REFERENČNÍ MODEL ISO/OSI
|
|
- Květa Mašková
- před 9 lety
- Počet zobrazení:
Transkript
1 REFERENČNÍ MODEL ISO/OSI Autoři referenčního modelu ISO/IOSI dospěli k závěru, že hierarchických vrstev, které zajistí fungování sítě, by mělo být sedm. Rozdělili je přitom do dvou velkých bloků po třech vrstvách, mezi kterými je jedna "přizpůsobovací" vrstva. Blok tří spodních vrstev je přitom zaměřen na přenos dat v síti, zatímco blok tří vyšších vrstev je naopak zaměřen na potřeby jednotlivých aplikací a snaží se jim poskytovat potřebnou podporu. Přizpůsobovací vrstva mezi oběma bloky pak má vyrovnávat rozdíly mezi možnostmi bloku nižších vrstev, a potřebami bloku vyšších vrstev. Tento cíl asi nejlépe dokresluje představa, kterou autoři celého referenčního modelu zastávali: předpokládali, že tři nejnižší vrstvy budou v praxi realizovány tzv. veřejnými datovými sítěmi (tj. sítěmi, které někdo provozuje proto, aby mohl pro své zákazníky přenášet jejich data - podobně jako to veřejná telefonní síť dělá s telefonickými hovory). Přitom uživateli takovýchto veřejných datových sítí měly být úplně jiné subjekty, které si nemohly diktovat své podmínky ohledně způsobu fungování datové sítě (proto byla zařazena příslušná přizpůsobovací vrstva). Představa o realizaci datových přenosů prostřednictvím veřejné datové sítě pak ovlivnila i koncepci tří nejnižších vrstev jako takových - ty byly zvoleny tak, aby na ně bylo možné co nejsnáze "napasovat" již tehdy existující standard pro veřejné datové sítě, daný doporučením X.25. Proberme si nyní funkci jednotlivých vrstev referenčního modelu ISO/OSI postupně směrem od nejnižší vrstvy k té nejvyšší. Přitom nebudeme zapomínat na základní pravidlo komunikace mezi hierarchicky uspořádanými vrstvami, které říká, že každá vrstva sama využívá služeb své bezprostředně nižší vrstvy, sama plní určité úkoly (které si lze představit jako "přidanou hodnotu" ke službám nižší vrstvy) a výsledek pak nabízí své bezprostředně vyšší vrstvě jako služby k využití. FYZICKÁ VRSTVA (PHYSICAL LAYER) Úkolem fyzické vrstvy, která jako jediná nemá žádnou bezprostředně nižší vrstvu, je přenos jednotlivých bitů k přímým sousedům (sousedním uzlům, ke kterým vede přímé spojení). Fyzická vrstva se stará o to, aby každý bit byl přenesen korektním způsobem (aby jej příjemce správně rozpoznal a interpretoval), což mj. zahrnuje například otázky kódování, časování, modulace apod. Důležité přitom je, že fyzická vrstva nijak neinterpretuje přenášené bity, tj. nesnaží se jim přiřazovat nějaký význam (takže například nepozná, že nějaký bit je řídící a je třeba součástí něčí adresy, že je určitý bit součástí "čistých" dat apod.).
2 LINKOVÁ VRSTVA (DATA LINK LAYER) Linkové vrstva (někdy též "spojová vrstva") již může ke své činnosti využívat služeb bezprostředně nižší fyzické vrstvy, spočívající v přenosu jednotlivých bitů. Pomocí této služby pak linková vrstva realizuje přenos celých datových bloků, kterým se na této úrovni říká rámce (frames). Znamená to mj., že se tato vrstva musí postarat o správné rozpoznání začátku a konce každého rámce i jeho jednotlivých částí, včetně hlavičky a adres, které jsou v ní obsažené. Důležité je, že podobně jako vrstva fyzická, dokáže vrstva linková přenášet své rámce jen k sousedním uzlům (neboli k uzlům, se kterými má přímé spojení). Nejznámějším protokolem linkové vrstvy pro rozlehlé sítě je zřejmě protokol HDLC a jeho různé odvozeniny. V prostředí lokálních sítí funguje na této úrovni například dobře známý ethernet. SÍŤOVÁ VRSTVA (NETWORK LAYER) Hlavním úkolem síťové vrstvy je tzv. směrování, neboli nalezení vhodné cesty vedoucí od odesilatele dat až k jejich koncovému příjemci. V praxi totiž nemusí být každá dvojice odesilatel/příjemce vždy sousední v tom smyslu, že by mezi nimi existovalo přímé spojení (tj. v "dosahu" linkové vrstvy). Častější je spíše případ, kdy mezi odesilatelem a koncovým příjemce vede cesta pouze přes několik jiných uzlů (přestupních, mezilehlých uzlů), V takovém případě je ale nutné najít potřebnou cestou přes mezilehlé uzly (právě v tom spočívá směrování, anglicky "routing") a potřebný přenos přes mezilehlé uzly fakticky realizovat. Představa vkládání paketů do rámců Také síťová vrstva přenáší data po blocích, kterým se říká pakety (anglicky "packets"), zatímco na úrovni linkové vrstvy se jim říká rámce. Představa fungování je taková, že síťová vrstva v určitém uzlu rozhodne o dalším směru, kterým by měl být konkrétní paket přenesen k některému ze sousedních uzlů. Poté jej předá své linkové vrstvě, která paket vloží do svého rámce a přenese k příslušnému sousednímu uzlu. Zde jej partnerská linková vrstva vybalí a předá datový paket své bezprostředně vyšší síťové vrstvě. Ta rozhodne, kterým směrem by měl být paket dále odeslán a vše se opakuje, dokud datový paket nedorazí ke svému konečnému cíli (viz výše uvedený obrázek).
3 Představa přenosu paketů přes vnitřní uzly sítě TRANSPORTNÍ VRSTVA (TRANSPORT LAYER) Úkolem transportní vrstvy je přizpůsobení možností tří nejnižších vrstev (síťové, linkové a fyzické) představám vyšších vrstev. Konkrétní představy a možnosti se přitom mohou dotýkat různých věcí, ale nejčastěji jde o rozdíly ve spolehlivosti přenosových služeb a v jejich spojovaném či nespojovaném charakteru. Například otázka spolehlivosti se týká toho, co se má stát při výskytu nějaké chyby při přenosu. Pokud ten, kdo chybu zjistí, je také povinen postarat se o nápravu, pak jde o službu tzv. spolehlivou. Naopak nespolehlivou službou je takový případ, kdy ten, kdo zjistí určitou chybu, nemá za povinnost ji napravovat (ale může poškozená data jednoduše zahodit a pokračovat dál). Logika nespolehlivých služeb je v tom, že mají menší režii a dokáží přenášet data rychleji a pravidelněji, přičemž o případnou nápravu se mohou efektivněji postarat vyšší vrstvy (pokud to vůbec chtějí). Dalším významným úkolem transportní vrstvy (kromě již naznačeného přizpůsobení) je i rozlišování různých příjemců a odesilatelů v rámci jednotlivých uzlů. Až do síťové vrstvy včetně se totiž všechny přenosy týkají jednotlivých uzlů jako celků (a také příslušné adresy identifikují pouze uzly jako celky). Teprve transportní vrstva jde dále a rozlišuje jednotlivé příjemce v rámci těchto uzlů. RELAČNÍ VRSTVA (SESSION LAYER) Relační vrstva je nejčastěji kritizovanou vrstvou referenčního modelu ISO/OSI, protože právě ona toho má co nejméně na práci v porovnání s ostatními vrstvami. Kromě toho je i docela nesnadné vysvětlit, co vlastně tato vrstva má dělat. Především má podporovat vedení relací. Ale co je to vlastně relace? Lze ji přirovnat k dialogu, který může být veden například po telefonu (který zde odpovídá transportnímu spojení). Když se s někým po telefonu o něčem bavíte, náhle vám "spadne linka" a hovor je přerušen, vytočíte si volaného znovu a pokračujete v nedokončeném rozhovoru. Takže relace trvá nadále, ale může být realizována pomocí více transportních spojení. Může to být ale i naopak, pomocí jednoho transportního spojení může být realizováno více jednotlivých relací (například když dva telefonující pánové po svém rozhovoru předají sluchátka svým manželkám, které se baví o něčem úplně jiném).
4 PREZENTAČNÍ VRSTVA (PRESENTATION LAYER) Až do úrovně prezentační vrstvy se všechny nižší vrstvy úzkostlivě snaží, aby přenesly data přesně v takové podobě, v jaké byly odeslány, tedy bit po bitu. Někdy ale jeden a tentýž řetězec bitů může mít pro různé uzly různý význam (například když každý z nich používá jiný způsob kódování znaků, je nutné provést potřebnou konverzi). A právě to je úkolem prezentační vrstvy. Obecně jde o to, aby přenesená data měla pro příjemce stejný význam, jaký měla pro odesilatele - a to nemusí obnášet zdaleka jen kódování textů. Týká se to například i znázornění čísel celých i čísel reálných a samozřejmě všech datových struktur atd. APLIKAČNÍ VRSTVA (APPLICATION LAYER) Původní představa o aplikační vrstvě byla taková, že v ní budou umístěny všechny aplikace používané v prostředí sítě. Později se ale od této představy poněkud ustoupilo, protože se to ukázalo jako prakticky neprůchodné. Důvodem je zejména skutečnost, že vše, co se nachází v určité vrstvě, musí být standardizováno (pokryto standardy), a tudíž i poměrně striktně "sešněrováno" co do způsobu fungování a dalších vlastností. Ovšem u konkrétních aplikací není žádoucí, aby jejich autoři byli příliš svazováni tam, kde to není nutné, tedy například při tvorbě uživatelských rozhraní či v tom, jak dalece vyjdou vstříc uživateli a jeho komfortu. Proto v aplikační vrstvě nakonec zůstaly pouze části aplikací - takové, které nutně musí být standardizovány - zatímco zbývající části aplikací byly vysunuty nad aplikační vrstvu (resp. zcela mimo rámec ISO/OSI). Asi nejlépe se tato představa ilustruje na příkladu elektronické pošty: v aplikační vrstvě zůstaly poštovní servery, které musí být standardizovány natolik, aby se mezi sebou dokázaly domluvit a předávat si zprávy takovým způsobem a v takovém formátu, kterému budou rozumět. Naproti tomu klientské programy el. pošty mohly být vysunuty nad aplikační vrstvu, což poskytlo potřebnou volnost jejich autorům a uživatelům možnost výběru z různých poštovních klientů. KRITIKA ISO/OSI Do vývoje referenčního modelu ISO/OSI bylo investováno opravdu mnoho prostředků a úsilí, bohužel s nepříliš velkým efektem. Celá koncepce ISO/OSI sice vznikala jako "ta jediná", "oficiální" či "ta správná" koncepce, podporovaly ji nejrůznějšími institucemi oficiálního charakteru, ale tržní síly nakonec rozhodly jinak. Prvotním důvodem byl zejména přístup autorů. Vše totiž vznikalo do značné míry od zeleného stolu, kdy se shromáždily určité požadavky na to, co by síť měla umět, a po určité diskusi se tyto požadavky daly na papír a
5 vydaly ve formě závazného standardu. Teprve poté se někdo začal zabývat tím, jestli je něco takového vůbec realizovatelné, a pokud ano, jestli je to efektivní pro praktické použití a únosné z hlediska vývojových a výrobních nákladů. A zde obvykle nastal problém. Často se totiž zjistilo, že z původní představy je nutné značně slevit a vytvořit jen jakousi "rozumně implementovatelnou podmnožinu" příliš bohatého standardu. Hezkým příkladem jsou tzv. vládní profily OSI (GOSIP, Governmental OSI Profile). Když totiž státní instituce oficiálně propagovaly koncepci ISO/OSI jako jedinou správnou, musely ji vyžadovat i při všech nákupech síťového vybavení v okruhu své působnosti. K tomu ale musely specifikovat, co přesně mají na mysli (jako "podmnožinu"), aby výsledek byl alespoň vzájemně kompatibilní. Nabídka konkrétních produktů na platformě ISO/OSI však na trhu byla minimální, ne-li přímo nulová. A tak i autoři vládních profilů GOSIP časem připustili možnost použití produktů na bázi konkurenční koncepce TCP/IP. Celkově lze konstatovat, že koncepce ISO/OSI se prakticky vůbec neprosadila do praxe, která dala jednoznačně přednost koncepci TCP/IP (na které je mj. postaven i dnenší celosvětový Internet). Rozhodně to ale neznamená, že celé ISO/OSI patří na smetiště síťových dějin, to určitě ne. Kromě toho, že celá koncepce je velmi šikovná pro výuku problematiky síťování, je zde i mnoho dílčích řešení a myšlenek, které si přece jen našly svou cestou do praxe. Poměrně životaschopným se ukázal být například standard elektronické pošty X.400, který se dodnes používá a byly od něj odvozeny i některé komerčně velmi úspěšné systémy (například poštovní platforma MS Exchange firmy Microsoft). Podobně se ukázal být životaschopný i standard X.500 pro adresářové služby. Právě jeho zjednodušením a zmenšením vznikl protokol LDAP (Lightweight Directory Access Protocol) z rodiny TCP/IP, na kterém dnes funguje většina adresářových služeb v Internetu. SÍŤOVÝ MODEL TCP/IP Hlavní odlišnosti mezi referenčním modelem ISO/OSI a TCP/IP vyplývají především z rozdílných výchozích předpokladů a postojů jejich tvůrců. Jak jsme si již naznačili v předchozích dílech našeho seriálu, při koncipování referenčního modelu ISO/OSI měli hlavní slovo zástupci spojových organizací. Ti pak nově vznikajícímu modelu vtiskli svou vlastní představu - především spojovaný a spolehlivý charakter služeb, poskytovaných v komunikační podsíti (tj. až do úrovně síťové vrstvy, včetně). Jinými slovy: ISO/OSI model počítá se soustředěním co možná nejvíce funkcí, včetně zajištění spolehlivosti přenosů, již do komunikační podsítě, která v důsledku toho bude muset být poměrně složitá, zatímco k ní připojované hostitelské počítače budou mít relativně jednoduchou úlohu. Později se ale ukázalo, že například právě v otázce zajištění spolehlivosti to není nejšťastnější řešení - že totiž vyšší vrstvy nemohou považovat spolehlivou komunikační podsíť za dostatečně spolehlivou pro své potřeby, a tak se snaží zajistit si požadovanou míru spolehlivosti vlastními silami. V důsledku toho se pak zajišťováním spolehlivosti do určité míry zabývá vlastně každá vrstva referenčního modelu ISO/OSI. Tvůrci protokolů TCP/IP naopak vycházeli z předpokladu, že zajištění spolehlivosti je problémem koncových účastníků komunikace, a mělo by tedy být řešeno až na úrovni transportní vrstvy. Komunikační podsíť pak podle této představy nemusí ztrácet část své přenosové kapacity na zajišťování spolehlivosti (na potvrzování, opětné vysílání poškozených paketů atd.), a může ji naopak plně využít pro vlastní datový přenos. Komunikační podsíť tedy podle této představy nemusí být zcela spolehlivá - může v ní docházet ke ztrátám přenášených paketů, a to bez varování a bez snahy o nápravu. Komunikační síť by ovšem
6 neměla zahazovat pakety bezdůvodně. Měla by naopak vyvíjet maximální snahu přenášené pakety doručit (v angličtině se v této souvislosti používá termín: best effort), a zahazovat pakety až tehdy, když je skutečně nemůže doručit - tedy např. když dojde k jejich poškození při přenosu, když pro ně není dostatek vyrovnávací paměti pro dočasné uložení, v případě výpadku spojení apod. Na rozdíl od referenčního modelu ISO/OSI tedy TCP/IP předpokládá jednoduchou (ale rychlou) komunikační podsíť, ke které se připojují inteligentní hostitelské počítače. Další odlišnost od referenčního modelu ISO/OSI spočívá v názoru na to, jak má komunikační síť vlastně fungovat. Zatímco model ISO/OSI počítá především se spojovaným přenosem - tedy s mechanismem virtuálních okruhů, TCP/IP naopak předpokládá nespojovaný charakter přenosu v komunikační podsíti - tedy jednoduchou datagramovou službou - což ostatně vyplývá i z představy co možná nejjednodušší komunikační podsítě. ČTYŘI VRSTVY TCP/IP Zatímco referenční model ISO/OSI vymezuje sedm vrstev síťového programového vybavení, TCP/IP počítá jen se čtyřmi vrstvami - viz obrázek Nejnižší vrstva, vrstva síťového rozhraní (Network Interface Layer) (někdy též: linková vrstva resp. Link Layer) má na starosti vše, co je spojeno s ovládáním konkrétní přenosové cesty resp. sítě, a s přímým vysíláním a příjmem datových paketů. V rámci soustavy TCP/IP není tato vrstva blíže specifikována, neboť je závislá na použité přenosové technologii. Vrstvu síťového rozhraní může tvořit relativně jednoduchý ovladač (device driver), je-li daný uzel přímo připojen například k lokální síti či ke dvoubodovému spoji, nebo může tato vrstva představovat naopak velmi složitý subsystém, s vlastním linkovým přenosovým protokolem (např. HDLC apod.). Vzhledem k velmi častému připojování jednotlivých uzlů na lokální sítě typu Ethernet je vrstva síťového rozhraní v rámci TCP/IP často označována také jako Ethernetová vrstva (Ethernet Layer). Bezprostředně vyšší vrstva, která již není závislá na konkrétní přenosové technologii, je vrstva síťová, v terminologii TCP/IP označovaná jako Internet Layer (volněji: vrstva vzájemného propojení sítí), nebo též IP vrstva (IP Layer) podle toho, že je realizována pomocí protokolu IP. Úkol této vrstvy je v prvním přiblížení stejný, jako úkol síťové vrstvy v referenčním modelu ISO/OSI - stará se o to, aby se jednotlivé pakety dostaly od odesilatele až ke svému skutečnému příjemci, přes případné směrovače resp. brány. Vzhledem k nespojovanému charakteru přenosů v TCP/IP je na úrovni této vrstvy zajišťována jednoduchá (tj. nespolehlivá) datagramová služba.
7 Třetí vrstva TCP/IP je označována jako transportní vrstva (Transport Layer), nebo též jako TCP vrstva (TCP Layer), neboť je nejčastěji realizována právě protokolem TCP (Transmission Control Protocol). Hlavním úkolem této vrstvy je zajistit přenos mezi dvěma koncovými účastníky, kterými jsou v případě TCP/IP přímo aplikační programy (jako entity bezprostředně vyšší vrstvy). Podle jejich nároků a požadavků může transportní vrstva regulovat tok dat oběma směry, zajišťovat spolehlivost přenosu, a také měnit nespojovaný charakter přenosu (v síťové vrstvě) na spojovaný. Přestože je transportní vrstva TCP/IP nejčastěji zajišťována právě protokolem TCP, není to zdaleka jediná možnost. Dalším používaným protokolem na úrovni transportní vrstvy je například protokol UDP (User Datagram Protocol), který na rozdíl od TCP nezajišťuje mj. spolehlivost přenosu - samozřejmě pro takové aplikace, které si to (na úrovni transportní vrstvy) nepřejí. Nejvyšší vrstvou TCP/IP je pak vrstva aplikační (Application Layer). Jejími entitami jsou jednotlivé aplikační programy, které na rozdíl od referenčního modelu ISO/OSI komunikují přímo s transportní vrstvou. Případné prezentační a relační služby, které v modelu ISO/OSI zajišťují samostatné vrstvy, si zde musí jednotlivé aplikace v případě potřeby realizovat samy.
POČÍTAČOVÉ SÍTĚ 1 Úvod
POČÍTAČOVÉ SÍTĚ 1 Úvod 1.1 Definice Pojmem počítačová síť se rozumí seskupení alespoň dvou počítačů, vzájemně sdílejících své zdroje, ke kterým patří jak hardware tak software. Předpokládá se sdílení inteligentní.
Počítačové sítě. Lekce 4: Síťová architektura TCP/IP
Počítačové sítě Lekce 4: Síťová architektura TCP/IP Co je TCP/IP? V úzkém slova smyslu je to sada protokolů používaných v počítačích sítích s počítači na bázi Unixu: TCP = Transmission Control Protocol
Cíl kapitoly: Žák popíše strukturu modelu ISO/OSI a jeho jednotlivé vrstvy.
Software POS Cíl kapitoly: Žák popíše strukturu modelu ISO/OSI a jeho jednotlivé vrstvy. Klíčové pojmy: Síťový software, model ISO/OSI, referenční model, vrstvový model, vrstvy modelu ISO/OSI, fyzická
Architektura TCP/IP v Internetu
Architektura TCP/IP v Internetu Síťová architektura Internetu - TCP/IP Soustava protokolů TCP/IP je v současné době nejpoužívanější v nejrozsáhlejším konglomerátu sítí - Internetu. Řekne-li se dnes TCP/IP,
Počítačové sítě. Lekce 3: Referenční model ISO/OSI
Počítačové sítě Dekompozice sítě na vrstvy 2 Komunikace mezi vrstvami 3 Standardizace sítí ISO = International Standards Organization Přesný název: Mezinárodní organizace pro normalizaci (anglicky International
ST Síťové technologie
ST Síťové technologie Ing. Pavel Bezpalec, Ph.D. VOŠ a SŠSE P9 bezpalec@sssep9.cz Harmonogram přednášek Týden Datum Náplň přednášek 1. 2.9. Úvod do datových sítí 2. 9.9. Výuka odpadá imatrikulace 3. 16.9.
Přednáška 3. Opakovače,směrovače, mosty a síťové brány
Přednáška 3 Opakovače,směrovače, mosty a síťové brány Server a Client Server je obecné označení pro proces nebo systém, který poskytuje nějakou službu. Služba je obvykle realizována některým aplikačním
Identifikátor materiálu: ICT-3-03
Identifikátor materiálu: ICT-3-03 Předmět Téma sady Informační a komunikační technologie Téma materiálu TCP/IP Autor Ing. Bohuslav Nepovím Anotace Student si procvičí / osvojí architekturu TCP/IP. Druh
Základy počítačových sítí Model počítačové sítě, protokoly
Základy počítačových sítí Model počítačové sítě, protokoly Základy počítačových sítí Lekce Ing. Jiří ledvina, CSc Úvod - protokoly pravidla podle kterých síťové komponenty vzájemně komunikují představují
Technologie počítačových komunikací
Informatika 2 Technické prostředky počítačové techniky - 9 Technologie počítačových komunikací Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Přednášky: středa 14 20 15 55 Spojení: e-mail: jan.skrbek@tul.cz
Model ISO - OSI. 5 až 7 - uživatelská část, 1 až 3 - síťová část
Zatímco první čtyři vrstvy jsou poměrně exaktně definovány, zbylé tři vrstvy nemusí být striktně použity tak, jak jsou definovány podle tohoto modelu. (Příkladem, kdy nejsou v modelu použity všechny vrstvy,
Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/ Vzdělávání v informačních a komunikačních technologií
VY_32_INOVACE_31_20 Škola Název projektu, reg. č. Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Tematická oblast Název Autor Vytvořeno, pro obor, ročník Anotace Přínos/cílové kompetence Střední
Inovace a zkvalitnění výuky prostřednictvím ICT Počítačové sítě Vrstvový model TCP/IP Ing. Zelinka Pavel
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Anotace: Inovace a zkvalitnění výuky prostřednictvím ICT Počítačové sítě Vrstvový model TCP/IP
Počítačové sítě Teoretická průprava II. Ing. František Kovařík
Počítačové sítě Teoretická průprava II. Ing. František Kovařík SPŠE a IT Brno frantisek.kovarik@sspbrno.cz ISO_OSI 2 Obsah 1. bloku Vrstvový model Virtuální/fyzická komunikace Režie přenosu Způsob přenosu
Systémy pro sběr a přenos dat
Systémy pro sběr a přenos dat propojování distribuovaných systémů modely Klient/Server, Producent/Konzument koncept VFD (Virtual Field Device) Propojování distribuovaných systémů Používá se pojem internetworking
POČÍTAČOVÉ SÍTĚ 1 Úvod
POČÍTAČOVÉ SÍTĚ 1 Úvod 1.1 Definice Pojmem počítačová síť se rozumí seskupení alespoň dvou počítačů, vzájemně sdílejících své zdroje, ke kterým patří jak hardware tak software. Předpokládá se sdílení inteligentní.
Počítačová síť. je skupina počítačů (uzlů), popřípadě periferií, které jsou vzájemně propojeny tak, aby mohly mezi sebou komunikovat.
Počítačové sítě Počítačová síť je skupina počítačů (uzlů), popřípadě periferií, které jsou vzájemně propojeny tak, aby mohly mezi sebou komunikovat. Základní prvky sítě Počítače se síťovým adaptérem pracovní
Telekomunikační sítě Protokolové modely
Fakulta elektrotechniky a informatiky, VŠB-TU Ostrava Telekomunikační sítě Protokolové modely Datum: 14.2.2012 Autor: Ing. Petr Machník, Ph.D. Kontakt: petr.machnik@vsb.cz Předmět: Telekomunikační sítě
Architektury komunikujících systémů
Architektury komunikujících systémů Referenční model ISO OSI Petr Grygárek rek 1 Vrstvená architektura komunikujících systémů 2 Vlastnosti vrstvené architektury Cílem dekompozice problému komunikace na
Počítačové sítě I. 2. Síťové modely Miroslav Spousta, 2005
Počítačové sítě I 2. Síťové modely Miroslav Spousta, 2005 , http://ww.ucw.cz/~qiq/vsfs/ 1 Síťový model Jak postavit počítačovou síť? složitý problém, je vhodné ho rozložit na podproblémy nabízí
7. Aplikační vrstva. Aplikační vrstva. Počítačové sítě I. 1 (5) KST/IPS1. Studijní cíl. Představíme si funkci aplikační vrstvy a jednotlivé protokoly.
7. Aplikační vrstva Studijní cíl Představíme si funkci aplikační vrstvy a jednotlivé protokoly. Doba nutná k nastudování 2 hodiny Aplikační vrstva Účelem aplikační vrstvy je poskytnout aplikačním procesům
Architektury komunikujících systémů
Architektury komunikujících systémů Referenční model ISO OSI Petr Grygárek Historická realita Alternativní (proprietární) síťové architektury Různé filosofie (koncepce) otevřené nebo uzavřené standardy
Distribuované systémy a počítačové sítě A3B38DSY
Distribuované systémy a počítačové sítě A3B38DSY J. Holub, J. Novák holubjan@fel.cvut.cz, jnovak@fel.cvut.cz České vysoké učení technické v Praze Fakulta elektrotechnická Katedra měření Organizace předmětu
3.17 Využívané síťové protokoly
Název školy Číslo projektu Autor Název šablony Název DUMu Tematická oblast Předmět Druh učebního materiálu Anotace Vybavení, pomůcky Střední průmyslová škola strojnická Vsetín CZ.1.07/1.5.00/34.0483 Ing.
MODELY POČÍTAČOVÝCH SÍTÍ
MODELY POČÍTAČOVÝCH SÍTÍ V počátcích budování počítačových sítí byly sítě a technické prostředky těchto sítí od jednotlivých výrobců vzájemně nekompatibilní. Vznikla tedy potřeba vytvoření jednotného síťového
6. Transportní vrstva
6. Transportní vrstva Studijní cíl Představíme si funkci transportní vrstvy. Podrobněji popíšeme protokoly TCP a UDP. Doba nutná k nastudování 3 hodiny Transportní vrstva Transportní vrstva odpovídá v
Inovace bakalářského studijního oboru Aplikovaná chemie
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Síťové vrstvy a protokoly Síťové vrstvy Fyzická vrstva Lan,
Technologie počítačových sítí 2. přednáška
Technologie počítačových sítí 2. přednáška Obsah druhé přednášky Síťové protokoly Síťové protokoly Typy protokolů Protokol ISO OSI - Fyzická vrstva - Linková vrstva - Síťová vrstva - Transportní vrstva
4. Síťová vrstva. Síťová vrstva. Počítačové sítě I. 1 (6) KST/IPS1. Studijní cíl. Představíme si funkci síťové vrstvy a jednotlivé protokoly.
4. Síťová vrstva Studijní cíl Představíme si funkci síťové vrstvy a jednotlivé protokoly. Doba nutná k nastudování 3 hodiny Síťová vrstva Síťová vrstva zajišťuje směrování a poskytuje jediné síťové rozhraní
1 Protokol TCP/IP (Transmission Control Protocol/Internet Protocol) a OSI model
1 Protokol TCP/IP (Transmission Control Protocol/Internet Protocol) a OSI model Protokoly určují pravidla, podle kterých se musí daná komunikační část chovat. Když budou dva počítače používat stejné komunikační
Měření kvality služeb. Kolik protlačíte přes aktivní prvky? Kde jsou limitní hodnoty ETH spoje? Data Hlas Video. Black Box Network Infrastructure
QoS na L2/L3/ Brno, 12.03.2015 Ing. Martin Ťupa Měření kvality služeb Kolik protlačíte přes aktivní prvky? Kde jsou limitní hodnoty ETH spoje? Central Office Hlas Video House Black Box Infrastructure Small
Základní pojmy technických sítí
Základní pojmy technických sítí Historicky můžeme hovořit o dvou typech koexistujících sítí telekomunikačních a počítačových. Každý z těchto sítí pracuje na jiném principu, avšak s jejich vývojem dochází
DUM 16 téma: Protokoly vyšších řádů
DUM 16 téma: Protokoly vyšších řádů ze sady: 3 tematický okruh sady: III. Ostatní služby internetu ze šablony: 8 - Internet určeno pro: 4. ročník vzdělávací obor: 26-41-M/01 Elektrotechnika - Elektronické
Inovace bakalářského studijního oboru Aplikovaná chemie
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Síťové vrstvy a protokoly Síťové vrstvy Síťové vrstvy Fyzická
Relační vrstva SMB-Síťový komunikační protokol aplikační vrstvy, který slouží ke sdílenému přístupu k souborům, tiskárnám, sériovým portům.
Aplikační vrstva http-protokol, díky kterému je možné zobrazovat webové stránky. -Protokol dokáže přenášet jakékoliv soubory (stránky, obrázky, ) a používá se také k různým dalším službám na internetu
7. Relační a prezentační vrstva
7. Relační a prezentační vrstva PB156: Počítačové sítě Eva Hladká Slidy připravil: Tomáš Rebok Fakulta informatiky Masarykovy univerzity jaro 2015 Eva Hladká (FI MU) 7. Relační a prezentační vrstva jaro
Komunikační protokoly počítačů a počítačových sítí
Komunikační protokoly počítačů a počítačových sítí Autor: Ing. Jan Nožička SOŠ a SOU Česká Lípa VY_32_INOVACE_1138_Komunikační protokoly počítačů a počítačových sítí_pwp Název školy: Číslo a název projektu:
Zásobník protokolů TCP/IP
Zásobník protokolů TCP/IP Úvod do počítačových sítí Lekce 2 Ing. Jiří ledvina, CSc. Úvod Vysvětlení základních pojmů a principů v protokolovém zásobníku TCP/IP Adresování v Internetu Jmenné služby Protokoly
Úvod Úrovňová architektura sítě Prvky síťové architektury Historie Příklady
Úvod Úrovňová architektura sítě Prvky síťové architektury Historie Příklady 1 Pracovní stanice modem Pracovní stanice Směrovač sítě Směrovač sítě Pracovní stanice Aplikační server Směrovač sítě 2 Soubor
Zásobník protokolů TCP/IP
Zásobník protokolů TCP/IP Základy počítačových sítí Lekce 3 Ing. Jiří ledvina, CSc Úvod Vysvětlení základních pojmů a principů v protokolovém zásobníku TCP/IP Porovnání s modelem ISO/OSI Adresování v Internetu
Distribuované systémy a počítačové sítě
Distribuované systémy a počítačové sítě propojování distribuovaných systémů modely Klient/Server, Producent/Konzument koncept VFD (Virtual Field Device) Propojování distribuovaných systémů Používá se pojem
JAK ČÍST TUTO PREZENTACI
PŘENOSOVÉ METODY V IP SÍTÍCH, S DŮRAZEM NA BEZPEČNOSTNÍ TECHNOLOGIE David Prachař, ABBAS a.s. JAK ČÍST TUTO PREZENTACI UŽIVATEL TECHNIK SPECIALISTA VÝZNAM POUŽÍVANÝCH TERMÍNŮ TERMÍN SWITCH ROUTER OSI
POČÍTAČOVÉ SÍTĚ 1. V prvním semestru se budeme zabývat těmito tématy:
POČÍTAČOVÉ SÍTĚ 1 Metodický list č. 1 Cílem tohoto předmětu je posluchačům zevrubně představit dnešní počítačové sítě, jejich technické a programové řešení. Po absolvování kurzu by posluchač měl zvládnout
Počítačové sítě. Počítačová síť. VYT Počítačové sítě
Počítačové sítě Počítačová síť Je soubor technických prostředků, které umožňují spojení mezi počítači a výměnu informací prostřednictvím tohoto spojení. Postupný rozvoj během druhé poloviny 20. století.
Vlastnosti podporované transportním protokolem TCP:
Transportní vrstva Transportní vrstva odpovídá v podstatě transportní vrstvě OSI, protože poskytuje mechanismus pro koncový přenos dat mezi dvěma stanicemi. Původně se proto tato vrstva označovala jako
Lekce 3: Síťové modely a architektury
Počítačové sítě, v. 3.6 Katedra softwarového inženýrství, Matematicko-fyzikální fakulta, Univerzita Karlova, Praha Lekce 3: Síťové modely a architektury Slide č. 1 vrstevnatá filozofie implementovat funkční
Střední škola pedagogická, hotelnictví a služeb, Litoměříce, příspěvková organizace
Střední škola pedagogická, hotelnictví a služeb, Litoměříce, příspěvková organizace Předmět: Počítačové sítě Téma: Počítačové sítě Vyučující: Ing. Milan Káža Třída: EK1 Hodina: 21-22 Číslo: III/2 4. Síťové
metodický list č. 1 Internet protokol, návaznost na nižší vrstvy, směrování
metodický list č. 1 Internet protokol, návaznost na nižší vrstvy, směrování Cílem tohoto tematického celku je poznat formát internet protokolu (IP) a pochopit základní principy jeho fungování včetně návazných
Inovace výuky prostřednictvím šablon pro SŠ
Název projektu Číslo projektu Název školy Autor Název šablony Název DUMu Stupeň a typ vzdělávání Vzdělávací oblast Vzdělávací obor Tematický okruh Cílová skupina Anotace Inovace výuky prostřednictvím šablon
Počítačové sítě Transportní vrstva. Transportní vrstva
UDP TCP Rozhraní služeb Rozhraní protokolů 17 6 ICMP IGMP OSPF 01 02 89 SAP Síťová vrstva IP Rozhraní přístupu k I/O ARP Ethernet driver RARP Vrstva síťového rozhraní 1 DATA Systém A Uživatel transportní
Počítačové sítě II. 14. Transportní vrstva: TCP a UDP. Miroslav Spousta, 2005
Počítačové sítě II 14. Transportní vrstva: TCP a UDP Miroslav Spousta, 2005 1 Transportní vrstva přítomná v ISO/OSI i TCP/IP zodpovědná za rozšíření vlastností, které požadují vyšší vrstvy (aplikační)
Lekce 3: Síťové modely a architektury, RM ISO/OSI
Počí, v. 3.2 Katedra softwarového inženýrství, Matematicko-fyzikální fakulta, Univerzita Karlova, Praha Lekce 3: Síťové modely a architektury, RM ISO/OSI Jiří Peterka, 2006 Slide č. 1 vrstevnatá filozofie
X36PKO Úvod Jan Kubr - X36PKO 1 2/2006
X36PKO Úvod Jan Kubr - X36PKO 1 2/2006 X36PKO přednášející: Jan Kubr kubr@fel.cvut.cz,místnost G2,(22435) 7628 cvičící: Jan Kubr Jiří Smítka smitka@fel.cvut.cz, G2, 7629 Pavel Kubalík xkubalik@fel.cvut.cz,
Elektronická komunikace
Úvod Internet jsou vlastně propojené počítače, jeho využití k přenosu zpráv se tedy okamžitě nabízí. E-mail vznikl dávno před webem, zasílání zpráv bylo možné téměř od počátku existence počítačových sítí.
Počítačové sítě internet
1 Počítačové sítě internet Historie počítačových sítí 1969 ARPANET 1973 Vinton Cerf protokoly TCP, základ LAN 1977 ověření TCP a jeho využití 1983 rozdělení ARPANETU na vojenskou a civilní část - akademie,
Ukázka testu Informatiky pro přijímací zkoušky do navazujícího magisterského studia
Ukázka testu Informatiky pro přijímací zkoušky do navazujícího magisterského studia 1. Databázový jazyk SQL obsahuje příkaz SELECT. Příkaz SELECT slouží pro: a. definici dat v tabulkách či pohledech b.
Definice pojmů a přehled rozsahu služby
PŘÍLOHA 1 Definice pojmů a přehled rozsahu služby SMLOUVY o přístupu k infrastruktuře sítě společnosti využívající technologie Carrier IP Stream mezi společnostmi a Poskytovatelem 1. Definice základních
A7B36PSI Úvod 1/29. Jan Kubr. Honza Kubr - 1_uvod
A7B36PSI Úvod 1/29 A7B36PSI přednášející: kubr@fel.cvut.cz,místnost KN:E-435,(22435) 7628 cvičící: Ondřej Votava votavon1@fel.cvut.cz, KN:E-22,(22435) 7296, Michal Medvecký medvem1@fel.cvut.cz, KN:E-435,(22435)
Seznámit posluchače se základními principy činnosti lokálních počítačových sítí a způsobu jejich spojování:
Přednáška č.1 Seznámit posluchače se základními principy činnosti lokálních počítačových sítí a způsobu jejich spojování: Úvod Strukturovaná kabeláž LAN, WAN propojování počítačových sítí Ethernet úvod
5. Směrování v počítačových sítích a směrovací protokoly
5. Směrování v počítačových sítích a směrovací protokoly Studijní cíl V této kapitole si představíme proces směrování IP.. Seznámení s procesem směrování na IP vrstvě a s protokoly RIP, RIPv2, EIGRP a
Adaptabilní systém pro zvýšení rychlosti a spolehlivosti přenosu dat v přenosové síti
1 Adaptabilní systém pro zvýšení rychlosti a spolehlivosti přenosu dat v přenosové síti Oblast techniky V oblasti datových sítí existuje různorodost v použitých přenosových technologiích. Přenosové systémy
Počítačové sítě pro V3.x Teoretická průprava II. Ing. František Kovařík
Počítačové sítě pro V3.x Teoretická průprava II. Ing. František Kovařík SŠ IT a SP, Brno frantisek.kovarik@sspbrno.cz Model TCP/IP - IP vrstva 2 Obsah 3. bloku IPv4 záhlaví, IP adresy ARP/RARP, ICMP, IGMP,
Počítačové sítě ve vrstvách model ISO/OSI
Počítačové sítě ve vrstvách model ISO/OSI Vzhledem ke komplikovanosti celého systému přenosu dat po sítích bylo vhodné nahlížet na přenosové sítě v určitých úrovních. Pro představu: Jak a čím budeme přenášet
EXTRAKT z české technické normy
EXTRAKT z české technické normy Extrakt nenahrazuje samotnou technickou normu, je pouze informativním ICS 35.240.60 materiálem o normě. Systémy dopravních informací a řídicí systémy (TICS) Datová rozhraní
Protokoly: IP, ARP, RARP, ICMP, IGMP, OSPF
IP vrstva Protokoly: IP, ARP, RARP, ICMP, IGMP, OSPF UDP TCP Transportní vrstva ICMP IGMP OSPF Síťová vrstva ARP IP RARP Ethernet driver Vrstva síťového rozhraní 1 IP vrstva Do IP vrstvy náležejí další
íta ové sít TCP/IP Protocol Family de facto Request for Comments
Architektura TCP/IP v současnosti nejpoužívanější síťová architektura architektura sítě Internet Uplatnění user-end systémy (implementace všech funkčních vrstev) mezilehlé systémy (implementace spodních
Počítačová síť a internet. V. Votruba
Počítačová síť a internet V. Votruba Obsah Co je to počítačová síť Služby sítě Protokoly a služby TCP/IP model Nastavení sítě ve Windows XP Diagnostika Bezdrátové sítě Co je to počítačová síť? Síť je spojením
EU-OPVK:VY_32_INOVACE_FIL9 Vojtěch Filip, 2013
Číslo projektu CZ.1.07/1.5.00/34.0036 Tématický celek Inovace výuky ICT na BPA Název projektu Inovace a individualizace výuky Název materiálu Komunikační protokoly v počítačových sítích Číslo materiálu
9. Sítě MS Windows. Distribuce Windows. Obchodní označení. Jednoduchý OS pro osobní počítače, pouze FAT, základní podpora peer to peer sítí,
9. Sítě MS Windows MS Windows existoval ve 2 vývojových větvích 9x a NT, tyto později byly sloučeny. V současnosti existují aktuální verze Windows XP a Windows 2003 Server. (Očekává se vydání Windows Vista)
Univerzita Jana Evangelisty Purkyně Automatizace Téma: Datová komunikace. Osnova přednášky
Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) Stabilita
Počítačové sítě. Miloš Hrdý. 21. října 2007
Počítačové sítě Miloš Hrdý 21. října 2007 Obsah 1 Pojmy 2 2 Rozdělení sítí 2 2.1 Podle rozlehlosti........................... 2 2.2 Podle topologie............................ 2 2.3 Podle přístupové metody.......................
Správa webserveru Přednáška 1. Počítačové sítě Internet
Správa webserveru Přednáška 1 Počítačové sítě Internet Základní pojmy Datový přenos Datové okruhy Počítačové sítě Rozdělení počítačových sítí Topologie počítačových sítí Referenční model ISO/OSI Internet
Hodinový rozpis kurzu Správce počítačové sítě (100 hod.)
Hodinový rozpis kurzu Správce počítačové sítě (100 hod.) Předmět: Bezpečnost a ochrana zdraví při práci (1 v.h.) 1. VYUČOVACÍ HODINA BOZP Předmět: Základní pojmy a principy sítí (6 v.h.) 2. VYUČOVACÍ HODINA
1. Základní pojmy počítačových sítí
1. Základní pojmy počítačových sítí Studijní cíl V této kapitole je představen smysl počítačových sítí, taxonomie, obecný model architektury, referenční modely a na závěr prvky tvořící počítačové sítě.
7. Relační a prezentační vrstva
7. Relační a prezentační vrstva PB156: Počítačové sítě Eva Hladká Fakulta informatiky Masarykovy univerzity jaro 2010 Eva Hladká (FI MU) 7. Relační a prezentační vrstva jaro 2010 1 / 13 Struktura přednášky
Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost
Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 CZ.1.07 Vzděláním pro konkurenceschopnost Projekt je realizován v rámci Operačního programu Vzdělávání pro konkurence schopnost, který je spolufinancován
29.07.2015. QoS na L2/L3/L4. Jak prokazovat kvalitu přípojky NGA. Ing. Martin Ťupa Ing. Jan Brouček, CSc. PROFiber Networking CZ s.r.o.
29.07.2015 QoS na L2/L3/L4 Jak prokazovat kvalitu přípojky NGA Ing. Martin Ťupa Ing. Jan Brouček, CSc. PROFiber Networking CZ s.r.o. Všechno přes IP, IP přes všechno POSKYTOVATELÉ OBSAHU/ CONTENT PROVIDERS
Architektura TCP/IP je v současnosti
Architektura TCP/IP - úvod Architektura TCP/IP je v současnosti nejpoužívanější síťová architektura architektura sítě Internet Uplatnění TCP/IP user-end systémy (implementace všech funkčních vrstev) mezilehlé
1. Základní klasifikace a pojmy počítačových sítí
1. Základní klasifikace a pojmy počítačových sítí Význam počítačových sítí neustále roste. Sítě se uplatňují jak ve firmách tak i při výuce na školách. I doma má dnes mnoho lidí svoji malou síť nemluvě
POČÍTAČOVÉ SÍTĚ Metodický list č. 1
Metodický list č. 1 Cílem tohoto předmětu je posluchačům zevrubně představit dnešní počítačové sítě, jejich technické a programové řešení. Po absolvování kurzu by posluchač měl zvládnout návrh a správu
Protokoly přenosu. Maturitní otázka z POS - č. 15. TCP/IP (Transmission Control Protocol/Internet Protocol)
Protokoly přenosu konfigurace protokolu TCP/IP adresa IP, maska podsítě, brána nastavení DHCP, DNS TCP/IP (Transmission Control Protocol/Internet Protocol) Rodina protokolů TCP/IP obsahuje sadu protokolů
ZPS 3 Standardizace počítačových sítí, zásobník TCP/IP, model ISO/OSI, vybrané protokoly
Architektura Počítačová síť, jako je např. založená na IP, představuje složitý systém Lze ji rozložit do několika vrstev o Zjednodušení implementace o Jednodušší k pochopení i-tá vrstva o využívá služeb
Počítačové sítě Implementace RM OSI. Počítačové sítě - Vrstva datových spojů 1
Implementace RM OSI Počítačové sítě - 1 Protokoly, architektura Otevřené systémy Otevřené pro další standardizaci Definují širší kategorie funkcí pro každou funkční úroveň Nedefinují způsob implementace
Datum vytvoření. Vytvořeno 18. října 2012. Očekávaný výstup. Žák chápe pojmy URL, IP, umí vyjmenovat běžné protokoly a ví, k čemu slouží
Číslo projektu CZ.1.07/1.5.00/34.0394 Škola SOŠ a SOU Hustopeče, Masarykovo nám. 1 Autor Ing. Miriam Sedláčková Číslo VY_32_INOVACE_ICT.3.01 Název Teorie internetu- úvod Téma hodiny Teorie internetu Předmět
SAS (Single-Attachment Station) - s jednou dvojicí konektorů, tj. pro použití pouze na jednoduchém kruhu.
4.1.1 FDDI FDDI je normalizováno normou ISO 9314. FDDI je lokální síť tvořící kruh. Jednotlivé stanice jsou propojeny do kruhu. K propojení stanic se používá optické vlákno. Lidovější variantou FDDI je
Maturitní okruhy pro 1.KŠPA Kladno, s.r.o. Počítačové sítě a komunikace
Maturitní okruhy pro 1KŠPA Kladno, sro Předmět Typ zkoušky Obor Forma Období Počítačové sítě a komunikace Profilová ústní Informační technologie Denní / Dálková MZ2019 strana 1 / 5 1 Počítačové sítě, základní
Počítačové sítě Protokoly, architektura Normalizace architektury otevřených systémů Referenční model OSI standard ISO 7498 r. 1983 7.
Protokoly, architektura Normalizace architektury otevřených systémů Referenční model OSI standard ISO 7498 r. 1983 7. Aplikační vrstva přístup ke komunikačnímu systému, k síťovým službám 6. Prezentační
Standard IEEE
Standard IEEE 802.11 Semestrální práce z předmětu Mobilní komunikace Jméno: Alena Křivská Datum: 15.5.2005 Standard IEEE 802.11 a jeho revize V roce 1997 publikoval mezinárodní standardizační institut
Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost
Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 CZ.1.07 Vzděláním pro konkurenceschopnost Projekt je realizován v rámci Operačního programu Vzdělávání pro konkurence schopnost, který je spolufinancován
3. Linková vrstva. Linková (spojová) vrstva. Počítačové sítě I. 1 (5) KST/IPS1. Studijní cíl
3. Linková vrstva Studijní cíl Představíme si funkci linkové vrstvy. Popíšeme její dvě podvrstvy, způsoby adresace, jednotlivé položky rámce. Doba nutná k nastudování 2 hodiny Linková (spojová) vrstva
Úvod do počítačových sítí
Úvod do počítačových sítí ZČU Plzeň 2007 Úvod Přednášky EP-110 Pá 12.55 až 14.40 Ing. Jiří Ledvina, CSc (ledvina@kiv.zcu.cz, místnost UK420) Cvičení UL-402 Út 8.25 až 10.05 Ing. Petr Dvořák (dvop@kiv.zcu.cz)
Datové komunikace. Informační systémy 2
Informační systémy 2 Informační systémy 2 Základní charakteristiky počítačových sítí Propojování počítačů, propojování sítí Přenosová média Přenosové protokoly Bezpečnost sítí IS2-14-08 1 2 Úroveň integrace
Projekt IEEE 802, normy ISO 8802
Projekt IEEE 802, normy ISO 8802 Petr Grygárek rek 1 Normalizace v LAN IEEE: normalizace aktuálního stavu lokálních sítí (od roku 1982) Stále se vyvíjejí nové specifikace ISO později převzalo jako normu
Síťové protokoly. Filozofii síťových modelů si ukážeme na přirovnání:
Provoz na síti musí být řízen určitými předpisy, aby dorazila na místo určení a nedocházelo ke kolizím. Tato pravidla se nazývají síťové protokoly. Síťových protokolů je mnoho, a každý zajišťuje specifickou
Semestrální práce CC3 TCP/IP transport a aplikace
Semestrální práce CC3 TCP/IP transport a aplikace Datum: 23.3. 2007 Vypracoval: Aleš Skopal, Radek Žilka Obsah TCP/IP... 2 Historie a vývoj of TCP/IP... 3 Filosofie TCP/IP... 3 Aplikační vrstva...3 Transportní
SPŠ a VOŠ Písek, Písek, K. Čapka 402. Učební texty. Datové sítě I. Vypracovala: Mgr. Radka Pecková
Učební texty Datové sítě I Vypracovala: Mgr. Radka Pecková CZ.1.07/2.1.00/32.0045 ICT moderně a prakticky 1 Obsah Výukové cíle... 3 Předpokládané vstupní znalosti a dovednosti... 3 1 Úvod... 4 2 Základní
X.25 Frame Relay. Frame Relay
X.25 Frame Relay Frame Relay 1 Předmět: Téma hodiny: Třída: Počítačové sítě a systémy X.25, Frame relay _ 3. a 4. ročník SŠ technické Autor: Ing. Fales Alexandr Software: SMART Notebook 11.0.583.0 Obr.
Lekce 3: Vrstvy a vrstvové modely
verze 4.0, lekce 3, slide 1 NSWI090: (verze 4.0) Lekce 3: Vrstvy a vrstvové modely Jiří Peterka verze 4.0, lekce 3, slide 2 proč vrstvy? implementovat funkční síť je hodně složité a náročné je to stejná
Úvod do počítačových sítí. Úvod. Úvod. ZČU Plzeň Přednášky EP-110 Pá až Ing. Jiří Ledvina, CSc místnost UK420)
Úvod do počítačových sítí ZČU Plzeň 2006 Úvod Přednášky EP-110 Pá 12.55 až 14.40 Ing. Jiří Ledvina, CSc (ledvina@kiv.zcu.cz, místnost UK420) Cvičení UL-402 Po 16.40 až 18.20 Ing. Marek Paška (paskam@kiv.zcu.cz)
Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost
Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 CZ.1.07 Vzděláním pro konkurenceschopnost Projekt je realizován v rámci Operačního programu Vzdělávání pro konkurence schopnost, který je spolufinancován