DATABÁZOVÉ SYSTÉMY. Metodický list č. 1
|
|
- Eva Dušková
- před 9 lety
- Počet zobrazení:
Transkript
1 Metodický list č. 1 Cíl: Cílem předmětu je získat přehled o možnostech a principech databázového zpracování, získat v tomto směru znalosti potřebné pro informačního manažera. Databázové systémy, databázové zpracování, postavení databáze v informačním systému Co je databáze, 3vrstvá architektura Postavení systému řízení báze dat Služby SŘBD, požadavky na databázový systém Databázové jazyky Organizace dat Typy záznamů a záznamy Atributy, domény atributů Vztahy mezi záznamy Datové typy, základní datové typy, proč je rozeznávat: Vymezení, kontrola Možné operace Efektivní implementace Význam, praktické užití Relační databáze Charakteristika relačního databázového modelu, základní pojmy Co jsou atomická pole Výhody relačního modelu Historie, současnost a perspektivy Ukázka Moderní objektově-relační databáze Omezení základního relačního databázového modelu Vývoj v možnostech organizace dat: Nové datové typy Složité struktury dat Objektová identita Typová hierarchie Služby pro objektově orientovaný vývoj aplikací Ukázky, příklady užití 1
2 Metodický list č. 2 Objektové principy v databázích, objektové databáze Co jsou objektové principy obecně Dělba zodpovědností zapouzdření, interface objektů Typová hierarchie generalizace, specializace, dědičnost, polymorfismus, overloading Stav objektu atributy Chování objektu metody Důvody pro volbu objektově orientované databáze Aplikační oblasti Produkty Objektové obálky vrstvy mezi relační databází a objektově orientovanou aplikací Služby objektové obálky Výhody tohoto přístupu Nevýhody tohoto přístupu Multi-dimenzionální databáze Charakteristika multi-dimenzionální organizace dat Přednosti pro aplikační oblasti Náklady Ukázky 2
3 Metodický list č. 3 Strukturovaná, semi-strukturovaná a nestrukturovaná data Možnosti vyhledávání a další služby Informační hodnota jednotlivých typů dat XML formát, jeho užití a aplikace v databázích Co je XML formát Výhody XML formátu, sféry užití Specifika XML jako způsobu organizace dat databáze Přístupy k řešení: XML jako exprtní/importní formát Nativní XML databáze Specifika vyhledávání v XML databázi Procvičení XML struktury na konkrétním příkladu Fulltextová data Charakteristika struktury Vyhledávání ve fulltextových databázích Ukázky Mutimediální data Vyhledávání v multimediálních datech Závislost na typu dat Podpůrné struktury 3
4 Metodický list č. 4 Postavení databáze při vedení projektu informačního systému Vazba návrhu databáze na ostatní části informačního systému Konzistence složek Časové hledisko, stabilita a flexibilita Výlučnost databázového návrhu Potenciál databáze jako paměti organizace 3 fáze návrhu databáze: Konceptuální model, důvody pro jeho vytvoření, metody, personální zajištění Logické databázové schéma, užití CASE nástroje Výhody kvalifikovaného použití CASE nástroje Otázky dokumentace Schéma implementace, možnosti a důvody k jeho ovlivňování, personální zajištění Řízení kvality databázového schématu Znaky kvalitního návrhu Věrnost odrazu reality flexibilita k novým požadavkům Srozumitelnost možnosti přidaného užití Návrhové vzory výhody jejich užití Normalizace databáze, denormalizace Údržba kvality databázového schématu Personální a organizační zajištění Dokumentace Architektura databázových aplikací Databázová, aplikační, prezentační vrstva Úlohy, služby a zodpovědnosti jednotlivých vrstev Klient server Služby databázového serveru Technické nároky a optimalizace databázového zpracování Volba technologie, portabilita Personální zajištění, kvalifikační nároky Outsourcing 4
5 Metodický list č. 5 Business Intelligence - architektura Produkční databáze (TPS), jejich charakteristika Datové pumpy (ETL) Varianta s data stagging Datový sklad charakteristika Relační model Multi-dimenzionální model Datová tržiště Výhody a nevýhody integrace datového skladu z datových tržišť Operativní úložiště Jako integrující prvek Pro zpřístupnění aktuálních dat Reporting Organizace tvorby a obtíže šíření Manažerské aplikace OLAP nástroje Datamining Hledání shluků, rozhodovací stromy, neuronové sítě Náklady investiční a personální požadavky Systémy pro podporu rozhodování Expertní systémy Vedení projektu Business Intelligence Úvodní analýza Náklady, přínosy Analýza produkčních systémů integrační design Modularita řešení Otázky kompatibility produktů Úloha metadat při implementaci datových pump Datová tržiště Režimy replikace Otázka integrace nezávislých tržišť Aplikační možnosti Business Intelligence Příklady, diskuse konkrétních možností 5
6 Metodický list č. 6 Databáze jako informační zdroj pro manažera Rutinní služby Funkce dotazování Klientské nástroje Organizační zjištění bezpečného přístupu manažera k datům Dovednosti dotazování Jednoduché dotazy Agregační dotazy, porovnání s OLAP nástroji Ukázky složitějších dotazů Kombinace office nástrojů Tabulkový kalkulátor a databáze Úlohy, které lze lépe řešit v tabulkovém kalkulátoru Textový procesor a databáze Tvorba reportů Informační služba reportů Uživatelská tvorba reportu Shrnutí předmětu Organizační, personální a technické otázky databází v informačním systému Vhodnost určitého databázového systému pro danou aplikační oblast Databáze jako zdroj přidaných informací 6
Obsah. Kapitola 1. Kapitola 2. Kapitola 3. Úvod 9
Obsah Úvod 9 Kapitola 1 Business Intelligence, datové sklady 11 Přechod od transakčních databází k analytickým..................... 13 Kvalita údajů pro analýzy................................................
Databáze Bc. Veronika Tomsová
Databáze Bc. Veronika Tomsová Databázové schéma Mapování konceptuálního modelu do (relačního) databázového schématu. 2/21 Fyzické ik schéma databáze Určuje č jakým způsobem ů jsou data v databázi ukládána
Business Intelligence
Business Intelligence Josef Mlnařík ISSS Hradec Králové 7.4.2008 Obsah Co je Oracle Business Intelligence? Definice, Od dat k informacím, Nástroj pro operativní řízení, Integrace informací, Jednotná platforma
Marketingová komunikace. 2. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK1aPH/N9KMK1bPH (um1a1ph/um1b1ph)
Marketingová komunikace Kombinované studium Skupina N9KMK1aPH/N9KMK1bPH (um1a1ph/um1b1ph) 2. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Minulé soustředění úvod
Informační systémy 2008/2009. Radim Farana. Obsah. Obsah předmětu. Požadavky kreditového systému. Relační datový model, Architektury databází
1 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení 2008/2009 Radim Farana 1 Obsah Požadavky kreditového systému. Relační datový model, relace, atributy,
Databáze II. 1. přednáška. Helena Palovská palovska@vse.cz
Databáze II 1. přednáška Helena Palovská palovska@vse.cz Program přednášky Úvod Třívrstvá architektura a O-R mapování Zabezpečení dat Role a přístupová práva Úvod Co je databáze Mnoho dat Organizovaných
Business Intelligence nástroje a plánování
Business Intelligence nástroje a plánování pro snadné reportování a vizualizaci Petr Mlejnský Business Intelligence pro reporting, analýzy a vizualizaci Business Intelligence eporting Dashboardy a vizualizace
Databázové systémy BIK-DBS
Databázové systémy BIK-DBS Ing. Ivan Halaška katedra softwarového inženýrství ČVUT FIT Thákurova 9, m.č. T9:311 ivan.halaska@fit.cvut.cz Stránka předmětu: https://edux.fit.cvut.cz/courses/bi-dbs/parttime/start
Objektově orientované databáze. Miroslav Beneš
Objektově orientované databáze Miroslav Beneš Obsah přednášky Motivace Vlastnosti databázových systémů Logické datové modely Nevýhody modelů založených na záznamech Co potřebujeme modelovat? Identifikace
Dolování v objektových datech. Ivana Rudolfová
Dolování v objektových datech Ivana Rudolfová Relační databáze - nevýhody První normální forma neumožňuje vyjádřit vztahy A je podtypem B nebo vytvořit struktury typu pole nebo množiny SQL omezení omezený
Manuscriptorium jako základ pro virtuální badatelské prostředí
Manuscriptorium jako základ pro virtuální badatelské prostředí Obsahová dimenze versus technické moduly Jindřich Marek Zdeněk Uhlíř Národní knihovna ČR Definice pojmů virtuální badatelské prostředí množina
ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ
ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ Podle toho, zda informační systém funguje na operativní, taktické nebo strategické řídicí úrovni, můžeme systémy rozdělit do skupin. Tuto pyramidu
MBI - technologická realizace modelu
MBI - technologická realizace modelu 22.1.2015 MBI, Management byznys informatiky Snímek 1 Agenda Technická realizace portálu MBI. Cíle a principy technického řešení. 1.Obsah portálu - objekty v hierarchiích,
Infor Performance management. Jakub Urbášek
Infor Performance management Jakub Urbášek Agenda prezentace Stručně o produktu Infor PM 10 Komponenty Infor PM - PM OLAP a PM Office Plus Reporting Analýza Plánování / operativní plánování Infor Performance
Zkušenosti s Business Intelligence ve veřejném sektoru České republiky
Zkušenosti s Business Intelligence ve veřejném sektoru České republiky Slovak Business Intelligence Day 2006 Jan Pour Katedra IT, VŠE Praha pour@vse.cz, http://nb.vse.cz/~pour Snímek 1 Zkušenosti s BI
RELAČNÍ DATABÁZE. Cíl:
Cíl: Cílem tohoto předmětu je získat praktické znalosti a dovednosti v oblasti relačních databází, jakož i seznámit se s novými trendy v objektově relačních a objektových databázích. Podstatná část je
Ing. Roman Danel, Ph.D. 2010
Datový sklad Ing. Roman Danel, Ph.D. 2010 Co je to datový sklad a kdy se používá? Pojmem datový sklad (anglicky Data Warehouse) označujeme zvláštní typ databáze, určený primárně pro analýzy dat v rámci
GIS a Business Intelligence
GIS pre územnú samosprávu GIS a Business Intelligence (pohled ze strany GIS) Rudolf Richter, BERIT services s.r.o. 1 Východiska pro rozhodování Data existují, ale jsou fragmentována v různorodých produkčních
TM1 vs Planning & Reporting
R TM1 vs Planning & Reporting AUDITOVATELNOST? ZABEZPEČENÍ? SDÍLENÍ? KONSOLIDACE? PROPOJITELNOST???? TM1?? COGNOS PLANNING IBM COGNOS 8 PLANNING Cognos Planning Podpora plánovacího cyklu Jednoduchá tvorba
Úvod... 1 Otázky k zamyšlení... 4
Obsah Předmluva.................................................... XIII Seznam obrázků.............................................. XXIII Seznam tabulek................................................
Ukládání a vyhledávání XML dat
XML teorie a praxe značkovacích jazyků (4IZ238) Jirka Kosek Poslední modifikace: $Date: 2014/12/04 19:41:24 $ Obsah Ukládání XML dokumentů... 3 Ukládání XML do souborů... 4 Nativní XML databáze... 5 Ukládání
Marketingová komunikace. 2. a 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3aph)
Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3aph) 2. a 3. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Co nás čeká: 2. soustředění 16.1.2009
Základy databází. O autorech 17 PRVNÍ ČÁST. KAPITOLA 1 Začínáme 19
3 Obsah Novinky v tomto vydání 10 Význam základních principů 11 Výuka principů nezávisle na databázových produktech 12 Klíčové pojmy, kontrolní otázky, cvičení, případové studie a projekty 12 Software,
Business Intelligence
Business Intelligence Skorkovský KAMI, ESF MU Principy BI zpracování velkých objemů dat tak, aby výsledek této akce manažerům pomohl k rozhodování při řízení procesů výsledkem zpracování musí být relevantní
Platforma Microsoft zajistila společnosti ISS nový finanční analytický systém
Microsoft Windows Server Platforma Microsoft zajistila společnosti ISS nový finanční analytický systém Přehled Země: Česká Republika Odvětví: Facility services Profil zákazníka: ISS WORLD Czech Republic
Představuje. Technický Informační Systém nové generace
Představuje Technický Informační Systém nové generace Nový náhled na položky Sjednocení typů položek - položky nejsou striktně dělené na vyráběné a nakupované. Do tohoto typu je zahrnuté i nakupované a
Datová kvalita základ úspěšného BI. RNDr. Ondřej Zýka, Profinit
Datová kvalita základ úspěšného BI RNDr. Ondřej Zýka, Profinit 1.6.2012 Datová exploze Snižování nákladů o Zdvojnásobení objemu podnikových dat každé dva roky o Konkurenční tlak o Ekonomická krize o V
Databázové systémy.
Databázové systémy palovska@vse.cz Další zdroje k předmětu http://nb.vse.cz/~palovska/uds http://nb.vse.cz/~palovska/uds/uds.ppt http://nb.vse.cz/~palovska/uds/tskripta.zip spíše k bakalářskému základu
Databázové systémy. 10. přednáška
Databázové systémy 10. přednáška Business Intelligence Poprvé byl termín BI použit Gartnerem a dále pak popularizován Howardem Dresnerem jako: proces zkoumání doménově strukturovaných informací za účelem
Analýza a modelování dat 2. přednáška. Helena Palovská
Analýza a modelování dat 2. přednáška Helena Palovská Databázové modely Způsoby logické organizace dat hierarchický síťový relační objektový (objektově-relační) multidimenzionální Historie databázových
Novell Identity Management. Jaromír Látal Datron, a.s.
Novell Identity Management Jaromír Látal Datron, a.s. 19.4.2012 1 Identity management základní vlastnosti Jednoduché a rychlé poskytování uživatelských účtů Samoobslužné funkce pro uživatele Snadný návrh
Základy business intelligence. Jaroslav Šmarda
Základy business intelligence Jaroslav Šmarda Základy business intelligence Business intelligence Datový sklad On-line Analytical Processing (OLAP) Kontingenční tabulky v MS Excelu jako příklad OLAP Dolování
Úvodní přednáška. Význam a historie PIS
Úvodní přednáška Význam a historie PIS Systémy na podporu rozhodování Manažerský informační systém Manažerské rozhodování Srovnávání, vyhodnocování, kontrola INFORMACE ROZHODOVÁNÍ organizace Rozhodovacích
Řešení datové kvality prostřednictvím Master Data Managementu v prostředí České pošty s.p.
Řešení datové kvality prostřednictvím Master Data Managementu v prostředí České pošty s.p. Ing. Jiří Barták Vedoucí odboru BI SAS Roadshows 2017 Ovládejte a chraňte svá data v době digitální transformace
Databázové systémy. Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz
Databázové systémy Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz Vývoj databázových systémů Ukládání dat Aktualizace dat Vyhledávání dat Třídění dat Výpočty a agregace 60.-70. léta Program Komunikace Výpočty
Management informačních systémů. Název Information systems management Způsob ukončení * přednášek týdně
Identifikační karta modulu v. 4 Kód modulu Typ modulu profilující Jazyk výuky čeština v jazyce výuky Management informačních systémů česky Management informačních systémů anglicky Information systems management
Archivace relačních databází
Archivace relačních databází Možnosti, formát SIARD, nástroje, tvorba, prohlížení, datové výstupy Martin Rechtorik 30.11.2018 Archivace relačních databází 1. Možnosti archivace relačních databází 2. Formát
Nerelační databázové modely. Helena Palovská
Nerelační databázové modely Helena Palovská palovska@vse.cz Různé modely pro databázovou strukturu databázové modely 1960 SŘBD hierarchický, síťový relační 1970 1980 hierarchické, síťové relační objektový
Modelování procesů s využitím MS Visio.
Modelování procesů s využitím MS Visio jan.matula@autocont.cz Co je to modelování procesů? Kreslení unifikovaných či standardizovaných symbolů, tvarů a grafů, které graficky znázorňují hlavní, řídící nebo
Datová věda (Data Science) akademický navazující magisterský program
Datová věda () akademický navazující magisterský program Reaguje na potřebu, kterou vyvolala rychle rostoucí produkce komplexních, obvykle rozsáhlých dat ve vědě, v průmyslu a obecně v hospodářských činnostech.
Vývoj moderních technologií při vyhledávání. Patrik Plachý SEFIRA spol. s.r.o. plachy@sefira.cz
Vývoj moderních technologií při vyhledávání Patrik Plachý SEFIRA spol. s.r.o. plachy@sefira.cz INFORUM 2007: 13. konference o profesionálních informačních zdrojích Praha, 22. - 24.5. 2007 Abstrakt Vzhledem
10. Datové sklady (Data Warehouses) Datový sklad
10. Datové sklady (Data Warehouses) Datový sklad komplexní data uložená ve struktuře, která umožňuje efektivní analýzu a dotazování data čerpána z primárních informačních systémů a dalších zdrojů OLAP
2. Modelovací jazyk UML 2.1 Struktura UML 2.1.1 Diagram tříd 2.1.1.1 Asociace 2.1.2 OCL. 3. Smalltalk 3.1 Jazyk 3.1.1 Pojmenování
1. Teoretické základy modelování na počítačích 1.1 Lambda-kalkul 1.1.1 Formální zápis, beta-redukce, alfa-konverze 1.1.2 Lambda-výraz jako data 1.1.3 Příklad alfa-konverze 1.1.4 Eta-redukce 1.2 Základy
4IT218 Databáze. 4IT218 Databáze
4IT218 Databáze Osmá přednáška Dušan Chlapek (katedra informačních technologií, VŠE Praha) 4IT218 Databáze Osmá přednáška Normalizace dat - dokončení Transakce v databázovém zpracování Program přednášek
Data v informačních systémech
Data v informačních systémech Vladimíra Zádová, KIN 6. 5. 2015 Obsah přednášky informační systémy (IS) vztah dat a informačních systémů databáze, databázový systém základní dělení IS, trendy pojmy (terminologie)
Profitabilita klienta v kontextu Performance management
IBM Technical specialist team Pre Sale 26/10/2010 Profitabilita klienta v kontextu Performance management Co všechno řadíme do PM? Automatická data Běžný reporting Pokročilé statistické modely Včera What
<Insert Picture Here> Na co se můžete s Oracle BI těšit
Na co se můžete s Oracle BI těšit Tomáš Pospíšil, Oracle Czech Olomouc, 6.3.2014 Oracle BI Ukázka Oracle BI Možnosti platformy Oracle Business
BI v rámci IS/ICT komponenty BI architektura. Charakteristika dat a procesů v IS/ICT. Datové sklady ukládání dat návrh datového skladu
BI v rámci IS/ICT komponenty BI architektura Charakteristika dat a procesů v IS/ICT Datové sklady ukládání dat návrh datového skladu BI CRM ERP SCM Aplikace pro podporu základních řídících a administrativních
Systémy pro podporu. rozhodování. 2. Úvod do problematiky systémů pro podporu. rozhodování
1 Systémy pro podporu rozhodování 2. Úvod do problematiky systémů pro podporu rozhodování 2 Připomenutí obsahu minulé přednášky Rozhodování a jeho počítačová podpora Manažeři a rozhodování K čemu počítačová
Databázové systémy úvod
Databázové systémy úvod Michal Valenta Katedra softwarového inženýrství FIT České vysoké učení technické v Praze c Michal Valenta, 2012 BI-DBS, ZS 2012/13 https://edux.fit.cvut.cz/courses/bi-dbs/ Michal
Okruhy z odborných předmětů
VYŠŠÍ ODBORNÁ ŠKOLA INFORMAČNÍCH STUDIÍ A STŘEDNÍ ŠKOLA ELEKTROTECHNIKY, MULTIMÉDIÍ A INFORMATIKY Novovysočanská 280/48, 190 00 Praha 9 Pracoviště VOŠ: Pacovská 350/4, 140 00 Praha 4 Okruhy z odborných
3 zdroje dat. Relační databáze EIS OLAP
Zdroje dat 3 zdroje dat Relační databáze EIS OLAP Relační databáze plochá dvourozměrná tabulková data OLTP (Online Transaction Processing) operace selekce projekce spojení průnik, sjednocení, rozdíl dotazování
Integrace informačních systémů ve Fakultní nemocnici Brno v rámci projektu ENIS II
Integrace informačních systémů ve Fakultní nemocnici Brno v rámci projektu ENIS II 10.6.2013 Agenda Kdo je ARTiiS GROUP a.s.? Fakultní nemocnice Brno a projekt Expertní NIS Cíle. Rizika. Řešení. Jaká je
VZOROVÝ STIPENDIJNÍ TEST Z INFORMAČNÍCH TECHNOLOGIÍ
VZOROVÝ STIPENDIJNÍ TEST Z INFORMAČNÍCH TECHNOLOGIÍ 1. Dědičnost v OOP umožňuje: a) dědit vlastnosti od jiných tříd a dále je rozšiřovat b) dědit vlastnosti od jiných tříd, rozšiřovat lze jen atributy
CPM/BI a jeho návaznost na podnikové informační systémy. Martin Závodný
CPM/BI a jeho návaznost na podnikové informační systémy Martin Závodný Agenda Význam CPM/BI Aplikace CPM/BI Projekty CPM/BI Kritické body CPM/BI projektů Trendy v oblasti CPM/BI Diskuse Manažerské rozhodování
Metody tvorby ontologií a sémantický web. Martin Malčík, Rostislav Miarka
Metody tvorby ontologií a sémantický web Martin Malčík, Rostislav Miarka Obsah Reprezentace znalostí Ontologie a sémantický web Tvorba ontologií Hierarchie znalostí (D.R.Tobin) Data jakékoliv znakové řetězce
BI & DWH & MIS nástroj 2. generace
Pavel Seibert KOMIX s.r.o. Avenir Business Park Radlická 751/113e, 158 00 Praha 5 tel.: +420 257 288 211 Úvod Pro oblast Business Intelligence je na trhu celá řada osvědčených produktů osvědčených firem
Geografické informační systémy p. 1
Geografické informační systémy Slajdy pro předmět GIS Martin Hrubý hrubym @ fit.vutbr.cz Vysoké učení technické v Brně Fakulta informačních technologií, Božetěchova 2, 61266 Brno akademický rok 2004/05
Snadný a efektivní přístup k informacím
Snadný a efektivní přístup k informacím 12. 4. 2010 Hradec Králové Petr Mlejnský Siemens Protection IT Solutions and Services, notice s.r.o.2010. / Copyright All rights notice reserved. Agenda Přístup
Datové sklady a nástroje Business Intelligence
Datové sklady a nástroje Business Intelligence Typizovaný projektový záměr 18. 9.2009 (verze 1.0) OBSAH: 1 ZÁKLADNÍ CHARAKTERISTIKA PROJEKTU...2 2 VÝCHODISKA...4 2.1 Vize projektu... 4 2.2 Cíle projektu...
Zkušenosti z nasazení a provozu systémů SIEM
Zkušenosti z nasazení a provozu systémů SIEM ict Day Kybernetická bezpečnost Milan Šereda, 2014 Agenda Souhrn, co si má posluchač odnést, přínosy: Představení firmy Co je to SIEM a k čemu slouží Problematika
Aplikace je program určený pro uživatele. Aplikaci je možné rozdělit na části:
Aplikace Aplikace je program určený pro uživatele. Aplikaci je možné rozdělit na části: prezentační vrstva vstup dat, zobrazení výsledků, uživatelské rozhraní, logika uživatelského rozhraní aplikační vrstva
Srovnání SQL serverů. Škálovatelnost a výkon. Express Workgroup Standard Enterprise Poznámky. Počet CPU 1 2 4 bez limitu Obsahuje podporu
Srovnání SQL serverů Škálovatelnost a výkon Počet CPU 1 2 4 bez limitu Obsahuje podporu RAM 1 GB 3 GB bez limitu bez limitu vícejádrových (multicore) procesorů 64-bit podpora Windows on Windows (WOW) WOW
Chytrá systémová architektura jako základ Smart Administration
Chytrá systémová architektura jako základ Smart Administration Ing. Petr Škvařil, Pardubický kraj Dipl. Ing.Zdeněk Havelka PhD. A-21 s.r.o. 1 Nepříjemné dotazy Jsme efektivní v provozování veřejné správy?
Tovek Tools. Tovek Tools jsou standardně dodávány ve dvou variantách: Tovek Tools Search Pack Tovek Tools Analyst Pack. Připojené informační zdroje
jsou souborem klientských desktopových aplikací určených k indexování dat, vyhledávání informací, tvorbě různých typů analýz a vytváření přehledů a rešerší. Jsou vhodné pro práci s velkým objemem textových
Databázové systémy úvod
Databázové systémy úvod Michal Valenta Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze c Michal Valenta, 2016 BI-DBS, LS 2015/16 https://edux.fit.cvut.cz/courses/bi-dbs/
PODNIKOVÁ INFORMATIKA
GÁLA Libor POUR Jan TOMAN Prokop PODNIKOVÁ INFORMATIKA Obsah O autorech... 11 Na úvod jak chápat tuto knihu... 13 Část I: Principy podnikové informatiky... 17 1. Informatika, aplikovaná informatika, podniková
Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování
Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování Aplikace IS/ICT BI SCM e-business ERP ERP CRM II e-business Aplikace pro podporu základních řídících a administrativních operací 1 Informační
Architektura softwarových systémů
Architektura softwarových systémů Ing. Jiří Mlejnek Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jiří Mlejnek, 2011 jiri.mlejnek@fit.cvut.cz Softwarové
Databázové systémy úvod
Databázové systémy úvod Michal Valenta Katedra softwarového inženýrství FIT České vysoké učení technické v Praze c Michal Valenta, 2011 BI-DBS, ZS 2011/12 https://edux.fit.cvut.cz/courses/bi-dbs/ Michal
ARBES BI MODERNÍ ŘEŠENÍ pro podporu strategického, taktického a operativního řízení.
ARBES BI MODERNÍ ŘEŠENÍ pro podporu strategického, taktického a operativního řízení www.arbes.com ARBES BI BUSINESS INTELLIGENCE Většina firem dnes již ví, jak důležité je mít relevatní informace ve správný
STÁTNÍ POKLADNA. Integrovaný informační systém Státní pokladny (IISSP)
POKLADNA Integrovaný informační systém Státní pokladny (IISSP) Ing. Miroslav Kalousek ministr financí Praha 17.12.2012 Page 1 Integrovaný informační systém Státní pokladny (IISSP) Centrální systém účetních
Systémy pro podporu rozhodování. Datové sklady, OLAP
Systémy pro podporu rozhodování Datové sklady, OLAP 1 4. Datový management: sklady, přístup a vizualizace Principy MSS Nové koncepce Objektové databáze Inteligentní databáze Datové sklady On-line analytické
DATOVÁ ARCHIVACE. Principy datové archivace a její výhody při migraci na SAP HANA. Štěpán Bouda Business Consultant
DATOVÁ ARCHIVACE Principy datové archivace a její výhody při migraci na SAP HANA Štěpán Bouda Business Consultant stepan.bouda@sabris.com KVÍZ Kdo uvažuje o migraci ERP na Suite on SAP HANA? Kdo uvažuje
Efektivní řízení veřejné správy koncepce a SW nástroje společností:
Efektivní řízení veřejné správy koncepce a SW nástroje společností: Ing. Ján Debnár obchodní manažer DYNATECH s.r.o. Ing. Alexander Toloch ředitel ATTN s.r.o. Michal Chmelo obchodní manažer QCM s.r.o.
GIS Libereckého kraje
Funkční rámec Zpracoval: Odbor informatiky květen 2004 Obsah 1. ÚVOD...3 1.1. Vztah GIS a IS... 3 2. ANALÝZA SOUČASNÉHO STAVU...3 2.1. Technické zázemí... 3 2.2. Personální zázemí... 3 2.3. Datová základna...
Vývoj informačních systémů. Přehled témat a úkolů
Vývoj informačních systémů Přehled témat a úkolů Organizace výuky doc. Mgr. Miloš Kudělka, Ph.D. EA 439, +420 597 325 877 homel.vsb.cz/~kud007 milos.kudelka@vsb.cz Přednáška Teorie Praxe Cvičení Diskuze
Specializace Návrhář software na základě analýzy vytváří návrh softwarových aplikací ve formě schémat a diagramů.
Návrhář software Návrhář software na základě analýzy vytváří návrh softwarových aplikací ve formě schémat a diagramů. Odborný směr: Informační technologie Odborný podsměr: nezařazeno do odborného podsměru
Manažerský informační systém pro efektivní řízení zdravotnictví ve Středočeském kraji
Manažerský informační systém pro efektivní řízení zdravotnictví ve Středočeském kraji Josef Vencovský ARBES Technologies, s. r. o. Michal Houštecký ARBES Technologies, s. r. o. Praha, 24. 5. 2013 www.arbes.com
Ing. Petr Kalčev, Ph.D.
Ing. Petr Kalčev, Ph.D. 17.10.2017 24.10.2017 31.10.2017 7.11.2017 14.11.2017 21.11.2017 28.11.2017 5.12.2017 12.12.2017 19.12.2017 Úvod do manažerský informačních systémů Typy informačních systémů Příklady
Obsah. Zpracoval:
Zpracoval: houzvjir@fel.cvut.cz 03. Modelem řízený vývoj. Doménový (business), konceptuální (analytický) a logický (návrhový) model. Vize projektu. (A7B36SIN) Obsah Modelem řízený vývoj... 2 Cíl MDD, proč
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ DATABÁZOVÉ SYSTÉMY ARCHITEKTURA DATABÁZOVÝCH SYSTÉMŮ. Ing. Lukáš OTTE, Ph.D.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ DATABÁZOVÉ SYSTÉMY ARCHITEKTURA DATABÁZOVÝCH SYSTÉMŮ Ing. Lukáš OTTE, Ph.D. Ostrava 2013 Tento studijní materiál vznikl za finanční podpory
Konceptuální modely datového skladu
Vladimíra Zádová Katedra informatiky, TU Liberec, e-mail: vladimira.zadova@tul.cz Abstrakt: Příspěvek je zaměřen na modely datového skladu pro konceptuální úroveň návrhu. Existující modely pro tuto úroveň
Zajištění bezpečného provozu aplikací. odpovídající současným požadavkům
Zajištění bezpečného provozu aplikací odpovídající současným požadavkům Ing. Martin Pavlica 29. listopadu 2011 Vrcholové cíle podnikání a činnosti státních institucí Generovat zisk, dosahovat dlouhodobého
Vývoj informačních systémů. Přehled témat a úkolů
Vývoj informačních systémů Přehled témat a úkolů Organizace výuky doc. Mgr. Miloš Kudělka, Ph.D. EA 439, +420 597 325 877 homel.vsb.cz/~kud007 milos.kudelka@vsb.cz Přednáška Znalosti Schopnosti Cvičení
Analýza a modelování dat. Helena Palovská
Analýza a modelování dat Helena Palovská Analýza a modelování pro SW projekt Strukturovaný přístup Dynamická část (procesy, aktivity, funkce) Statická část (data) Objektově orientovaný přístup use case
PROVÁZÁNÍ ECM/DMS DO INFORMAČNÍCH SYSTÉMŮ STÁTNÍ A VEŘEJNÉ SPRÁVY
PROVÁZÁNÍ ECM/DMS DO INFORMAČNÍCH SYSTÉMŮ STÁTNÍ A VEŘEJNÉ SPRÁVY SYSCOM SOFTWARE Firma vznikla vroce 1994. Zaměřuje se na dodávky komplexních služeb voblasti informačních technologií. Orientuje se zejména
5.15 INFORMATIKA A VÝPOČETNÍ TECHNIKA
5.15 INFORMATIKA A VÝPOČETNÍ TECHNIKA 5. 15. 1 Charakteristika předmětu A. Obsahové vymezení: IVT se na naší škole vyučuje od tercie, kdy je cílem zvládnutí základů hardwaru, softwaru a operačního systému,
Servisně orientovaná architektura Základ budování NGII
Servisně orientovaná architektura Základ budování NGII Jan Růžička Institute of geoinformatics VSB-TU Ostrava 17.listopadu, 70833 Ostrava-Poruba Poruba, jan.ruzicka@vsb.cz NGII NGII složitý propletenec,
GIS jako důležitá součást BI. Jan Broulík, Petr Panec ARCDATA PRAHA, s.r.o.
GIS jako důležitá součást BI Jan Broulík, Petr Panec ARCDATA PRAHA, s.r.o. ARCDATA PRAHA, s.r.o. THE GEOGRAPHIC ADVANTAGE Motto Sladit operační taktiku s organizační strategií Strategie bez taktiky je
Kapitola 1: Úvod. Systém pro správu databáze (Database Management Systém DBMS) Účel databázových systémů
- 1.1 - Kapitola 1: Úvod Účel databázových systémů Pohled na data Modely dat Jazyk pro definici dat (Data Definition Language; DDL) Jazyk pro manipulaci s daty (Data Manipulation Language; DML) Správa
Databáze 2013/2014. Konceptuální model DB. RNDr. David Hoksza, Ph.D.
Databáze 2013/2014 Konceptuální model DB RNDr. David Hoksza, Ph.D. http://siret.cz/hoksza Osnova Organizace Stručný úvod do DB a DB modelování Konceptuální modelování Cvičení - ER modelování Náplň přednášky
Manažerská ekonomika
PODNIKOVÝ MANAGEMENT (zkouška č. 12) Cíl předmětu Získat znalosti zákonitostí úspěšného řízení organizace a přehled o současné teorii a praxi managementu. Seznámit se s moderními manažerskými metodami
Programování a implementace Microsoft SQL Server 2014 databází
M20464 Programování a implementace Microsoft SQL Server 2014 databází Popis: Pětidenní kurz určený všem databázovým specialistům, kteří jsou odpovědni za implementaci databázových objektů a programování
AdventureWorksDW2014 SQL Server Data Tools Multidimenziona lnı model Tabula rnı model Multidimenziona lnı mo d Tabula rnı mo d MS SQL Server 2016 Tabula rnı mo d Azure Analysis Services 16 3.2 Dimenzionální
Datové sklady. Multidimenzionální modelování Modely datového skladu Návrh datového skladu v rámci návrhu IS/ICT. Vladimíra Zádová, KIN, EF, TUL
Datové sklady Multidimenzionální modelování Modely datového skladu Návrh datového skladu v rámci návrhu IS/ICT Multidimenzionální modelování (Multi)dimenzionální modelování speciální technika určená pro
Marketingová komunikace. 1. a 2. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3bph)
Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3bph) 1. a 2. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Co nás čeká I. Úvod do teorie DB systémů
Kritéria hodnocení praktické maturitní zkoušky z databázových systémů
Kritéria hodnocení praktické maturitní zkoušky z databázových systémů Otázka č. 1 Datový model 1. Správně navržený ERD model dle zadání max. 40 bodů teoretické znalosti konceptuálního modelování správné
Databáze v MS ACCESS
1 z 14 19.1.2014 18:43 Databáze v MS ACCESS Úvod do databází, návrh databáze, formuláře, dotazy, relace 1. Pojem databáze Informací se data a vztahy mezi nimi stávají vhodnou interpretací pro uživatele,
Střední průmyslová škola elektrotechnická Praha 10, V Úžlabině 320
Střední průmyslová škola elektrotechnická Praha 10, V Úžlabině 320 M A T U R I T N Í T É M A T A P Ř E D M Ě T U P R O G R A M O V É V Y B A V E N Í Studijní obor: 18-20-M/01 Informační technologie Školní