, m
Přednáška č. 4 Pěstitelství, základy ekologie, pedologie a fenologie Země Podmínky působící na organismy: abiotické - vlivy neživé části prostředí na organismus biotické - vlivy ostatních živých organismů
J i h l a v a Základy ekologie
S třední škola stavební J i h l a v a Základy ekologie 11. Atmosféra Země - vlastnosti Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Tomáš Krásenský
ZŠ ÚnO, Bratří Čapků 1332
Animovaná chemie Top-Hit Analytická chemie Analýza anorganických látek Důkaz aniontů Důkaz kationtů Důkaz kyslíku Důkaz vody Gravimetrická analýza Hmotnostní spektroskopie Chemická analýza Nukleární magnetická
Sluneční soustava je součástí galaxie známé také pod názvem Mléčná dráha. Planety ve sluneční soustavě obíhají po eliptických drahách kolem Slunce.
Sluneční soustava je součástí galaxie známé také pod názvem Mléčná dráha. Planety ve sluneční soustavě obíhají po eliptických drahách kolem Slunce. Zhruba 99,866 % celkové hmotnosti sluneční soustavy tvoří
Struktura proteinů. - testík na procvičení. Vladimíra Kvasnicová
Struktura proteinů - testík na procvičení Vladimíra Kvasnicová Mezi proteinogenní aminokyseliny patří a) kyselina asparagová b) kyselina glutarová c) kyselina acetoctová d) kyselina glutamová Mezi proteinogenní
Projekt Společně pod tmavou oblohou
Projekt Společně pod tmavou oblohou Kometa ISON a populace Oortova oblaku Jakub Černý Společnost pro MeziPlanetární Hmotu Dynamicky nové komety Objev komety snů? Vitali Nevski (Bělorusko) a Artyom Novichonok
Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D.
Proteiny Genová exprese 2013 Doc. MVDr. Eva Bártová, Ph.D. Bílkoviny (proteiny), 15% 1g = 17 kj Monomer = aminokyseliny aminová skupina karboxylová skupina α -uhlík postranní řetězec Znát obecný vzorec
1. ročník Počet hodin
SOUSTAVY LÁTEK A JEJICH SLOŽENÍ rozdělení přírodních látek a vlastnosti chemických látek soustavy látek a jejich složení STAVBA ATOMU historie pohledu na atom složení a struktura atomu stavba atomu VELIČINY
Ledové měsíce velkých planet a možnost života na nich
Ledové měsíce velkých planet a možnost života na nich Ondřej Čadek Katedra geofyziky MFF UK Obrázek: NASA Život na Zemi autotrofie na bázi fotosyntézy heterotrofie rostliny, řasy, mnoho druhů bakterií
Čas a jeho průběh. Časová osa
Čas a jeho průběh zobrazování času hodiny - kratší časové intervaly sekundy, minuty, hodiny kalendář delší časové intervaly dny, týdny, měsíce, roky časová osa velmi dlouhé časové intervaly století, tisíciletí,
NAŠE ZEMĚ VE VESMÍRU Zamysli se nad těmito otázkami
NAŠE ZEMĚ VE VESMÍRU Zamysli se nad těmito otázkami Jak se nazývá soustava, ve které se nachází planeta Země? Sluneční soustava Která kosmická tělesa tvoří sluneční soustavu? Slunce, planety, družice,
Projekt realizovaný na SPŠ Nové Město nad Metují
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 Přírodovědné předměty Hana Gajdušková 1 Viry
MERKUR. 4. lekce Bára Gregorová a Ondrej Kamenský
MERKUR 4. lekce Bára Gregorová a Ondrej Kamenský SLUNEČNÍ SOUSTAVA PŘEDSTAVENÍ Slunci nejbližší planeta Nejmenší planeta Sluneční soustavy Společně s Venuší jediné planety bez měsíce/měsíců Má nejmenší
Vznik a vývoj života. Mgr. Petra Prknová
Vznik a vývoj života Mgr. Petra Prknová Vznik Země a života teorie: 1. stvoření kreační hypotézy vznik Země a života působením nadpřirozených sil 2. vědecké teorie vznik Země a života na základě postupných
PŘÍČINY ZMĚNY KLIMATU
PŘÍČINY ZMĚNY KLIMATU 2010 Ing. Andrea Sikorová, Ph.D. 1 Příčiny změny klimatu V této kapitole se dozvíte: Jaké jsou změny astronomických faktorů. Jaké jsou změny pozemského původu. Jaké jsou změny příčinou
CHEMIE ŽIVOTNÍHO PROSTŘEDÍ I. (06) Biogeochemické cykly
Centre of Excellence CHEMIE ŽIVOTNÍHO PROSTŘEDÍ I Environmentální procesy (06) Biogeochemické cykly Ivan Holoubek RECETOX, Masaryk University, Brno, CR holoubek@recetox. recetox.muni.cz; http://recetox.muni
kyslík ve vodě CO 2 (vápenato-)uhličitanová rovnováha alkalita
kyslík ve vodě CO 2 ph (vápenato-)uhličitanová rovnováha alkalita elementární plyny s vodou nereagují, ale rozpouštějí se fyzikálně (N 2, O 2, ) plynné anorganické sloučeniny (CO 2, H 2 S, NH 3 ) s vodou
kyslík ve vodě CO 2 (vápenato-)uhličitanová rovnováha alkalita
kyslík ve vodě CO 2 ph (vápenato-)uhličitanová rovnováha alkalita elementární plyny s vodou nereagují, ale rozpouštějí se fyzikálně (N 2, O 2, ) plynné anorganické sloučeniny (CO 2, H 2 S, NH 3 ) s vodou
Všechny galaxie vysílají určité množství elektromagnetického záření. Některé vyzařují velké množství záření a nazývají se aktivní.
VESMÍR Model velkého třesku předpovídá, že vesmír vznikl explozí před asi 15 miliardami let. To, co dnes pozorujeme, bylo na začátku koncentrováno ve velmi malém objemu, naplněném hmotou o vysoké hustotě
Šablona č. 01. 09 ZEMĚPIS. Výstupní test ze zeměpisu
Šablona č. 01. 09 ZEMĚPIS Výstupní test ze zeměpisu Anotace: Výstupní test je vhodný pro závěrečné zhodnocení celoroční práce v zeměpise. Autor: Ing. Ivana Přikrylová Očekávaný výstup: Žáci píší formou
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 21. 1. 2013 Pořadové číslo 11 1 Merkur, Venuše Předmět: Ročník: Jméno autora:
NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník NÁZEV: VY_32_INOVACE_197_Planety
NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV: VY_32_INOVACE_197_Planety AUTOR: Ing. Gavlas Miroslav ROČNÍK, DATUM: 9., 25.11.2011 VZDĚL. OBOR, TÉMA: Fyzika ČÍSLO PROJEKTU:
KYSLÍKOVÉ DEFICITY - PROJEV NESTABILITY RYBNIČNÍHO EKOSYSTÉMU? Ing. Ivana Beděrková Ing. Zdeňka Benedová doc. RNDr. Libor Pechar, CSc.
KYSLÍKOVÉ DEFICITY - PROJEV NESTABILITY RYBNIČNÍHO EKOSYSTÉMU? Ing. Ivana Beděrková Ing. Zdeňka Benedová doc. RNDr. Libor Pechar, CSc. Úvod do problematiky Fytoplankton=hlavní producent biomasy, na kterém
Jaro 2010 Kateřina Slavíčková
Jaro 2010 Kateřina Slavíčková Biogenní prvky Organismy se liší od anorganického okolí mimo jiné i složením prvků. Některé prvky, které jsou v zemské kůře zastoupeny hojně (např. hliník), organismus buď
NUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
OPAKOVÁNÍ VĚDNÍ OBORY, NEŽIVÁ PŘÍRODA
1. POPIŠ OBRÁZEK ZNÁZORŇUJÍCÍ PRŮBĚH FOTOSYNTÉZY. OPAKOVÁNÍ VĚDNÍ OBORY, NEŽIVÁ PŘÍRODA 1 2. POPIŠ SLOŽENÍ SOUČASNÉ ATMOSFÉRY (uveď, který z plynů v současné atmosféře je znázorněn modrou, žlutou a černou
Otázky a odpovědi. TIENS Kardi krillový olej s rakytníkem řešetlákovým
TIENS Kardi krillový olej s rakytníkem řešetlákovým 1. Co je TIENS Kardi krillový olej s rakytníkem řešetlákovým? TIENS Kardi je výživový doplněk obsahující olej z antarktického krillu, olej z plodů rakytníku
Chemická reaktivita NK.
Chemické vlastnosti, struktura a interakce nukleových kyselin Bi7015 Chemická reaktivita NK. Hydrolýza NK, redukce, oxidace, nukleofily, elektrofily, alkylační činidla. Mutageny, karcinogeny, protinádorově
Přírodní radioaktivita
Přírodní radioaktivita Náš celý svět, naše Země, je přirozeně radioaktivní, a to po celou dobu od svého vzniku. V přírodě můžeme najít několik tisíc radionuklidů, tj. prvků, které se samovolně rozpadají
CZ.1.07/1.5.00/ Digitální učební materiály III/ 2- Inovace a zkvalitnění výuky prostřednictvím ICT
Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28.
Jednotlivé tektonické desky, které tvoří litosférický obal Země
VY_12_INOVACE_122 Krajinná sféra Země { opakování Pro žáky 7. ročníku Člověk a příroda Zeměpis Přírodní obraz Země Červen 2012 Mgr. Regina Kokešová Určeno k opakování a doplnění učiva 6. ročníku Rozvíjí
Modul 02 Přírodovědné předměty
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 Přírodovědné předměty hmota i energie nevznikají,
Ekologie a její obory, vztahy mezi organismy a prostředím
Variace 1 Ekologie a její obory, vztahy mezi organismy a prostředím Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz.
Gymnázium Dr. J. Pekaře Mladá Boleslav. Zeměpis I. ročník PLANETY SLUNEČNÍ SOUSTAVY. Jméno a příjmení: Martin Kovařík. David Šubrt. Třída: 5.
Gymnázium Dr. J. Pekaře Mladá Boleslav Zeměpis I. ročník PLANETY SLUNEČNÍ SOUSTAVY Jméno a příjmení: Martin Kovařík David Šubrt Třída: 5.O Datum: 3. 10. 2015 i Planety sluneční soustavy 1. Planety obecně
Pracovní list č. 3 téma: Povětrnostní a klimatičtí činitelé část 2
Pracovní list č. 3 téma: Povětrnostní a klimatičtí činitelé část 2 Obsah tématu: 1) Vzdušný obal země 2) Složení vzduchu 3) Tlak vzduchu 4) Vítr 5) Voda 1) VZDUŠNÝ OBAL ZEMĚ Vzdušný obal Země.. je směs
VY_32_INOVACE_FY.20 VESMÍR II.
VY_32_INOVACE_FY.20 VESMÍR II. Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Galaxie Mléčná dráha je galaxie, v níž se nachází
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu:
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu: VY_32_INOVACE_04_BUŇKA 1_P1-2 Číslo projektu: CZ 1.07/1.5.00/34.1077
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Vznik vesmíru a naší sluneční soustavy
Země a její stavba Vznik vesmíru a naší sluneční soustavy stáří asi 17 Ga teorie velkého třesku - vznikl z extrémně husté hmoty, která se po explozi začala rozpínat během ranných fází se vytvořily elementární
Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA
Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 7. Interakce DNA/RNA - protein Ivo Frébort Interakce DNA/RNA - proteiny v buňce Základní dogma molekulární biologie Replikace DNA v E. coli DNA polymerasa a
Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje. 26.2.2010 Mgr.
Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje 26.2.2010 Mgr. Petra Siřínková ABIOTICKÉ PODMÍNKY ŽIVOTA SLUNEČNÍ ZÁŘENÍ TEPLO VZDUCH VODA PŮDA SLUNEČNÍ
Co je to CO 2 liga? Víš, co je to CO 2??? Naučil/a jsi se něco nového???
Co je to CO 2 liga? Je to celorepubliková soutěž, která je učena pro týmy 3-10 studentů ve věku cca 13-18 let (ZŠ, SŠ). Zabývá se tématy: klimatické změny, vody, energie a bydlení, jídla, dopravy. Organizátorem
*Základní škola praktická Halenkov * * *VY_32_INOVACE_03_01_03 * *Voda
Základní škola praktická Halenkov VY_32_INOVACE_03_01_03 Voda Číslo projektu CZ.1.07/1.4.00/21.3185 Klíčová aktivita III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Zařazení učiva v rámci ŠVP Chemie
Sluneční soustava OTEVŘÍT. Konec
Sluneční soustava OTEVŘÍT Konec Sluneční soustava Slunce Merkur Venuše Země Mars Jupiter Saturn Uran Neptun Pluto Zpět Slunce Slunce vzniklo asi před 4,6 miliardami let a bude svítit ještě přibližně 7
Vesmír náš domov. Obyvatelná zóna v okolí hvězd. Obyvatelná zóna v okolí hvězd Definice obyvatelné planety. aneb kde všude může být ve vesmíru doma?
Vesmír náš domov aneb kde všude může být ve vesmíru doma? Vladimír Kopecký Jr. Fyzikální ústav Matematicko-fyzikální fakulty Univerzity Karlovy v Praze http://biomolecules.mff.cuni.cz kopecky@karlov.mff.cuni.cz
Abiotický stres - sucho
FYZIOLOGIE STRESU Typy stresů Abiotický (vliv vnějších podmínek) sucho, zamokření, zasolení půd, kontaminace prostředí toxickými látkami, chlad, mráz, vysoké teploty... Biotický (způsobený jiným druhem
BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ
BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ SPOLEČNÉ ZNAKY ŽIVÉHO - schopnost získávat energii z živin pro své životní potřeby - síla aktivně odpovídat na změny prostředí - možnost růstu, diferenciace a reprodukce
Exprese genetické informace
Exprese genetické informace Stavební kameny nukleových kyselin Nukleotidy = báze + cukr + fosfát BÁZE FOSFÁT Nukleosid = báze + cukr CUKR Báze Cyklické sloučeniny obsahující dusík puriny nebo pyrimidiny
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským
VÍTEJTE V BÁJEČNÉM SVĚTĚ VESMÍRU VESMÍR JE VŠUDE KOLEM NÁS!
VÍTEJTE V BÁJEČNÉM SVĚTĚ VESMÍRU VESMÍR JE VŠUDE KOLEM NÁS! Ty, spolu se skoro sedmi miliardami lidí, žiješ na planetě Zemi. Ale kolem nás existuje ještě celý vesmír. ZEMĚ A JEJÍ OKOLÍ Lidé na Zemi vždy
UNIVERZITA KARLOVA V PRAZE 3. LÉKAŘSKÁ FAKULTA (tématické okruhy požadavků pro přijímací zkoušku)
UNIVERZITA KARLOVA V PRAZE 3. LÉKAŘSKÁ FAKULTA (tématické okruhy požadavků pro přijímací zkoušku) B I O L O G I E 1. Definice a obory biologie. Obecné vlastnosti organismů. Základní klasifikace organismů.
Atmosféra, znečištění vzduchu, hašení
Atmosféra, znečištění vzduchu, hašení Zemská atmosféra je vrstva plynů obklopující planetu Zemi, udržovaná na místě zemskou gravitací. Obsahuje přibližně 78 % dusíku a 21 % kyslíku, se stopovým množstvím
B. Hvězdy s větší hmotností spalují termojaderné palivo pomaleji,
HVĚZDY 1. Většina hvězd se při pozorování v průběhu noci pohybuje od A. Západu k východu, B. Východu k západu, C. Severu k jihu, D. Jihu k severu. 2. Ve většině hvězd se energie uvolňuje A. Prudkou rotací
ŽIVOT KOLEM HVĚZD. 7.lekce Jakub Fišák, Magdalena Špoková
ŽIVOT KOLEM HVĚZD 7.lekce Jakub Fišák, Magdalena Špoková Obsah dnešní přednášky O hledání života mimo Zemi, diskuze, zda se mohou nyní nacházet mimozemšťané na Zemi, kde se může vyvinout život. Jak hledat?
Molekulární biotechnologie č.9. Cílená mutageneze a proteinové inženýrství
Molekulární biotechnologie č.9 Cílená mutageneze a proteinové inženýrství Gen kódující jakýkoliv protein lze izolovat z přírody, klonovat, exprimovat v hostitelském organismu. rekombinantní protein purifikovat
ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv
Urbanová Anna ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv strukturní rysy mrna proces degradace každá mrna v
ČLOVĚK A ROZMANITOST PŘÍRODY VESMÍR A ZEMĚ. GRAVITACE
ČLOVĚK A ROZMANITOST PŘÍRODY VESMÍR A ZEMĚ. GRAVITACE Sluneční soustava Vzdálenosti ve vesmíru Imaginární let fotonovou raketou Planety, planetky Planeta (oběžnice) ve sluneční soustavě je takové těleso,
NEŽIVÁ PŘÍRODA. Anotace: Materiál je určen k výuce věd ve 3. ročníku ZŠ. Seznamuje žáky se složkami neživé přírody a jejich tříděním.
NEŽIVÁ PŘÍRODA Anotace: Materiál je určen k výuce věd ve 3. ročníku ZŠ. Seznamuje žáky se složkami neživé přírody a jejich tříděním. Neživá příroda mezi neživou přírodu patří voda, vzduch, nerosty, horniny,
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT
ZŠ a MŠ Slapy, Slapy 34, 391 76 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Vzdělávací materiál: Powerpointová prezentace ppt. Jméno autora: Mgr. Soňa Růžičková Datum vytvoření: 9. červenec 2013
Ekosystém. tok energie toky prvků biogeochemické cykly
Ekosystém tok energie toky prvků biogeochemické cykly Ekosystém se sestává z abiotického prostředí a biotické složky (společenstva) a jejich vzájemných interakcí. Ekosystém si geograficky můžeme definovat
VESMÍR, SLUNEČNÍ SOUSTAVA
VESMÍR, SLUNEČNÍ SOUSTAVA Anotace: Materiál je určen k výuce přírodovědy v 5. ročníku ZŠ. Seznamuje žáky se základními informacemi o vesmíru a sluneční soustavě a jejich zkoumání. Vesmír také se mu říká
Kroužek pro přírodovědecké talenty I lekce 3 SLUNEČNÍ SOUSTAVA
Kroužek pro přírodovědecké talenty - 2018 I lekce 3 SLUNEČNÍ SOUSTAVA Sluneční soustava - Proč Sluneční soustava? - Co to je - obecně? - Z čeho se skládá? Sluneční soustava inventura: 1. Slunce jediná
Geologie kvartéru. Jaroslav Kadlec. Geofyzikální ústav AV ČR, v. v. i. Laboratoř geomagnetizmu. tel. 267 103 334 kadlec@ig.cas.cz
Geologie kvartéru Jaroslav Kadlec Geofyzikální ústav AV ČR, v. v. i. Laboratoř geomagnetizmu tel. 267 103 334 kadlec@ig.cas.cz http://www.ig.cas.cz/geomagnetika/kadlec Maximální rozšíření kontinentálního
C1200 Úvod do studia biochemie 4.2 Velké cykly prvků. OpVK CZ.1.07/2.2.00/
C1200 Úvod do studia biochemie 4.2 Velké cykly prvků OpVK CZ.1.07/2.2.00/15.0233 Petr Zbořil Biochemické cykly prvků Velké cykly prvků jako zobecnění přeměn látek při popisu jejich koloběhu Země jako superorganismus
STAVBA ZEMĚ. Mechanismus endogenních pochodů
STAVBA ZEMĚ Mechanismus endogenních pochodů SLUNEČNÍ SOUSTAVA Je součástí Mléčné dráhy Je vymezena prostorem, v němž se pohybují tělesa spojená gravitací se Sluncem Stáří Slunce je odhadováno na 5,5 mld.
Deriváty karboxylových kyselin, aminokyseliny, estery
Deriváty karboxylových kyselin, aminokyseliny, estery Zpracovala: Ing. Štěpánka Janstová 29.1.2012 Určeno pro 9. ročník ZŠ V/II,EU-OPVK,42/CH9/Ja Přehled a využití derivátů organických kyselin, jejich
Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 Přírodovědné předměty 1 2 chemického složení
Jak najdeme a poznáme planetu, kde by mohl být život?
Společně pro výzkum, rozvoj a inovace - CZ/FMP.17A/0436 Jak najdeme a poznáme planetu, kde by mohl být život? Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Mendelova univerzita v Brně, Laboratoř metalomiky
Oligobiogenní prvky bývají běžnou součástí organismů, ale v těle jich již podstatně méně (do 1%) než prvků makrobiogenních.
1 (3) CHEMICKÉ SLOŢENÍ ORGANISMŮ Prvky Stejné prvky a sloučeniny se opakují ve všech formách života, protože mají shodné principy stavby těla i metabolismu. Např. chemické děje při dýchání jsou stejné
VZNIK ZEMĚ. Obr. č. 1
VZNIK ZEMĚ Země je 3. planeta (v pořadí od Slunce) sluneční soustavy, která vznikala velice složitým procesem a její utváření je úzce spjato s postupným a dlouho trvajícím vznikem celého vesmíru. Planeta
Gymnázium, Brno, Elgartova 3
Gymnázium, Brno, Elgartova 3 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: GE Vyšší kvalita výuky Číslo projektu: CZ.1.07/1.5.00/34.0925 Autor: Mgr. Hana Křivánková Téma:
Téma 3: Voda jako biotop mořské biotopy
KBE 343 Hydrobiologie pro terrestrické biology JEN SCHEMATA, BEZ FOTO! Téma 3: Voda jako biotop mořské biotopy Proč moře? Děje v moři a nad mořem rozhodují o klimatu pevnin Produkční procesy v moři ovlivňují
ŠKOLNÍ VZDĚLÁVACÍ PROGRAM
Vyučovací předmět : Období ročník : Učební texty : Přírodopis 3. období 9. ročník Danuše Kvasničková, Ekologický přírodopis pro 9. ročník ZŠ a nižší ročníky víceletých gymnázií, nakl. Fortuna Praha 1998
Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).
Typy nukleových kyselin Existují dva typy nukleových kyselin (NA, z anglických slov nucleic acid): deoxyribonukleová (DNA); ribonukleová (RNA). DNA je lokalizována v buněčném jádře, RNA v cytoplasmě a