BI v rámci IS/ICT komponenty BI architektura. Charakteristika dat a procesů v IS/ICT. Datové sklady ukládání dat návrh datového skladu
|
|
- Alžběta Bílková
- před 9 lety
- Počet zobrazení:
Transkript
1 BI v rámci IS/ICT komponenty BI architektura Charakteristika dat a procesů v IS/ICT Datové sklady ukládání dat návrh datového skladu
2 BI CRM ERP SCM Aplikace pro podporu základních řídících a administrativních operací podniku
3 Business Intelligence BI Je sada procesů, aplikací a technologií, jejichž cílem je účinně a účelně podporovat rozhodovací procesy ve firmě Dva pohledy na BI - široký rámec - BI jako jeden z nástrojů vedle / nad DW
4 Nástroje BI Produkční systémy ETL EAI Dočasné úložiště dat Operativní úložiště dat Datový sklad/ datové tržiště OLAP Reporting Manažerské aplikace ( EIS ) Dolování dat Nástroje pro zajištění kvality dat Nástroje pro správu metadat
5 Obecná koncepce architektury BI Zdroj: Novotný, Pour, Slánský: Business Intelligence, Grada 2005
6 Enterprise Application Integration EAI Nástroje využívané ve vrstvě zdrojových systémů Pracují v reálném čase Cíl: integrovat primární informační systémy redukovat počet aplikačních rozhraní hlavně datová integrace
7 Extract, Transformation, Loading Extrakce dat ze zdrojových systémů Zpracování dat Uložení dat Práce v dávkovém režimu
8 DSA (Data Staging Area, dočasné úložiště dat) - Pro uložení dat z produkčních systémů obsahuje neagregovaná aktuální data (do té doby, než jsou uloženy do dalšího úložiště dat - ODS, DW, DM)
9 Sklady provozních dat (ODS - Operational Data Store) Cíl: poskytnutí integrovaného a aktuáln lního pohledu Konzistentní, konsolidovaná, subjektově orientovaná data strukturou jsou obdobná datům v DW, ale na rozdíl od DW mají jen aktuální data ( i agregovaná) pravidelná aktualizace, odpovídají aktuálnímu stavu provozu, obsah dat je měněn po každém nahrání
10 Datový sklad (DW)- definice je subjektově orientovaná, integrovaná, časově variantní a stálá kolekce dat pro podporu rozhodování manažerů subjektová orientace DW je organizován podle hlavních subjektů podniku (zákazníci, prodej, produkt..), ne podle procesů (aplikací) reflektuje potřeby uložení dat pro rozhodování v jedné databázi DW jsou uložena data pouze jednou (např. o produktu, zaměstnanci ) integrovaná do celku jsou vkládána data z různých aplikací - nekonzistentnost, různé formáty integrací těchto dat - prezentace unifikovaného pohledu B. Inmon
11 Datový sklad časově variantní data v DW jsou platná a přesná jen v bodech, ne intervalech času uložení historie dat - hodnoty v časových bodech ( den, měsíc, Q, rok..) v DW vždy dimenze času stálá data v DW nevznikají, nedají se žádnými nástroji měnit aktualizace DW - jen přidávání dat v pravidelných časových intervalech (jako doplněk), integrace přírustků další definice - většinou zahrnují procesy spojené s přístupem k datům z původních zdrojů
12 Datová tržiště (Data Mart) příčiny vytváření pro nejčastější analýzy pro skupinu uživatelů - business process, oddělení vytvoření DM s více agregovanými daty, s menším objemem dat - pro zlepšeníčasu odezvy k poskytování vhodněji strukturovaných dat - z hlediska požadavků nástrojů přístupu pro snazší implementaci pro nižší náklady proti DW pro lepší zaměření koncového uživatele
13 Reporting standardní dotazování jedná se zejména o SQL dotazy v relačním prostředí výstupy standardní předpřipravené dotazy, nepredikovatelné ad hoc dotazy určené zejména pro nižší management
14 EIS původně chápány jako aplikace pro podporu strategického rozhodování vrcholového managementu později pak i pro podporu rozhodování středního managementu a podnikových specialistů. S vývojem dalších aplikací na podporu rozhodování není hranice mezi jimi a OLAP ostrá integrují všechny zdroje dat z transakčních systémů, které jsou důležité pro řízení organizace jako celku postupně integrovány i externí zdroje
15 Data a procesy v IS/ICT
16 IS/ICT - vztahy mezi daty a procesy OLTP ETL OLAP, DM, Operativní data Datové sklady OLAM, EIS
17 Procesy zpracování dotazy/reporting dotazy na to CO je v databázi OLAP PROČ jsou některé fakty pravdivé uživatel generuje hypotézu a OLAP slouží k jejímu ověření je závislý na schopnostech analytika, ten se iterací dostává k výsledku Dolování dat představuje nástroje, které generují hypotézy a pokračují v provádění objevování - bez navádění uživatelem
18 OLAP = Online Analytical Processing def. Definovaná řada principů, které poskytují dimenzionální rámec pro podporu rozhodování. OLAP systémy pracují s analytickými informacemi, primární zdroje dat jsou OLTP systémy, důl. faktor času
19 Základní operace OLAP drill-down, roll-up snížení, zvýšení stupně agregace slicing (selekce), dicing provedenířezu v multidimenzionální databázi pivoting mění úhel pohledu na data ( jedná se o prezentaci obsahu) drill across spojení tabulek faktů přes tabulky dimenzí ( na stejné úrovni granularity) Operace různě kombinovány v jedné i ve více dimenzích ovlivňují podobu datového skladu
20 ROLAP, MOLAP a HOLAP souvisí s uložením dat v OLAP ROLAP (Relational( OLAP) pro práci s relační databází (RDBMS) výhoda: dynamický přístup k detailním informacím v DW nevýhoda při nárustu komplexnosti a objemu databáze výrazné zpomalení odezvy na dotazy; snížení použitelnosti MOLAP (Multidimensional( OLAP) pro práci s multidimenzionální databází výhoda: rychlá odezva na dotaz a velké analytické možnosti nevýhoda: orientace na práci s agregovanými hodnotami bez možnosti zpracování velmi detailních informací. HOLAP (Hybrid OLAP) kombinují přednosti obou technologií. klient OLAP zpracovává relativně malé objemy dat uložené v paměti, výpočty jsou prováděny většinou v reálném čase
21 Dolování dat (Data Mining) Dolování dat je proces výběru, prohledávání a modelování ve velkých objemech dat sloužící k odhalení dříve neznámých vztahů mezi daty za účelem získání obchodní výhody Cíl: obchodní výhoda řešení konkrétního problému nalezení cesty k zlepšení procesu předem definován, na jeho základě připravena data;není jednorázová analýza příprava podnikových procesů - aby umožnily využívání analýz (kontinuálně) a podporovaly zpětné vazby od uživatelů. Zpětné vazby ovlivňují proces sběru dat i definice nových cílů.
22 Dolování dat Není samostatný vědní obor, používané metody patří do statistiky (např. klasifikace, regrese, časovéřady, shlukování, asociační analýza, rozhodovací stromy), umělé inteligence (např. genetické algoritmy, neuronové sítě)...
23 ETL
24 ETL proces extrakce, filtrování, čištění a vkládání ze zdrojových systémů do DW extrakce transformace restrukturalizace dat do podoby odpovídající DW filtrace (odstranění chybných i neúplných záznamů) standardizace dat odstranění nežádoucích atributů denormalizace dat kombinace datových zdrojů vkládání a indexace konzistence dat samých, konzistence s ostatními daty v DW
25 ETL pravidla pro přenos Prosté kopírování Přepočty jednotek Standardizace formátů Odstraňování duplicit v datech z různých zdrojů Rozdělení atributu do několika cíl. atributů ( př. adresa) Slučování atributu do jednoho Odvozování nových atributů (př. datum) Převodní funkce některé použijí pro více atributů, jinde pro atribut samostatná funkce
26 Po přenosu Kontrola kvality a ošetření chybějících údajů Vypuštění záznamů kde chybí Jednotné označení chybějících údajů a upozornění na neúplnost dat Statistika pro každý atribut Rozsah (doména) a četnost hodnot, které může nabývat (lze odhalit chybné hodnoty)
27 Zdroje dat pro DW zdroje důvěryhodnost vše nebo část ( atrib.,..projekce, selekce) porovnat stejné údaje z různých zdrojů (1 DW z různých zdrojů) z hlediska obsahu ( m.j. m, cm, dm) formátu (cena zboží jiná přesnost, m/ž 0/1) významově stejné zdroje jsou různě pojmenovány a naopak
28 Zdroje dat pokr. změny zdrojů během let struktura dat ze stejných zdrojů (archiv a současnost) formálně stejný objekt z více zdrojů ( zákazník: zákazník x potenc. zákazník) četnost přenášení zdrojů
29 Data v IS/ICT
30 OLTP X DW-OLAP Proč DW - nelze přímo z OLTP dat? Třeba: porovnat charakteristiku OLTP dat a OLAP/DM rozdílnost cílů OLTP vypovídají o stavu procesů v organizaci X OLAP/DM = cílem je analýza dat, zkoumání z hlediska více dimenzí potřeba optimalizovat ukládání dat tomu se lépe hodí uložení v DW, popř. ODS
31 Data v OLTP a DW OLTP - operativní data zdroje: zejména aplikace přístup: více současně pracujících uživatelů aktualizace:častá, relativně malých objemů dat Operace INSERT, UPDATE, DELETE dotazy nad daty selektivní ( zejména předpřipravené dotazy) přesnost výstupu - na Kč četnost stejných dotazů - i vícekrát denně ukládání dat strukturovaně - normalizovaná relační databáze nověji objektově relační, objektová databáze požadavky - nekonfliktní zpracování operací, zajištění integrity dat procesní orientace ( stavy procesů, detailní data)
32 Data v OLTP a DW DW zdroje: podnikové OLTP, operativní data + externí data přístup: malé množství specializovaných uživatelů - management aktualizace:řídká - jen přidávání dat ze zdrojů, delšíčasové intervaly dotazy intenzivní na data, složité dotazy, postupná iterace, sumarizace výstupy zaokrouhlené (i na tisíce) Ukládání dat strukturovaně speciálně navržená relační databáze multidimenzionální kostka
33 Organizace dat v DW Založené na RMD Multidimenzionální kostka
34 Multidimenzionální data Příklad 2-dimenzionálního dotazu. Jaký je celkový příjem firmy( př. zabývající se prodejem nemovitostí) v každém městě pro Q 1999 Porovnání reprezentace: 3-atributové relace X 2-dimenzionální matice 8
35 Multidimenzionální data 9
36 Reprezentace multidimenzionálních dat Příklad 3-dimenzionální otázky. Jaký je celkový příjem firmy zabývající se prodejem nemovitostí - za jednotlivé druhy v každém městě, za čtvrtletí 1997 Porovnání reprezentace: 4-atributové relace X 3-dimenzionální kostky 10
37 Multidimenzionální data 4-atributové relace X 3-dimenzionální kostky
38 Reprezentace multidimenzionálních dat Kostka reprezentuje data jako buňky Relace reprezentuje multidimenzionální data ve 2 dimenzích
39
40 Multidimenzionální databáze zobrazení dat ve vícerozměrných polích dimenze = charakteristiky, rysy podstatné z hlediska prováděné analýzy ukazatelé = fakty konkrétní hodnoty prvek v dimenzi - pozice odpovídá hodnotě atributu v relační databázi klasicky dimenze = kategoriální proměnné fakta = numerické hodnoty s rozvojem jiné druhy dat, dimenze nemusí být pouze popisné
41 multidimenzionální model dat logický návrh pomocí RMD konstrukty - fakty, dimenze, atributy dimenze, dimenzionální tabulky jednoatributový klíč (tvoří FK v tabulce faktů) atributy - slouží jako zdroj pro různá omezení daná v dotazech na DW atributy spíše textové jedna dimenze může být ve více hvězdicových schématech většina dimenzí se mění pouze pomalu obdobné vlastnosti jako číselníky (katalog výrobků, údaje o okresech..)
42 tabulka faktů obsahuje ukazatele (míry, metriky) výskyt konkrétní hodnoty závisí na n-tici konkrétních hodnot odpovídajících dimenzí mezi dimenzí a fakty je vztah 1: N mezi dimenzemi nejsou žádné přímé vztahy nejsou mezi nimi žádné funkční závislosti fakty jsou neklíčové atributy v tabulce faktů obvykle jsou numerické, aditivní, představují jisté míry představa faktů jako funkcí- závislost na klíčových atributech, výsledkem jsou hodnoty neklíčové
43 dimenze mohou tvořit hierarchie hierarchie implicitní - pouze zabudována do atributů, ale celá hierarchie je v jednom řádku dimenze explicitní - provedena normalizace tabulek dimenzí
44 Star schéma (hvězdicové schéma)
45
46 (Multi)dimenzionální modelování
47 Základní představa
48 OLTP a DW/OLAP návrh systému - odlišnosti: OLTP DW požadavky - analýza požadavků, návrh, implementace data jsou produktem tohoto systému požadavky uživatelů na tyto DW požadavky je nutné sladit s možnostmi zdrojů dat, ( operativních dat podniku a externích zdrojů)
49 Dimenzionální modelování Požadavky uživatelů Proces návrhu 4 kroky: výběr procesu/ů stanovení granularity výběr dimenzí určení faktů Zdroje dat
50 Stanovení granularity Kritický krok určuje úroveň detailu prioritně nejjemnější granularita je spojena s ukazateli v tabulce faktů určuje základní dimenzionalitu (primární dimenze) stanovuje kandidáty faktů
51 Výběr dimenzí Primární dimenze předurčeny v předchozím kroku přidané dimenze, degenerované dimenze
52 Identifikace faktů V kroku 2 určeny možné fakty musí být pravdivé k zrnitosti aditivní fakty fakty, které mohou být sumarizovány přes všechny dimenze semiaditivní fakty fakty, které nejsou aditivní alespoň k jedné dimenzi neaditivní fakty nejsou aditivní k žádné dimenzi
53 fakty Neaditivní jsou ty fakty, k jejichž výpočtu je třeba podílu ( při roll up nelze sumarizovat; rozdíl suma podílu x podíl sum) třeba uložit čitatele a jmenovatele zvlášť neaditivní je i jednotková cena, denní stav účtu... tedy fakty, které vyjadřují statickou úroveň
54 Dimenze čas výskyt téměř vždy v DW, DM, lépe explicitně den, den v týdnu, měsíci, týden, q, rok (prodejní sezóna, konec týdne,..) (lze více hierarchií - kalendářní a fiskální vyjádření) někdy pro analýzu i část dne - pak je lépe přidat dimenzi čas
55 Budování DW centralizovaný datový sklad - Bill Inmon data warehouse jako množina data martů - Ralph Kimball
56
57 Centralizovaný datový sklad - Bill Inmon Podnikový data warehouse obsahuje detailní, atomicky integrovaná historická data
58 Sjednocené data marty - Ralph Kimball Data warehouse není nic víc než sjednocení všech konzistentních data martů
59 Projekt DW informační strategie potřeba DW Značné investice, čas Zdůvodnění projektu co je DW, přístupy k budování Seznam strategických aktivit, které chceme řešit ( cíle X zdroje dat) Podpora projektu managementem Personální zajištění UŽIVATELÉ definice klíčových uživatelů, JSOU ÚČASTNÍKY PROJEKTU vč. odpovědnosti za úspěšnost implementace Dodavatelé technologií, řešení včetně referencí o nich, outsourcing Velikost DW vede k výběru ICT osoba odpovědná za projekt uvnitř organizace, která propaguje, znalá problematiky; GARANT PROJEKTU Z ŘAD UŽIVATELŮ NE IT
60 konkurenční výhoda Užitečnost DW potenciální velká návratnost investic množství zdrojů pro Dw, náklady mohou kolísat zvýšení produktivity při rozhodování - vytvářením integrované subjektově orientované historické konzistentní databáze z více nekompatibilních systémů DW představuje jediný konzistentní pohled na podnik Omyly DW = úložiště pro všechna data firmy; DW pouze data pro čtení; DW požadují relační DB; DW vždy veliké
61 Problémy DW podcenění zdrojů pro vkládání dat podhodnoceníčasu na vkládání Skryté problémy zdrojů chybovost, nepřesnost (změna zdrojů během let) Požadovaná data nejsou podchycena modifikovat OLTP či tvorba nového Růst požadavků koncových uživatelů díky učení se vzniká potřeba změn: jemnější granularita, lepší prostředky; růst požadavků na pracovníky IT vlastnictví dat drahá udržování dlouhá doba trvání projektu složitost integrace Důležitá dokumentace OLTP procesů, ale i BI (OLAP, ETL,DW)
62 Problémy DW podcenění kapacity pro vkládání dat (loading) podhodnocení času požadovaného pro extrakci, čištění a vkládání dat do DW ( předpokladá se až 80% času na celý vývoj) dobré nástroje mohou urychlit
Zdroje informací v organizaci IS/ICT BI v rámci IS/ICT historie architektura OLTP x DW ukládání dat
Zdroje informací v organizaci IS/ICT BI v rámci IS/ICT historie architektura OLTP x DW ukládání dat Vladimíra Zádová BI CRM ERP SCM Aplikace pro podporu základních řídících a administrativních operací
Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování
Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování Aplikace IS/ICT BI SCM e-business ERP ERP CRM II e-business Aplikace pro podporu základních řídících a administrativních operací 1 Informační
Návrh datového skladu z hlediska zdrojů
Návrh datového skladu Návrh datového skladu OLTP ETL OLAP, DM Operativní data Datové sklady Zdroje dat Transformace zdroj - cíl Etapy realizace 1 Návrh datového skladu Hlavní úskalí analýzy a návrhu spočívá
Datové sklady. Multidimenzionální modelování Modely datového skladu Návrh datového skladu v rámci návrhu IS/ICT. Vladimíra Zádová, KIN, EF, TUL
Datové sklady Multidimenzionální modelování Modely datového skladu Návrh datového skladu v rámci návrhu IS/ICT Multidimenzionální modelování (Multi)dimenzionální modelování speciální technika určená pro
Datový sklad. Datový sklad
Datový sklad Postavení v rámci IS/ICT Specifika návrhu Modelování Datový sklad POSTAVENÍ NÁVRH Postavení datového skladu (DW) v IS/ICT z hlediska aplikací jako součást Business Intelligence z hlediska
Business Intelligence
Business Intelligence BI jako součást IS/ICT IS/ICT BI v rámci IS/ICT BI architektura, komponenty procesy v BI data v IS/ICT organizace dat v DW (Multi)dimenzionální modelování budování DW Pro další informace
Business Intelligence
Business Intelligence Skorkovský KAMI, ESF MU Principy BI zpracování velkých objemů dat tak, aby výsledek této akce manažerům pomohl k rozhodování při řízení procesů výsledkem zpracování musí být relevantní
Základy business intelligence. Jaroslav Šmarda
Základy business intelligence Jaroslav Šmarda Základy business intelligence Business intelligence Datový sklad On-line Analytical Processing (OLAP) Kontingenční tabulky v MS Excelu jako příklad OLAP Dolování
3 zdroje dat. Relační databáze EIS OLAP
Zdroje dat 3 zdroje dat Relační databáze EIS OLAP Relační databáze plochá dvourozměrná tabulková data OLTP (Online Transaction Processing) operace selekce projekce spojení průnik, sjednocení, rozdíl dotazování
10. Datové sklady (Data Warehouses) Datový sklad
10. Datové sklady (Data Warehouses) Datový sklad komplexní data uložená ve struktuře, která umožňuje efektivní analýzu a dotazování data čerpána z primárních informačních systémů a dalších zdrojů OLAP
Ing. Roman Danel, Ph.D. 2010
Datový sklad Ing. Roman Danel, Ph.D. 2010 Co je to datový sklad a kdy se používá? Pojmem datový sklad (anglicky Data Warehouse) označujeme zvláštní typ databáze, určený primárně pro analýzy dat v rámci
DATABÁZOVÉ SYSTÉMY. Metodický list č. 1
Metodický list č. 1 Cíl: Cílem předmětu je získat přehled o možnostech a principech databázového zpracování, získat v tomto směru znalosti potřebné pro informačního manažera. Databázové systémy, databázové
AdventureWorksDW2014 SQL Server Data Tools Multidimenziona lnı model Tabula rnı model Multidimenziona lnı mo d Tabula rnı mo d MS SQL Server 2016 Tabula rnı mo d Azure Analysis Services 16 3.2 Dimenzionální
kapitola 2 Datové sklady, OLAP
Tomáš Burger, burger@fit.vutbr.cz kapitola 2 Datové sklady, OLAP Získávání znalostí z databází IT-DR-3 / ZZD Co je to datový sklad A data warehouse is a subjectoriented, integrated, time-variant and nonvolatile
Databáze Bc. Veronika Tomsová
Databáze Bc. Veronika Tomsová Databázové schéma Mapování konceptuálního modelu do (relačního) databázového schématu. 2/21 Fyzické ik schéma databáze Určuje č jakým způsobem ů jsou data v databázi ukládána
T T. Think Together 2012. Martin Závodný THINK TOGETHER. Business Intelligence systémy Business Intelligence systems
Česká zemědělská univerzita v Praze Provozně ekonomická fakulta Doktorská vědecká konference 6. února 2012 T T THINK TOGETHER Think Together 2012 Business Intelligence systémy Business Intelligence systems
Bu B sin i e n s e s s I n I te t l e lig i en e c n e c Skorkovský KA K M A I, E S E F MU
Business Intelligence Skorkovský KAMI, ESF MU Principy BI zpracování velkých objemů dat tak, aby výsledek této akce manažerům pomohl k rozhodování při řízení procesů výsledkem zpracování musí být relevantní
Podnikové informační systémy Jan Smolík
Podnikové informační systémy Jan Smolík Zobecněné schéma aplikační architektury Vlastníci, management Aplikační architektura podnikové informatiky Business Intelligence, manažerské aplikace Obchodní partneři
Informační systémy 2006/2007
13 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení Informační systémy 2006/2007 Ivan Kedroň 1 Obsah Analytické nástroje SQL serveru. OLAP analýza
Obsah. Úvod do problematiky. Datový sklad. Proces ETL. Analýza OLAP
Petr Jaša Obsah Úvod do problematiky Data vs. informace Operační vs. analytická databáze Relační vs. multidimenzionální model Datový sklad Důvody pro budování datových skladů Definice, znaky Schéma vazeb
Datové sklady. Ing. Jan Přichystal, Ph.D. 1. listopadu 2011. PEF MZLU v Brně
PEF MZLU v Brně 1. listopadu 2011 Úvod Intenzivní nasazení informačních technologií způsobuje hromadění obrovské spousty nejrůznějších údajů. Příkladem mohou být informace z obchodování s cennými papíry
CPM/BI a jeho návaznost na podnikové informační systémy. Martin Závodný
CPM/BI a jeho návaznost na podnikové informační systémy Martin Závodný Agenda Význam CPM/BI Aplikace CPM/BI Projekty CPM/BI Kritické body CPM/BI projektů Trendy v oblasti CPM/BI Diskuse Manažerské rozhodování
Základní informace o co se jedná a k čemu to slouží
Základní informace o co se jedná a k čemu to slouží založené na relačních databází transakční systémy, které jsou určeny pro pořizování a ukládání dat v reálném čase (ERP, účetní, ekonomické a další podnikové
Databázové systémy. 10. přednáška
Databázové systémy 10. přednáška Business Intelligence Poprvé byl termín BI použit Gartnerem a dále pak popularizován Howardem Dresnerem jako: proces zkoumání doménově strukturovaných informací za účelem
Business Intelligence. Adam Trčka
Business Intelligence Adam Trčka 09:00 11:30: BI v kostce Navrhněme si sklad Ukázka BI Datamining 12:30 14:30: Pokračování kurzu 14:30 15:00: Q&A Agenda Co se dnes dovíme? Data informace znalost Business
Data v informačních systémech
Data v informačních systémech Vladimíra Zádová, KIN 6. 5. 2015 Obsah přednášky informační systémy (IS) vztah dat a informačních systémů databáze, databázový systém základní dělení IS, trendy pojmy (terminologie)
Obsah. Kapitola 1. Kapitola 2. Kapitola 3. Úvod 9
Obsah Úvod 9 Kapitola 1 Business Intelligence, datové sklady 11 Přechod od transakčních databází k analytickým..................... 13 Kvalita údajů pro analýzy................................................
METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1
METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 DOLOVÁNÍ V DATECH (DATA MINING) OBJEVUJE SE JIŽ OD 60. LET 20. ST. S ROZVOJEM POČÍTAČOVÉ TECHNIKY DEFINICE PROCES VÝBĚRU, PROHLEDÁVÁNÍ A MODELOVÁNÍ
NÁSTROJE BUSINESS INTELLIGENCE
NÁSTROJE BUSINESS INTELLIGENCE Milena Tvrdíková VŠB Technická univerzita Ostrava, Ekonomická fakulta, Katedra informatiky v ekonomice, Sokolská 33, 701021 Ostrava1, ČR, milena.tvrdikova@vsb.cz Abstrakt
Datová kvalita základ úspěšného BI. RNDr. Ondřej Zýka, Profinit
Datová kvalita základ úspěšného BI RNDr. Ondřej Zýka, Profinit 1.6.2012 Datová exploze Snižování nákladů o Zdvojnásobení objemu podnikových dat každé dva roky o Konkurenční tlak o Ekonomická krize o V
Infor Performance management. Jakub Urbášek
Infor Performance management Jakub Urbášek Agenda prezentace Stručně o produktu Infor PM 10 Komponenty Infor PM - PM OLAP a PM Office Plus Reporting Analýza Plánování / operativní plánování Infor Performance
Business Intelligence
Business Intelligence Josef Mlnařík ISSS Hradec Králové 7.4.2008 Obsah Co je Oracle Business Intelligence? Definice, Od dat k informacím, Nástroj pro operativní řízení, Integrace informací, Jednotná platforma
Informační systémy 2008/2009. Radim Farana. Obsah. Obsah předmětu. Požadavky kreditového systému. Relační datový model, Architektury databází
1 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení 2008/2009 Radim Farana 1 Obsah Požadavky kreditového systému. Relační datový model, relace, atributy,
Marketingová komunikace. 2. a 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3aph)
Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3aph) 2. a 3. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Co nás čeká: 2. soustředění 16.1.2009
Data Warehouses. Jaroslav Bayer 1. Fakulta informatiky Masarykova univerzita
PV005 Služby počítačových sítí: Data Warehouses Jaroslav Bayer 1 Fakulta informatiky Masarykova univerzita 28. 11. 2012 1 CVT FI MU, B310, email: xbayer@fi.muni.cz Jaroslav Bayer (FI MU) PV005 Služby počítačových
Jak velká jsou? Obchodní analytici FB velké datové sady BI = business intelligence. OLAP = Online Analytical Processing. DWH = Data Warehouse
název B = Bajt KB = Kilobajt MB = Megabajt GB = Gigabajt TB = Terabajt PB = Petabajt EB = Exabajt ZB = Zettabajt YB = Yottabajt velikost 8 b 2^10 B 2^20 B 2^30 B 2^40 B 2^50 B 2^60 B 2^70 B 2^80 B Jak
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ FACULTY OF INFORMATION TECHNOLOGY ÚSTAV INFORMAČNÍCH SYSTÉMŮ DEPARTMENT OF INFORMATION SYSTEMS ANALÝZA VEŘEJNĚ
Zkušenosti s Business Intelligence ve veřejném sektoru České republiky
Zkušenosti s Business Intelligence ve veřejném sektoru České republiky Slovak Business Intelligence Day 2006 Jan Pour Katedra IT, VŠE Praha pour@vse.cz, http://nb.vse.cz/~pour Snímek 1 Zkušenosti s BI
Marketingová komunikace. 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3bph)
Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3bph) 3. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Zdroje Studijní materiály Heleny Palovské
Databázové systémy. Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz
Databázové systémy Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz Vývoj databázových systémů Ukládání dat Aktualizace dat Vyhledávání dat Třídění dat Výpočty a agregace 60.-70. léta Program Komunikace Výpočty
DATABÁZOVÉ SYSTÉMY. Vladimíra Zádová, KIN, EF TUL - DBS
DATABÁZOVÉ SYSTÉMY Současné aplikace IS/ICT Informační systémy a databázové systémy Databázová technologie Informační systémy Aplikační architektura Vlastníci, management Business Intelligence, manažerské
PV005 Služby počítačových sítí: Data Warehouses
PV005 Služby počítačových sítí: Data Warehouses Jaroslav Bayer 1 Fakulta informatiky Masarykova univerzita 26. 11. 2015 1 CVT FI MU, B310, email: xbayer@fi.muni.cz Jaroslav Bayer (FI MU) PV005 Služby počítačových
Architektury Informačních systémů. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/
Architektury Informačních systémů Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Nutné pojmy Co je to informační systém? Jaké oblasti zahrnuje? Jaká je vazba IS na podnikovou strategii?
Konceptuální modely datového skladu
Vladimíra Zádová Katedra informatiky, TU Liberec, e-mail: vladimira.zadova@tul.cz Abstrakt: Příspěvek je zaměřen na modely datového skladu pro konceptuální úroveň návrhu. Existující modely pro tuto úroveň
Analýza a návrh datového skladu pro telekomunikační společnost. Bc. Josef Jurák
Analýza a návrh datového skladu pro telekomunikační společnost Bc. Josef Jurák Diplomová práce 2006 ABSTRAKT Business Intelligence a Data warehouse jsou základní prostředky pro podporu rozhodování, které
Datová věda (Data Science) akademický navazující magisterský program
Datová věda () akademický navazující magisterský program Reaguje na potřebu, kterou vyvolala rychle rostoucí produkce komplexních, obvykle rozsáhlých dat ve vědě, v průmyslu a obecně v hospodářských činnostech.
Multidimenzionální pohled na zdravotnické prostředí. INMED Petr Tůma
Multidimenzionální pohled na zdravotnické prostředí INMED - 21.11.2003 Petr Tůma Koncepce multid pohledu Poskytování péče probíhá v multidimenzionálním světě; dimenze tento svět mapují podobně jako souřadnice
4IT218 Databáze. 4IT218 Databáze
4IT218 Databáze Osmá přednáška Dušan Chlapek (katedra informačních technologií, VŠE Praha) 4IT218 Databáze Osmá přednáška Normalizace dat - dokončení Transakce v databázovém zpracování Program přednášek
Analýza a modelování dat. Přednáška 8
Analýza a modelování dat Přednáška 8 OLAP, datová kostka, dotazování nad kostkou Motivace většina DB relační zaznamenání vztahů pomocí logicky provázaných tabulek jakou mají velmi často vztahy povahu vztah
Základy databází. O autorech 17 PRVNÍ ČÁST. KAPITOLA 1 Začínáme 19
3 Obsah Novinky v tomto vydání 10 Význam základních principů 11 Výuka principů nezávisle na databázových produktech 12 Klíčové pojmy, kontrolní otázky, cvičení, případové studie a projekty 12 Software,
Databáze. datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek
Databáze datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek 980103 Jan Novak Dlouha 5 Praha 1 9945371 100.00 100.00 980105 Jan Novak Dlouha 5 Praha 1 9945371 1500.00 1600.00 980106
ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ
ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ Podle toho, zda informační systém funguje na operativní, taktické nebo strategické řídicí úrovni, můžeme systémy rozdělit do skupin. Tuto pyramidu
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
Business Intelligence a datové sklady
Business Intelligence a datové sklady Ing Jan Přichystal, PhD Mendelova univerzita v Brně 2 prosince 2014 Ing Jan Přichystal, PhD Úvod Intenzivní nasazení informačních technologií způsobuje hromadění obrovské
Moderní přístupy tvorby datových skladů
Mendelova univerzita v Brně Provozně ekonomická fakulta Moderní přístupy tvorby datových skladů Diplomová práce Vedoucí práce: Ing. Jan Přichystal, Ph.D. Bc. Luboš Bednář Brno, 2010 Rád bych touto cestou
Možnosti analýzy podnikových dat
Možnosti analýzy podnikových dat Business Data Analyses Possibilities Bc. Dagmar Pokorná Diplomová práce 2010 UTB ve Zlíně, Fakulta aplikované informatiky, 2010 4 ABSTRAKT Dnešní doba je charakterizována
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
Architektury Informačních systémů. Jaroslav Žáček
Architektury Informačních systémů Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Nutné pojmy Co je to informační systém? Jaké oblasti zahrnuje? Jaká je vazba IS na podnikovou strategii?
Multidimenzionální modelování v rámci analýzy a návrhu IS/ICT
Multidimenzionální modelování v rámci analýzy a návrhu IS/ICT Abstrakt: Vladimíra Zádová Katedra informatiky, TU Liberec, e-mail: vladimira.zadova@tul.cz Strukturovaný a objektový přístup jsou klasické
Aplikace IS, outsourcing, systémová integrace. Jaroslav Žáček
Aplikace IS, outsourcing, systémová integrace Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Kontext Dodavatelé Strategická Zákazníci Taktická Operativní Kategorie ERP - zaměřeno na řízení
Úvodní přednáška. Význam a historie PIS
Úvodní přednáška Význam a historie PIS Systémy na podporu rozhodování Manažerský informační systém Manažerské rozhodování Srovnávání, vyhodnocování, kontrola INFORMACE ROZHODOVÁNÍ organizace Rozhodovacích
výskyt události reakce na událost
ARCHITEKTURA DATOVÉHO SKLADU A PŘÍSTUP K DATŮM V REÁLNÉM ČASE Dušan Kajzar Slezská univerzita v Opavě, Filozoficko - přírodovědecká fakulta, Ústav informatiky, Bezručovo nám. 13, 746 00 Opava, e-mail:
Architektura informačních systémů. - dílčí architektury - strategické řízení taktické řízení. operativní řízení a provozu. Globální architektura
Dílčí architektury Informační systémy - dílčí architektury - EIS MIS TPS strategické řízení taktické řízení operativní řízení a provozu 1 Globální Funkční Procesní Datová SW Technologická HW Aplikační
PODNIKOVÁ INFORMATIKA
GÁLA Libor POUR Jan TOMAN Prokop PODNIKOVÁ INFORMATIKA Obsah O autorech... 11 Na úvod jak chápat tuto knihu... 13 Část I: Principy podnikové informatiky... 17 1. Informatika, aplikovaná informatika, podniková
BIG DATA. Nové úlohy pro nástroje v oblasti BI. 27. listopadu 2012
BIG DATA Nové úlohy pro nástroje v oblasti BI 27. listopadu 2012 AGENDA 1. Úvod 2. Jaké jsou potřeby? 3. Možné řešení 2 Jaké jsou potřeby? Dopady Analýza dat potřeba nového přístupu Jak na nestrukturovaná
Analýza a modelování dat. Přednáška 9
Analýza a modelování dat Přednáška 9 Další dotazování nad kostkou Rozšíření SQL99 rozšíření SQL99 (minulá přednáška): seskupovací operátory za GROUP BY CUBE statistiky dle řezů ROLLUP statistiky dle rolování
Systémy pro podporu rozhodování. Datové sklady, OLAP
Systémy pro podporu rozhodování Datové sklady, OLAP 1 4. Datový management: sklady, přístup a vizualizace Principy MSS Nové koncepce Objektové databáze Inteligentní databáze Datové sklady On-line analytické
Advanced SQL Modeling in RDBMS - SQL Spreadsheet part1. Your Organization (Line #1)
Advanced SQL Modeling in RDBMS - SQL Spreadsheet part1 2005-12-31 1.12.2009 Your Daniel Name Vojtek Jakub Your Valčík Title Your Organization (Line #1) Your Organization Query Languages (Line #2) I Agenda
Systémy pro podporu. rozhodování. 2. Úvod do problematiky systémů pro podporu. rozhodování
1 Systémy pro podporu rozhodování 2. Úvod do problematiky systémů pro podporu rozhodování 2 Připomenutí obsahu minulé přednášky Rozhodování a jeho počítačová podpora Manažeři a rozhodování K čemu počítačová
Získávání znalostí z databází. Alois Kužela
Získávání znalostí z databází Alois Kužela Obsah související pojmy datové sklady, získávání znalostí asocianí pravidla 2/37 Úvod získávání znalostí z dat, dolování (z) dat, data mining proces netriviálního
Modelování a návrh datových skladů
Modelování a návrh datových skladů Doc. Ing. B. Miniberger, CSc. BIVŠ Obsah 1. Přednáška I. Základy modelování datových skladů (DW) 2. Přednáška II. ETL procesy III. Data Mining IV. Kvalita dat a BI Literatura
Profitabilita klienta v kontextu Performance management
IBM Technical specialist team Pre Sale 26/10/2010 Profitabilita klienta v kontextu Performance management Co všechno řadíme do PM? Automatická data Běžný reporting Pokročilé statistické modely Včera What
Snadný a efektivní přístup k informacím
Snadný a efektivní přístup k informacím 12. 4. 2010 Hradec Králové Petr Mlejnský Siemens Protection IT Solutions and Services, notice s.r.o.2010. / Copyright All rights notice reserved. Agenda Přístup
Okruhy ke státní závěrečné zkoušce z vedlejší specializace Informatika v řízení podniku
Okruhy ke státní závěrečné zkoušce z vedlejší specializace Informatika v řízení podniku Aplikace auditních postupů Vyberte si jeden typ auditu (útvaru, projektu, aplikace, procesu, ) a na něm demonstrujte
Pattern Datový sklad. RNDr. Ondřej Zýka
Pattern Datový sklad RNDr. Ondřej Zýka 1 Datový sklad Speciální logické modely Dimenzionální modelování Speciální datové servery Teradata Sloupcové ukládání dat OLAP databáze Speciální oblast Data Managementu
ANALÝZA NÁKUPNÍHO KOŠÍKU SEMINÁŘ
ANALÝZA NÁKUPNÍHO KOŠÍKU SEMINÁŘ 18.11.2012 Radim Tvardek, Petr Bulava, Daniel Mašek U&SLUNO a.s. I Sadová 28 I 702 00 Ostrava I Czech Republic PŘEDPOKLADY PRO ANALÝZU NÁKUPNÍHO KOŠÍKU 18.11.2012 Daniel
Integrace dat. RNDr. Ondřej Zýka
Integrace dat RNDr. Ondřej Zýka 1 Obsah Kategorizace integračních přístupů Kroky integrace a řešení problematických stavů Master Data Management 2 2 Datová integrace Synchronní Akceptovaný požadavek na
Relační databázový model. Vladimíra Zádová, KIN, EF, TUL- DBS
Relační databázový model Databázové (datové) modely základní dělení klasické databázové modely relační databázový model relační databázový model Základní konstrukt - relace relace, schéma relace atribut,
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ FACULTY OF BUSINESS AND MANAGEMENT ÚSTAV INFORMATIKY INSTITUTE OF INFORMATICS ŘEŠENÍ BUSINESS INTELLIGENCE BUSINESS INTELLIGENCE
PostgreSQL jako platforma pro datové sklady
PostgreSQL jako platforma pro datové sklady Vratislav Beneš benes@optisolutions.cz 1. Co to jsou datové sklady? 2. Požadavky na datový sklady 3. Technické řešení datového skladu 4. PostgreSQL a datové
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV INFORMATIKY FACULTY OF BUSINESS AND MANAGEMENT INSTITUTE OF INFORMATICS ANALYTICKÉ SLUŽBY BUSINESS INTELLIGENCE VE
Ing. Petr Kalčev, Ph.D.
Ing. Petr Kalčev, Ph.D. 17.10.2017 24.10.2017 31.10.2017 7.11.2017 14.11.2017 21.11.2017 28.11.2017 5.12.2017 12.12.2017 19.12.2017 Úvod do manažerský informačních systémů Typy informačních systémů Příklady
Operátory ROLLUP a CUBE
Operátory ROLLUP a CUBE Dotazovací jazyky, 2009 Marek Polák Martin Chytil Osnova přednášky o Analýza dat o Agregační funkce o GROUP BY a jeho problémy o Speciální hodnotový typ ALL o Operátor CUBE o Operátor
GIS jako důležitá součást BI. Jan Broulík, Petr Panec ARCDATA PRAHA, s.r.o.
GIS jako důležitá součást BI Jan Broulík, Petr Panec ARCDATA PRAHA, s.r.o. ARCDATA PRAHA, s.r.o. THE GEOGRAPHIC ADVANTAGE Motto Sladit operační taktiku s organizační strategií Strategie bez taktiky je
Datové sklady a možnosti analýzy a reportování dat ve výuce
Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky Vyšší odborná škola informačních služeb v Praze Datové sklady a možnosti analýzy a reportování dat ve výuce Autor bakalářské práce: David
Využití IT nástrojů pro měření a řízení výkonnosti. Michal Kroutil 22.11.2005
Využití IT nástrojů pro měření a řízení výkonnosti Michal Kroutil 22.11.2005 1 Obsah 1 2 3 4 5 Představení Ciber Novasoft Klíčové ukazatele výkonnosti Zdroje dat SAP SEM Implementační projekt 2 Představení
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Úvod do problematiky Doc. RNDr. Iveta Mrázová,
Chytrá systémová architektura jako základ Smart Administration
Chytrá systémová architektura jako základ Smart Administration Ing. Petr Škvařil, Pardubický kraj Dipl. Ing.Zdeněk Havelka PhD. A-21 s.r.o. 1 Nepříjemné dotazy Jsme efektivní v provozování veřejné správy?
GIS a Business Intelligence
GIS pre územnú samosprávu GIS a Business Intelligence (pohled ze strany GIS) Rudolf Richter, BERIT services s.r.o. 1 Východiska pro rozhodování Data existují, ale jsou fragmentována v různorodých produkčních
Informace v organizaci. Vladimíra Zádová, KIN, EF TUL
Informace v organizaci Globální a informační strategie IS/ICT současné aplikace Způsoby tvorby a provozu aplikací Bezpečnost Řízení podnikové informatiky Inovace státní správa, veřejná správa, banky dodavatelé
Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence
APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY
NÁVRH MODELU ORACLE BI JAKO NÁSTROJE PRO PODPORU ROZHODOVÁNÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV INFORMATIKY FACULTY OF BUSINESS AND MANAGEMENT INSTITUTE OF INFORMATICS NÁVRH MODELU ORACLE BI JAKO NÁSTROJE PRO
Pilotní projekt implementace Business Intelligence ve studijní agendě VŠE v Praze
Úvod Pilotní projekt implementace Business Intelligence ve studijní agendě VŠE v Praze Ota Novotný, Lukáš Hrnčíř katedra informačních technologií VŠE v Praze email: novotnyo@vse.cz Business Inteligence
Aplikace IS, outsourcing, systémová integrace. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/
Aplikace IS, outsourcing, systémová integrace Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Kontext Dodavatelé Strategická Zákazníci ERP Taktická Operativní Kategorie ERP - zaměřeno na
INFORMAČNÍ SYSTÉMY (IS) Ing. Pavel Náplava Katedra počítačů K336, ČVUT FEL Praha 2004/2005
INFORMAČNÍ SYSTÉMY (IS) Ing. Pavel Náplava Katedra počítačů K336, ČVUT FEL Praha 2004/2005 AGENDA definice IS, zavedení pojmů možnosti a rozdělení typická struktura technologie nasazení praktická ukázka
Dnešní témata Informační systém, informační služba Podnikový informační systém
Dnešní témata Informační systém, informační služba Podnikový informační systém VOŠIS UIM 5 1 Rekapitulace Kde jsou dokumenty? Osobní informační systém Informace v organizaci Veřejné informační systémy
Dobývání znalostí z databází. Databáze. datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek
Databáze datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek 980103 Jan Novak Dlouha 5 Praha 1 9945371 100.00 100.00 980105 Jan Novak Dlouha 5 Praha 1 9945371 1500.00 1600.00 980106
Novinky SQL Serveru 2005 v oblasti Business Intelligence
Novinky SQL Serveru 2005 v oblasti Business Intelligence Seminární práce na předmět Business Intelligence (4IT435) Vypracoval Borek Bernard, leden 2006 1 Abstrakt Microsoft SQL Server 2005 je po mnoha
Využití moderní self-service BI technologie v praxi
Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky Katedra informačních technologií Studijní program: Aplikovaná informatika Obor: Informační systémy a technologie Využití moderní self-service
MBI - technologická realizace modelu
MBI - technologická realizace modelu 22.1.2015 MBI, Management byznys informatiky Snímek 1 Agenda Technická realizace portálu MBI. Cíle a principy technického řešení. 1.Obsah portálu - objekty v hierarchiích,