Normální formy. (provizorní text)
|
|
- Luboš Urban
- před 7 lety
- Počet zobrazení:
Transkript
1 Normální formy (provizorní text) Výrokový počet Definice. Jazyk výrokového počtu obsahuje výrokové proměnné p, q, r, s,..., spojky,,,.. a závorky (,). Výrokové proměnné jsou formule. Jestliže a jsou formule, potom i,,, a jsou formule. Jinak formule nevznikají. Pravdivostní ohodnocení V je zobrazení výrokových proměnných do dvoubodové množiny obsahující pravdu a nepravdu, tj. 1 a 0. Ke každé spojce je přiřazena tabulka vyjadřující, za kterých pravdivostních ohodnoceních je složená formule pravdivá. Stručně řečeno: V( ) = min ( V( ), V( )) 0 < 1 V( ) = max (V( ), V( )) V( ) = 1 - V( ) a V( ) = 1 právě když V( ) je menší nebo rovno V( ). V( ) = 1 právě když V( ) = V( ). Formule a jsou sémanticky ekvivalentní (píšeme ), jestliže pro každé pravdivostní ohodnocení V platí: V( ) = V( ). Tvrzení. Platí následující ekvivalence ( ) ( ) 5. ( ) ( ) 6. ( ) ( ) ( ) 7. ( ) ( ) ( ) 8. ( ) ( ) ( ) ( ) ( ) ( ) 9. ( ) ( ) ( ) ( ) ( ) ( ) 10. de Morganova pravidla : ( ) 11. ( ) 12. specielně: [( ) ( ) ] ( ) ( ) 13. : [( ) ( ) ] ( ) ( ) 14. ( ) 15. ( ) 16. ( ) 17. ( ) 18. Definice. Formule je tautologie, jestliže je pravdivá při každém pravdivostním ohodnocení svých výrokových proměnných. Formule je sporná, jestliže je nepravdivá při každém
2 pravdivostním ohodnocení svých výrokových proměnných. Formule je splnitelná, jestliže není sporná (alespoň v jednom pravdivostním ohodnocení svých proměnných je pravdivá). Př. Formule p p, p p, p q p, ( p (p q) ) p jsou tautologie. Formule p p q, (p q) (q p), p q q, (p q) (p r q) jsou tzv. formule faktuální, které nejsou ani tautologie ani formule sporné. Neboť p p q je pravdivá pro pravdivostní ohodnocení 1,1 a není pravdivá pro 1,0. Podobně (p q) (q p) je pravdivá pro 1,1 a není pro 0,1; p q q je pravdivá pro 1,1 a není pro 1,0; (p q) (p r q) je pravdivá pro 1,1,1 a není pro 1,1,0 apod. Formule p p, (p (p q)) jsou formule sporné. Definice. Fundamentální konjunkce je konjunkce z výrokových proměnných nebo jejich negací. Fundamentální disjunkce je disjunkce z výrokových proměnných nebo jejich negací. Konjunkce fundamentálních disjunkcí (KFD) a disjunkce fundamentálních konjunkcí (DFK) jsou formule, ve kterých se negace vyskytuje pouze u výrokových proměnných. Tvrzení. Každá formule je ekvivalentní KFD a DFK: Důkaz. Ukázkou jednoho příkladu: Nechť (p q) ( q r) p (q r), tj. i jsou ve tvaru DFK. Ukážeme, že pak i, a lze ekvivalentně převést na DFK. (p q) ( q r) p (q r) [(p q) ( q r) ] [p (q r) ] ((p q) p) (p q) (q r) ) ( ( q r) p) ( ( q r) (q r) ) (p q) (p q r) (p d q r) [(p q) ( q r) ] ( p q) (q r) ( p q) ( p q) ( q q) ( q r) ( p q) ( p q) ( q r) Definice. Elementární disjunkce ED (konjunkce EK) je fundamentální disjunkce (konjunkce) (tj. disjunkce (konjunkce) z výrokových proměnných nebo jejich negací), ve které se každá výroková proměnná může vyskytovat pouze v jednom tvaru, tj, buď pouze pozitivně nebo pouze negativně. KED se nazývá konjunktivní normální forma a DEK se nazývá disjunktivní normální forma. Tvrzení. Jestliže formule je ve tvaru FD, která není ED, pak je tautologií. Jestliže formule je ve tvaru FK, která není EK, pak je sporná. Důkaz. Zřejmé, neboť disjunkce, která obsahuje nějakou výrokovou proměnnou a zároveň její negaci, je splněna vždy. p q q : buď je pravdivé q nebo q. Podobně: konjunkce, která obsahuje nějakou výrokovou proměnnou a zároveň její negaci, není splněna nikdy: p q r p: nemůže být zároveň pravda p i p. Tvrzení. Formule ve tvaru EK vždycky splněna. Formule ve tvaru ED není nikdy tautologie.
3 Důkaz. Nechť je ve tvaru EK. Potom obsahuje každou výrokovou proměnnou pouze jednou, tj. existuje pravdivostní ohodnocení V tak, že V( ) = 1: V(p) = 1 pokud p je v a V (p) = 0 pokud p je v. Př. p q r, pak pak V( ) = 1 pro 1,0,1 Nechť je ve tvaru ED. Jestliže V(p) = 0 pokud p je ve a V(p) = 1 pokud p je ve, pak V( ) = 0. Př. Nechť p q r. Pak V( ) = 0 pro 0,0,1. Tvrzení. DEK je vždycky splněna. KED není nikdy sporná. Chceme-li poznat, zda je formule tautologií, pak ji převedeme na KFD. Pokud žádná z disjunkcí nebude elementární, pak je tautologií. Pokud alespoň jedna disjunkce bude elementární, pak existuje pravdivostní ohodnocení, při kterém je formule nepravdivá, tudíž není tautologií. Př. (p q) ( q p) (p q) ( q p) (p q) q p (p q p) ( q q p) tudíž je tautologie. (p q) (q p) (p q) ( q p) (p q) q p (p q p) ( q q p) (p q), což je ED, tudíž formule není tautologií. Tudíž formule, které jsou splnitelné, tj. nejsou sporné, se dají převést na DEK. Formule sporná se nedá převést na DEK (ale dá se převést na KED). Formule, které nejsou tautologie, se dají převést na KED. Tautologie se nedají převést na KED (ale dají se převést na DEK). Proč se tolik normálními formami zabýváme? Nejjednodušší databáze obsahuje objekty a jejich vlastnosti. Základní dotazy ve tvaru: Učí matematiku (M) neučí matematiku ( M), jmenuje se Jana (J) nejmenuje se Jana ( J), je starší 25 let (V>25) nebo není starší 25 let (V 25 rozuměj menší nebo rovno) můžeme chápat jako ohodnocení výrokových proměnných a jejich negací. Dále databáze obsahují konjunkce a disjunkce konjunkcí: Jmenuje se Jana a je starší 25 let a studuje matematiku nebo jmenuje se Lucie a je starší 25 let a nestuduje matematiku: (J V>25 M) (L V>25 M) a pod. Mnohé databáze nemají negace jinde než u základních výroků a většinou neobsahují implikaci. Proto se učíme disjunktivní normální formy, protože to je často jediný způsob, jak je možno správně položit dotaz databázi. Některé vyřešené příklady z minulých písemných prací. (q ( p q)) (p r) (q p) ( q q) ( p r) (q p) ( p r) DEK (q p) ( q r) ( p p) ( p r) (q p) ( q r) p ( p r) (q r) p nebo? disjunkce (q p), ( p r) obsahují p (viz 15). q ( p q)) (p r) (q p) (q q) ( p r) (q p) p r
4 p r, což je DEK i KED (q (p r)) (p q) ( q ( p r) ) ( p q) (q p r) p q p q, což je op?t DEK i KED ((q p r) je delší než p). ( q p) ( (p r) q) (q p) (( p r) q) q p ( p r ) q q p což je KED i DEK ( q ( p r)) (p q) q (p r) ( p q) DEK (q p p) (q p q) (q r p) (q r q) q r p KED apod. 1) Vaše databáze obsahuje mj. názvy Skladatel, Druh skladby, Dirigent. Vyberte do I.skupiny všechny skladby skladatele A; pokud jsou to ovšem opery, pak dirigované panem L. Do II.skupiny vyberte skladby pana A, které nejsou v I. skupin?. I. A (O L) A ( O L) ( A O) (A L) slovy: Chceme skladby pana A a to bu? ty, které nejsou opery a ty m?že dirigovat kdokoli anebo dirigované panem L ten m?že dirigovat všechny skladby, i opery. II. A (A (O L) ) A ( A (O L)) A O L. slovy: do druhé skupiny dáme opery pana A dirigované n?kým jiným než panem L. Vaše databáze u?itel? jedné st?ední školy obsahuje mj. názvy?eština, Výtvarná výchova, Hudební výchova, D?jepis, Zem?pis. Vyberte do I.skupiny všechny u?itele, kte?í u?í?eštinu a výtvarnou nebo hudební výchovu a u?itele, kte?í u?í d?jepis a zem?pis. Do II.skupiny vyberte všechny u?itele?eštiny, kte?í nejsou v I. skupin?. V obou p?ípadech napište DEK! I.? (V H) (D Z) (? V) (? H) ( D Z) II. Č ((? V) (? H) ( D Z) )? ( (? V) (? H) ( D Z) (??? D) (??? Z) (?? H D) (?? H Z) (? V? D) (? V? Z) (? V H D) (? V H Z) (? V H D) (? V H Z) Vaše databáze u?itel? jedné st?ední školy obsahuje mj. názvy Matematika, Fyzika, Chemie, T?ída. Vyberte do I.skupiny všechny u?itele, kte?í u?í matematiku a fyziku a zárove? u?í v oktáv? a u?itele matematiky, kte?í u?í také chemii. Do II.skupiny vyberte všechny u?itele matematiky, kte?í nejsou v I. skupin? I. (M F O) (M Ch) II. M ((M F O) (M Ch)) M ( M F O) ( M Ch) ) (M M M) (M M Ch) (M F M) (M F Ch) (M O M) (M O Ch) (M F Ch) (M O Ch)
5 3) Vaše databáze obsahuje mj.názvy Spisovatel, Rok vydání, Druh. Do I. skupiny vyberte všechny knihy pana G, ale pokud vyšly p?ed rokem 1945, tak pouze povídky. Do II.skupiny vyberte knihy pana G, které nejsou v I.skupin?. I. G (R< 45 P) G ( R<45 P) (G R>45) (G P) II. G ( G (R< 45 P) ) G ( G (R<45 P) ) G R<45 P pozn.: místo > piš větší nebo rovno Jak zjistíte v databázi školy (o jednotlivých učitelích je zadáno, co učí a co neučí), že v dané škole platí nebo neplatí tvrzení Kdo učí matematiku a fyziku, neučí chemii ani češtinu? Poznámka. Databáze umí zjistit, které objekty splňují disjunkci elementárních konjunkcí. Návod: Ověřujte negaci tvrzení! ( x) [ ((M(x) F(x) ) ( Ch(x) Č(x)) ] negace tvrzení. ( x) [ ((M(x) F(x) ) ( Ch(x) Č(x)) ] ( x) [ ((M(x) F(x) ) ] ( x) [( M(x) F(x) ) ( Ch(x) Č(x)) ] ( x) [ M(x) F(x) ( Ch(x) Č(x) ) ] ( x) [(M(x) F(x) Ch(x) ) (M(x) F (x) Č(x))] tudíž, pokud se v databázi najde někdo, kdo splňuje závěrečnou disjunkci, tj. buď učí matematiku, fyziku a chemii nebo učí matematiku, fyziku a češtinu, pak není pravda, že je pravdivé původní tvrzení, tj. Kdo učí matematiku a fyziku, neučí chemii ani češtinu. Podobně další příklady, vždy je třeba správně negovat implikaci a převést na DEK.
Spojování výroků (podmínek) logickými spojkami
Spojování výroků (podmínek) logickými spojkami Spojování výroků logickými spojkami a) Konjunkce - spojení A B; Pravdivostní tabulka konjunkce A B A B 0 0 0 0 1 0 1 0 0 1 1 1 AND; A a současně B Konjunkce
VíceJak jsem potkal logiku. Převod formule do (úplného) disjunktivního tvaru. Jan Hora
Česká zemědělská univerzita 17. října 2011 U makléře Já: Dobrý den, rád bych koupil nějaký světlý byt. Chtěl bych, aby měl dvě koupelny a aby byl v domě výtah. A neměl by být nijak extrémně drahý. Makléř:
VíceMatematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Sémantická věta o dedukci Věta Pro
VíceLogika. 2. Výroková logika. RNDr. Luděk Cienciala, Ph. D.
Logika 2. Výroková logika RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216, Logika:
VíceZáklady logiky a teorie množin
Pracovní text k přednášce Logika a teorie množin (I/2007) 1 1 Struktura přednášky Matematická logika 2 Výroková logika Základy logiky a teorie množin Petr Pajas pajas@matfyz.cz Predikátová logika 1. řádu
VíceVýroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou
VíceVýroková logika - opakování
- opakování ormální zavedení Výroková formule: Máme neprázdnou nejvýše spočetnou množinu A výrokových proměnných. 1. Každá proměnná je výroková formule 2. Když α, β jsou formule, potom ( α), (α β), (α
VíceFormální systém výrokové logiky
Formální systém výrokové logiky 1.Jazyk výrokové logiky Nechť P = {p,q,r, } je neprázdná množina symbolů, které nazýváme prvotní formule. Symboly jazyka L P výrokové logiky jsou : a) prvky množiny P, b)
VíceVýroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2013/2014 1 / 20 Základní syntax Jazyk Výroková logika je logikou
VíceVýroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce
VíceLOGIKA VÝROKOVÁ LOGIKA
LOGIKA Popisuje pravidla odvozování jedněch tvrzení z druhých. Je to myšlenková cesta ke správným závěrům. Vznikla jako součást filosofie. Zakladatelem byl Aristoteles. VÝROKOVÁ LOGIKA Obsahuje syntaktická,
VíceMísto pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu
VÝROKOVÁ LOGIKA Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. Co je výrok nedefinujejme, pouze si řekneme, co si pod
VícePro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.
Zpracoval: hypspave@fel.cvut.cz 5. Výroková logika, formule výrokové logiky a jejich pravdivostní ohodnocení, splnitelné formule, tautologie, kontradikce, sémantický důsledek, tautologicky ekvivalentní
VíceZákladní pojmy matematické logiky
KAPITOLA 1 Základní pojmy matematické logiky Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. 1. Výroková logika Co je
VíceDisjunktivní a konjunktivní lní tvar formule. 2.přednáška
Disjunktivní a konjunktivní normáln lní tvar formule 2.přednáška Disjunktivní normáln lní forma Definice Řekneme, že formule ( A ) je v disjunktivním normálním tvaru (formě), zkráceně v DNF, jestliže je
VíceKlasická výroková logika - tabulková metoda
1 Klasická výroková logika - tabulková metoda Na úrovni výrokové logiky budeme interpretací rozumět každé přiřazení pravdivostních hodnot výrokovým parametrům. (V případě přiřazení pravdivostních hodnot
Víceteorie logických spojek chápaných jako pravdivostní funkce
Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových
VíceLogika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
Vícepřednáška 2 Marie Duží
Logika v praxi přednáška 2 Marie Duží marie.duzi@vsb.cz 1 1 Výroková logika Analyzuje způsoby skládání jednoduchých výroků do výroků složených pomocí logických spojek. Co je to výrok? Výrok je tvrzení,
Více1.4.3 Složené výroky implikace a ekvivalence
1.4.3 Složené výroky implikace a ekvivalence Předpoklady: 1401, 1402 Pedagogická poznámka: Látka zabere spíše jeden a půl vyučovací hodiny. Buď můžete využít písemku nebo se podělit o čas s následující
VíceMatematická logika. Miroslav Kolařík
Matematická logika přednáška třetí Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika
VíceVýroková logika. Teoretická informatika Tomáš Foltýnek
Výroková logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Co je to formalismus a co je jeho cílem? Formulujte Russelův paradox
VícePredikátová logika. prvního řádu
Predikátová logika prvního řádu 2 Predikát Predikát je n-ární relace - vyjadřuje vlastnosti objektů a vztahy mezi objekty - z jednoduchého výroku vznikne vypuštěním alespoň jednoho jména objektu (individua)
VíceKaždé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α
1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny
VíceLogika Libor Barto. Výroková logika
Logika Libor Barto Výroková logika Definice.(Jazyk výrokové logiky) Ve výrokové logice používáme tyto symboly: (1) Výrokové proměnné: velká písmena, případně opatřená indexy. (2) Výrokovéspojky:,,&,,,....
VíceÚvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška první Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Co a k čemu je logika? 2 Výroky a logické spojky
VíceUnární je také spojka negace. pro je operace binární - příkladem může být funkce se signaturou. Binární je velká většina logických spojek
Otázka 06 - Y01MLO Zadání Predikátová logika, formule predikátové logiky, sentence, interpretace jazyka predikátové logiky, splnitelné sentence, tautologie, kontradikce, tautologicky ekvivalentní formule.
VíceÚvod do TI - logika Výroková logika (2.přednáška) Marie Duží
Úvod do TI - logika Výroková logika (2.přednáška) Marie Duží marie.duzi@vsb.cz Výroková logika Analyzuje způsoby skládání jednoduchých výroků do výroků složených pomocí logických spojek. Co je to výrok?
Více1 Pravdivost formulí v interpretaci a daném ohodnocení
1 Pravdivost formulí v interpretaci a daném ohodnocení Než uvedeme konkrétní příklady, zopakujme si definici interpretace, ohodnocení a pravdivosti. Necht L je nějaký jazyk. Interpretaci U, jazyka L tvoří
VíceBooleovská algebra. Booleovské binární a unární funkce. Základní zákony.
Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz
VíceVÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu
VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632
VíceKapitola Výroky
1 Kapitola 1 Výroková logika 1.1 Výroky 1.1.1 Příklad Rozhodněte, zda následující posloupnosti symbolú jsou výrokové formule. Jde-li o formuli, pak sestrojte její strom, určete její hloubku a uved te všechny
Více0. ÚVOD - matematické symboly, značení,
0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní
VíceCvičení 4. negace konjunkce disjunkce implikace ekvivalence. a) Najděte UDNF, UKNF a stanovte log. důsledky. 1) [p (p q)] [( p q) (q p)]
Cvičení 4 negace konjunkce disjunkce implikace ekvivalence a) Najděte UDNF, UKNF a stanovte log. důsledky 1) [p (p q)] [( p q) (q p)] p q p q p q q p p A B C D E UEK UED A B C D E F 0 0 1 1 0 0 0 1 p q
VíceVýroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).
Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před
VíceSémantika predikátové logiky
Sémantika predikátové logiky pro analýzu sémantiky potřebujeme nejprve specifikaci jazyka (doména, konstanty, funkční a predikátové symboly) příklad: formální jazyk s jediným binárním predikátovým symbolem
Více1 Výroková logika 1. 2 Predikátová logika 3. 3 Důkazy matematických vět 4. 4 Doporučená literatura 7
1 Výroková logika 1 Výroková logika 1 2 Predikátová logika 3 3 Důkazy matematických vět 4 4 Doporučená literatura 7 Definice 1.1 Výrokem rozumíme každé sdělení, o kterém má smysl uvažovat, zda je, či není
VíceVýroková logika: splnitelnost, vyplývání, tautologie, úsudky. Splnitelnost. 1. Ověřte splnitelnost množiny formulí
Splnitelnost 1. Ověřte splnitelnost množiny formulí 1 T = {(p q) r, q r, r s, p s} Splnitelnost 1. Ověřte splnitelnost množiny formulí 1 T = {(p q) r, q r, r s, p s} 2 F = {(p q r) ((s t) ( s t)), q r,
VíceMatematika I. Přednášky: Mgr. Radek Výrut, Zkouška:
Přednášky: Mgr. Radek Výrut, Matematika I katedra matematiky, UL-605, rvyrut@kma.zcu.cz tel.: 377 63 2658 Zkouška: Písemná část zkoušky - příklady v rozsahu zápočtových prací Ústní část zkoušky - základní
VíceMarie Duží
Marie Duží marie.duzi@vsb.cz Normální formy formulí výrokové logiky Každé formuli výrokové logiky přísluší právě jedna pravdivostní funkce, zobrazení {p, q, r } {0, 1} (pravdivostní tabulka). Naopak však
VíceMatematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Splnitelnost množin Definice Množina
VícePřednáška 2: Formalizace v jazyce logiky.
Přednáška 2: Formalizace v jazyce logiky. Marie Duží marie.duzi@vsb.cz Úvod do teoretické informatiky (logika) Dva základní logické systémy: Výroková logika a predikátová logika. řádu. Výroková logika
VíceÚvod do TI - logika Výroková logika - pokračování (3.přednáška) Marie Duží
Úvod do TI - logika Výroková logika - pokračování (3.přednáška) Marie Duží marie.duzi@vsb.cz Normální formy formulí výrokové logiky Každé formuli výrokové logiky přísluší právě jedna pravdivostní funkce,
VíceOkruh č.3: Sémantický výklad predikátové logiky
Okruh č.3: Sémantický výklad predikátové logiky Predikátová logika 1.řádu formalizuje úsudky o vlastnostech předmětů a vztazích mezi předměty pevně dané předmětné oblasti (univerza). Nebudeme se zabývat
VíceMatematická logika. Lekce 1: Motivace a seznámení s klasickou výrokovou logikou. Petr Cintula. Ústav informatiky Akademie věd České republiky
Matematická logika Lekce 1: Motivace a seznámení s klasickou výrokovou logikou Petr Cintula Ústav informatiky Akademie věd České republiky www.cs.cas.cz/cintula/mal Petr Cintula (ÚI AV ČR) Matematická
VíceÚvod do logiky (VL): 5. Odvození výrokových spojek z jiných
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 5. Odvození z jiných doc. PhDr. Jiří Raclavský,
VíceMatematika pro informatiky KMA/MATA
Matematika pro informatiky KMA/MATA Informace k předmětu Mgr. Přemysl Rosa rosapr00@pf.jcu.cz, J349 Konzultační hodiny v ZS: úterý 10-11, čtvrtek 15-16 nebo individuálně po předchozí domluvě aktivní účast
VíceLogika III. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika III. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
Více7 Jemný úvod do Logiky
7 Jemný úvod do Logiky Základem přesného matematického vyjadřování je správné používání (matematické) logiky a logických úsudků. Logika jako filozofická discipĺına se intenzivně vyvíjí už od dob antiky,
VíceVýroková logika. p, q, r...
Výroková logika Výroková logika je logika, která zkoumá pravdivostní podmínky tvrzení a vztah vyplývání v úsudcích na základě vztahů mezi celými větami. Můžeme též říci, že se jedná o logiku spojek, protože
VíceVýroková logika. Sémantika výrokové logiky
Výroková logika Výroková logika se zabývá vztahy mezi dále neanalyzovanými elementárními výroky. Nezabývá se smyslem těchto elementárních výroků, zkoumá pouze vztahy mezi nimi. Elementární výrok je takový
VícePredikátová logika (logika predikátů)
Predikátová logika (logika predikátů) Ve výrokové logice pracujeme s jednoduchými či složenými výroky, aniž nás zajímá jejich struktura. Příklad. Jestliže Karel je studentem, pak je (Karel) chytřejší než
Vícevýrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.
1 Základní pojmy matematické logiky Výrokový počet... syntaktické hledisko Predikátový počet... sémantické hledisko 1.1 VÝROKOVÝ POČET výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.
VíceMatematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 20 Predikátová logika Motivace Výroková
VíceÚvod do logiky (VL): 11. Ověřování, zda je formule tautologií metodou protipříkladu
Jiří Raclavský (214): Úvod do logiky: klasická výroková logika Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.7/2.2./28.216, OPVK) Úvod
VíceKapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...
Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -
Více2.2 Sémantika predikátové logiky
14 [101105-1155] 2.2 Sémantika predikátové logiky Nyní se budeme zabývat sémantikou formulí, tj. jejich významem a pravdivostí. 2.2.1 Interpretace jazyka predikátové logiky. Interpretace predikátové logiky
VíceZÁKLADY LOGIKY A METODOLOGIE
ZÁKLADY LOGIKY A METODOLOGIE Metodický list č. 1 Téma: Předmět logiky a metodologie, základy logiky a formalizace. Toto téma lze rozdělit do tří základních tématických oblastí: 1) Předmět logiky a metodologie
VíceKterá tvrzení jsou pravdivá nezávisle na tom, který den v týdnu byla vyslovena? Tvrzení trosečníka Dana.
Trosečníci Adam, Barry, Code a Dan zapoměli po čase kalendář. Začali se dohadovat, který den v týdnu vlastně je. Každý z nich řekl svůj názor: A: Dnes je úterý nebo zítra je neděle B: Dnes není úterý nebo
VíceLogika. 6. Axiomatický systém výrokové logiky
Logika 6. Axiomatický systém výrokové logiky RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216,
VíceMatematická indukce, sumy a produkty, matematická logika
Matematická indukce, sumy a produkty, matematická logika 8.9. -.0.009 Matematická indukce Jde o následující vlastnost přirozených čísel: Předpokládejme:. Nějaké tvrzení platí pro.. Platí-li tvrzení pro
VíceSystém přirozené dedukce výrokové logiky
Systém přirozené dedukce výrokové logiky Korektnost, úplnost a bezespornost Šárka Vavrečková Ústav informatiky, FPF SU Opava Poslední aktualizace: 6. října 2008 Věta o korektnosti Věta (O korektnosti Systému
Více1 Výrok a jeho negace
1 Výrok a jeho negace Výrokem se rozumí sdělení, u něhož má smysl otázka, zda je, či není pravdivé. Budeme určovat tzv. pravdivostní hodnotu výroku (PH). Příklady výroků: V Úhlopříčky čtverce jsou na sebe
VíceCvičení z logiky II.
Cvičení z logiky II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 https://edux.fit.cvut.cz/courses/bi-mlo/lectures/
VíceVýroková a predikátová logika - III
Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/2018 1 / 16 2-SAT 2-SAT Výrok je v k-cnf, je-li v CNF a
VíceÚvod do logiky (VL): 4. Zjištění průběhu pravdivostních hodnot formule tabulkovou metodou
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 4. Zjištění průběhu pravdivostních hodnot
VícePredikátová logika [Predicate logic]
Predikátová logika [Predicate logic] Přesněji predikátová logika prvého řádu. Formalizuje výroky o vlastnostech předmětů (entit) a vztazích mezi předměty, které patří do dané předmětné oblasti univerza.
VíceLogika. 5. Rezoluční princip. RNDr. Luděk Cienciala, Ph. D.
Logika 5. Rezoluční princip RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216,
Vícevhodná pro strojové dokazování (Prolog) metoda založená na vyvracení: dokazuje se nesplnitelnost formulí
Rezoluce: další formální systém vhodná pro strojové dokazování (Prolog) metoda založená na vyvracení: dokazuje se nesplnitelnost formulí pracujeme s formulemi v nkf (též klauzulárním tvaru), ale používáme
VíceÚvod do logiky (VL): 8. Negace výroků
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 8. Negace výroků doc. PhDr. Jiří Raclavský,
VíceMatematická analýza 1
Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod
Více1. Matematická logika
Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018 1. Matematická logika Základem každé vědy (tedy i matematiky i fyziky) je soubor jistých znalostí. To, co z těchto izolovaných poznatků
VíceVÝROKOVÁ LOGIKA. Výrok srozumitelná oznamovací věta (výraz, sdělení), která může být buď jen pravdivá nebo jen nepravdivá..
VÝROKOVÁ LOGIKA Teorie: Logika je vědní obor zabývající se studiem různých forem vyjadřování a pravidel správného posuzování. (Matematická logika je součástí tohoto vědního oboru a ve velké míře užívá
Více1 Úvod do matematické logiky
1 Úvod do matematické logiky Logikou v běžném slova smyslu rozumíme myšlenkovou cestu, která vede k určitým závěrům. Logika je také formální věda, která zkoumá způsob vyvozování závěrů. Za zakladatele
VíceM - Výroková logika VARIACE
M - Výroková logika Autor: Mgr. Jaromír Juřek Kopírování a další šíření povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu
VíceSémantika výrokové logiky. Alena Gollová Výroková logika 1/23
Výroková logika Alena Gollová Výroková logika 1/23 Obsah 1 Formule výrokové logiky 2 Alena Gollová Výroková logika 2/23 Formule výrokové logiky Výrok je oznamovací věta, o jejíž pravdivosti lze rozhodnout.
VíceLogika. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD.
Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD. Tematické okruhy: 1. Stručné dějiny logiky a její postavění ve vědě 2. Analýza složených výroků pomocí pravdivostní tabulky 3. Subjekt-predikátová
VíceÚvod do výrokové a predikátové logiky
Úvod do výrokové a predikátové logiky Eva Ondráčková Na této přednášce se seznámíte se základy výrokové a predikátové logiky. Zjistíte, že podstatou logiky není vyplňování pravdivostních tabulek ani negování
VíceAplikace: Znalostní báze
Aplikace: Znalostní báze 1 Znalostní báze je systém, který dostává fakta o prostředí a dotazy o něm. Znalostní báze je agentem ve větším systému, který obsahuje prostředí (také agent), správce (agent),
Víceλογος - LOGOS slovo, smysluplná řeč )
MATA P1: Výroky, množiny a operace s nimi Matematická logika (z řeckého slova λογος - LOGOS slovo, smysluplná řeč ) Výrok primitivní pojem matematické logiky. Tvrzení, pro které má smysl otázka o jeho
Více- existuje..., negace: pro všechny neplatí,... - pro všechna..., negace: existuje, že neplatí,...
.4.0 Formální logika shrnutí Předpoklady: 00409 Shrnutí logiky Důležité znalosti konjunkce, a b, "a", pravda, jen když jsou oba výroky pravdivé (jako průnik) disjunkce, a b, "nebo", lež, jen když jsou
VíceNepřijde a nedám 100 Kč měl jsem pravdu, o této
1.4.4 Implikace Předpoklady: 010403 Implikace Implikace libovolných výroků a,b je výrok, který vznikne jejich spojením slovním obratem jestliže, pak, píšeme a b a čteme jestliže a, pak b. Výroku a se říká
Více1. Matematická logika
MATEMATICKÝ JAZYK Jazyk slouží člověku k vyjádření soudů a myšlenek. Jeho psaná forma má tvar vět. Každá vědní disciplína si vytváří svůj specifický jazyk v úzké návaznosti na jazyk živý. I matematika
VíceVýrok je každá oznamovací věta (sdělení), u níž dává smysl, když uvažujeme, zda je buď pravdivá, nebo nepravdivá.
Výroková logika I Výroková logika se zabývá výroky. (Kdo by to byl řekl. :-)) Výrok je každá oznamovací věta (sdělení), u níž dává smysl, když uvažujeme, zda je buď pravdivá, nebo nepravdivá. U výroku
VíceVýroková a predikátová logika - IV
Výroková a predikátová logika - IV Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IV ZS 2018/2019 1 / 17 Tablo metoda Tablo Tablo - příklady F (((p q)
VíceLogika 5. Základní zadání k sérii otázek: V uvedených tezích doplňte z nabízených adekvátní pojem, termín, slovo. Otázka číslo: 1. Logika je věda o...
Logika 5 Základní zadání k sérii otázek: V uvedených tezích doplňte z nabízených adekvátní pojem, termín, slovo. Otázka číslo: 1 Logika je věda o.... slovech správném myšlení myšlení Otázka číslo: 2 Základy
Více3.10 Rezoluční metoda ve výrokové logice
3.10. Rezoluční metoda ve výrokové logice [070405-1102 ] 27 3.10 Rezoluční metoda ve výrokové logice Rezoluční metoda rozhoduje, zda daná množina klausulí je splnitelná nebo je nesplnitelná. Tím je také
VíceMatematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 18 Příklad Necht L je jazyk obsahující
VíceVýroková a predikátová logika - VII
Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2018/2019 1 / 15 Platnost (pravdivost) Platnost ve struktuře
VíceSINGULÁRNÍ VÝROKY: Jednoduchý singulární výrok vznikne spojením singulárního termínu s termínem obecným pomocí spony=slova je.
Studijní text Co je singulární výrok SINGULÁRNÍ VÝROKY: PETR Petr je veselý. Jednoduchý singulární výrok vznikne spojením singulárního termínu s termínem obecným pomocí spony=slova je. Příklad: Pavel je
VíceLogika a logické programování
Logika a logické programování témata ke zkoušce Poslední aktualizace: 16. prosince 2009 Zkouška je písemná, skládá se obvykle ze sedmi otázek (může být více nebo méně, podle náročnosti otázek), z toho
VíceMatematická logika. Miroslav Kolařík
Matematická logika přednáška šestá Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika
VíceVýroková logika syntaxe a sémantika
syntaxe a sémantika Jiří Velebil: AD0B01LGR 2015 Handout 01: & sémantika VL 1/16 1 Proč formální jazyk? 1 Přirozené jazyky jsou složité a často nejednoznačné. 2 Komunikace s formálními nástroji musí být
VícePredikátová logika. Teoretická informatika Tomáš Foltýnek
Predikátová logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz strana 2 Opakování z minulé přednášky Z čeho se skládá jazyk výrokové logiky? Jaká jsou schémata pro axiomy VL? Formulujte
VíceCvičení Aktivita 1. část 2. část 3. část Ústní Celkem Známka
Celkové hodnocení BI-MLO (nevyplňujte!) Semestr Zkouška Cvičení Aktivita 1. část 2. část 3. část Ústní Celkem Známka BI-MLO Písemná zkouška 9. února 2016 Matematická logika FIT ČVUT v Praze Varianta B
VíceÚvod do logiky (VL): 7. Ekvivalentní transformace
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 7. Ekvivalentní transformace doc. PhDr. Jiří
Více( ) ( ) Negace složených výroků II. Předpoklady:
1.4.7 Negace složených výroků II Předpoklady: 010405 Pedagogická poznámka: Na začátku hodiny slovně zadávám úkol najít negaci implikace. Teprve po zapsání do třídnice promítám zadání příkladů (kde je v
Více1 Základní pojmy. 1.1 Množiny
1 Základní pojmy V této kapitole si stručně připomeneme základní pojmy, bez jejichž znalostí bychom se v dalším studiu neobešli. Nejprve to budou poznatky z logiky a teorie množin. Dále se budeme věnovat
VícePřijímací zkouška - matematika
Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,
VíceRezoluční kalkulus pro logiku prvního řádu
AD4M33AU Automatické uvažování Rezoluční kalkulus pro logiku prvního řádu Petr Pudlák Logika prvního řádu (Někdy nepřesně nazývaná predikátová logika.) Výhody Vyšší vyjadřovací schopnost jazyka, V podstatě
Více