Asymetrická kryptografie
|
|
- Martina Ševčíková
- před 9 lety
- Počet zobrazení:
Transkript
1 PEF MZLU v Brně 12. listopadu 2007
2 Problém výměny klíčů Problém výměny klíčů mezi odesílatelem a příjemcem zprávy trápil kryptografy po několik století. Problém spočívá ve výměně tajné informace tak, aby ji nikdo třetí nebyl schopen odposlechnout. Pro distribuci klíčů se využívaly služby kurýrů logistický problém. Neřešitelnou situace začínala být v případě elektronické komunikace, elektronického obchodování. Situaci příliš neřešil ani systém Diffie-Hellman-Merkle
3 V roce 1975 načrtl Whitfield Diffie myšlenku asymetrické kryptografie. Skupina kryptografických metod, ve kterých se pro šifrování a dešifrování používají odlišné klíče. Základem jsou jednosměrné funkce, které umožní původní zprávu zašifrovat pomocí veřejného klíče, ale již nikoliv dešifrovat za pomocí téhož klíče. Pro dešifrování zpráv se použije klíč soukromý, který má uschovaný příjemce zprávy. Každý, kdo chce šifrovat zprávy s použitím asymetrických metod, si vytvoří pár klíčů (soukromý a veřejný). Veřejný klíč distribuuje po mezi všechny osoby, se kterými chce komunikovat a klíč soukromý si uchová u sebe v tajnosti.
4 Analogie se zámky Alice navrhne zámek a jeho kopie distribuuje po celém světě, klíč si ponechá. Bob uloží tajnou zprávu do krabice, na které zaklapne Alicin zámek, a pošle ji zpět Alici poštou. Alice si vyzvedne krabici a odemkne ji svým klíčem.
5 Základní principy Šifrovací klíč sestává ze dvou částí: Veřejný klíč používá se pro zašifrování zprávy, je veřejně dostupný. Soukromý klíč používá se pro dešifrování zprávy, je vlastníkem pečlivě uschován. Tím je vyřešen základní problém distribuce klíčů, není třeba sdílet žádné veřejné tajemství a komunikace může probíhat asynchronně. Používá se nejen pro šifrování zpráv, ale i pro jejich podepisování (ověření původu).
6 RSA Rivest, Shamir, Adelman V podstatě první použitelná asymetrická metoda. Založena na myšlence publikované W. Diffiem. Vznik roku 1977, dva roky po uveřejnění základního principu. Tvůrci výzkumníci laboratoře počítačových věd MIT. Algoritmus byl v USA v roce 1983 patentován jako patent č Patent vypršel
7 Tvorba klíčového páru Zvolí se dvě velká náhodná prvočísla p, q. Určí se jejich součin n = p q Spočítá se hodnota Eulerovy funkce φ(n) = (p 1)(q 1) Zvolí se číslo e (max{p + 1, q + 1}; φ(n)), které je s φ(n) nesoudělné. Nalezne se číslo d aby platilo: de 1( mod φ(n)) Pokud d vyjde příliš malé (tedy menší než asi log 2 (n)), zvolíme jinou dvojici e a d.
8 Tvorba klíčového páru Veřejným klíčem je pak dvojice (n, e), kde n je modul a e je šifrovací exponent Soukromým klíčem je dvojice (n, d), kde d se označuje jako dešifrovací či soukromý exponent. V praxi se klíče uchovávají v mírně upravené formě, která umožňují rychlejší zpracování.
9 Šifrování zprávy Bob nyní chce Alici zaslat zprávu M. Zpráva je převede na číslo m. Šifrovým textem odpovídajícím této zprávě pak je číslo c = m e ( mod n) Tento šifrový text poté zašle nezabezpečeným kanálem Alici.
10 Dešifrování zprávy Alice od Boba získá šifrový text c. Původní zprávu m získá následujícím výpočtem: m = c d ( mod n)
11 Důkaz možnosti dešifrování I. Vycházíme z následujících předpokladů definovaných Eulerem: i φ(n) mod n = 1 M ed mod n = M Čísla i a n jsou nesoudělné, M a n jsou nesoudělné.
12 Důkaz možnosti dešifrování II. f 1 : f 2 : M e C d mod n = C mod n = M f 2 (f 1 (M)) = f 2 (M e mod n) = (M e mod n) d mod n = = M ed mod n = M k φ(n)+1 mod n = M M k φ(n) mod n = = M 1 mod n = M
13 Příklad p = 61 (první prvočíslo) q = 53 (druhé prvočíslo) n = p q = 3233 (modul, veřejný) e = 17 (veřejný, šifrovací exponent) d = 2753 (soukromý, dešifrovací exponent)
14 Příklad pokračování Pro zašifrování zprávy 123 probíhá výpočet: šifruj(123) = ( mod 3233) = 855 Pro dešifrování pak: dešifruj(855) = ( mod 3233) = 123
15 Bezpečnost RSA Zabezpečení algoritmu RSA závisí na následujících faktorech: Zabezpečení toho, že čísla p a q zůstanou utajena. Pokud tato čísla odhalíme, je odvození dešifrovacího klíče d ze šifrovacího klíče e triviální záležitost. Obtížnost rozkladu součinu n na prvočísla. V případě, že bychom mohli rozložit číslo n, můžeme získat čísla p a q a tím i dešifrovací klíč. Na nedostatku jiných algebraických technik pro odvození dešifrovacího klíče d ze šifrovacího klíče e a čísla n.
16 Bezpečnost RSA RSA je bezpečný jestliže n je dostatečně velké. Jestliže n je 256 bitů nebo kratší, může být za pár hodin faktorizován na osobním počítači, za použití volně dostupného software. Jestliže n je 512 bitů nebo kratší, může být faktorizován několika sty počítačů. Běžně se používá klíč o délce bitů. V roce 1977 uveřejnil Martin Gardner v časopise Scientific American článek o RSA, který obsahoval zprávu zašifrovanou touto metodou. V roce 1994 byla tato zpráva dešifrována spojeným úsilím více než 1600 stanic z celého světa. RSA-129 byla prolomena.
17 Rychlost je o hodně pomalejší než symetrická. V praxi se typicky zašifruje tajná zpráva symetrickým algoritmem, šifrování a následně se přenese symetrický klíč i symetricky šifrovaná zpráva příjemci. Tento způsob šifrování se označuje jako hybridní.
18 Útoky na RSA Narušení bezpečnosti lze realizovat různými technikami: Útok na rozklad pokusit se faktorizovat číslo n. Útok na prvočísla pokusit se napodobit chod generátoru prvočísel. Útok matematickou teorií objevit nové principy matematiky, které by odhalily zásadní trhliny v RSA nebo objevit ultrarychlý způsob rozkladu velkých čísel.
19 Alternativní historie AK Podle informací britské vlády byla asymetrická kryptografie objevena v britské tajné instituci GHCQ. Práce na této technologii zahájil v roce 1965 James Ellis, který načrtl základní principy. Roku 1973 byl do GHCQ přijat nový pracovník Clifford Cocks, který navrhl reálný systém AK. Z důvodů utajení nebyl tento objev veřejně publikován a byl odhalen až několik let po uvedení RSA.
20 PGP Pretty Good Privacy V době uvedení RSA na trh nebyl pro běžné uživatele k dispozici výpočetní výkon dostačující k běžnému použití asymetrické kryptografie. Phil Zimmerman se rozhodl umožnit použití bezpečné kryptografie širokým masám lidí po celém světě. První verze PGP byla umístěna na veřejnou síť Usenet v roce Umožňuje i laikům velmi jednoduchým způsobem používat silné a bezpečné šifrování a podepisování zpráv. Je založeno na algoritmech RSA a IDEA. Později bylo PGP standardizováno. V dnešní době existují nekomerční verze (OpenPGP, GnuPG... )
21 Soukromí pro všechny? Za svou činnost se Phil Zimmerman stal podezřelým z nelegálního vývozu zbraní a byl v souvislosti s tím vyšetřován. Podle amerických zákonů platných v 90. letech nemělo být umožněno okolním státům používat metody silného šifrování. Diskutovala se otázka, zda je přípustné aby k těmto moderním technologiím měl přístup opravdu každý. Vlády všech zemí (USA nevyjímaje) prosazují politiku Velkého bratra pro kontrolu komunikace obyvatel z důvodu zajištění jejich bezpečnosti. Je to ovšem potřeba?
22 Závěr Děkuji za pozornost Dotazy?
RSA. Matematické algoritmy (11MA) Miroslav Vlček, Jan Přikryl. Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní. čtvrtek 21.
Čínská věta o zbytcích Šifrování Závěr Čínská věta o zbytcích RSA Matematické algoritmy (11MA) Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 4. přednáška 11MA čtvrtek 21. října 2010 verze:
VíceČínská věta o zbytcích RSA
Čínská věta o zbytcích RSA Matematické algoritmy (11MAG) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MAG pondělí 10. listopadu 2014 verze: 2014-11-10 11:20 Obsah
VíceRSA. Matematické algoritmy (11MAG) Jan Přikryl. Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní. verze: :01
Čínská věta o zbytcích Mocnění Eulerova funkce Šifrování Závěr Čínská věta o zbytcích RSA Matematické algoritmy (11MAG) Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 4. přednáška 11MAG ponděĺı
Víceasymetrická kryptografie
asymetrická kryptografie princip šifrování Zavazadlový algoritmus RSA EL GAMAL další asymetrické blokové algoritmy Skipjack a Kea, DSA, ECDSA D H, ECDH asymetrická kryptografie jeden klíč pro šifrování
VíceModerní metody substitučního šifrování
PEF MZLU v Brně 11. listopadu 2010 Úvod V současné době se pro bezpečnou komunikaci používají elektronická média. Zprávy se před šifrováním převádí do tvaru zpracovatelného technickým vybavením, do binární
Více8. RSA, kryptografie s veřejným klíčem. doc. Ing. Róbert Lórencz, CSc.
Bezpečnost 8. RSA, kryptografie s veřejným klíčem doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních programů
VíceInformatika Ochrana dat
Informatika Ochrana dat Radim Farana Podklady předmětu Informatika pro akademický rok 2007/2008 Obsah Kryptografické systémy s veřejným klíčem, výměna tajných klíčů veřejným kanálem, systémy s veřejným
VíceKRYPTOGRAFIE VER EJNE HO KLI Č E
KRYPTOGRAFIE VER EJNE HO KLI Č E ÚVOD Patricie Vyzinová Jako téma jsem si vybrala asymetrickou kryptografii (kryptografie s veřejným klíčem), což je skupina kryptografických metod, ve kterých se pro šifrování
VícePSK2-16. Šifrování a elektronický podpis I
PSK2-16 Název školy: Autor: Anotace: Vzdělávací oblast: Předmět: Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Jak funguje asymetrická šifra a elektronický podpis Informační
VíceČeské vysoké učení technické v Praze Fakulta elektrotechnická Katedra telekomunikační techniky Asymetrické kryptosystémy I
České vysoké učení technické v Praze Fakulta elektrotechnická Katedra telekomunikační techniky Asymetrické kryptosystémy I Ing. Tomáš Vaněk, Ph.D. tomas.vanek@fel.cvut.cz Osnova obecné informace IFP RSA
VíceSložitost a moderní kryptografie
Složitost a moderní kryptografie Radek Pelánek Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024 Složitost a moderní kryptografie
VíceAsymetrické šifry. Pavla Henzlová 28.3.2011. FJFI ČVUT v Praze. Pavla Henzlová (FJFI ČVUT v Praze) Asymetrické šifry 28.3.
Asymetrické šifry Pavla Henzlová FJFI ČVUT v Praze 28.3.2011 Pavla Henzlová (FJFI ČVUT v Praze) Asymetrické šifry 28.3.2011 1 / 16 Obsah 1 Asymetrická kryptografie 2 Diskrétní logaritmus 3 Baby step -
VíceŠifrová ochrana informací věk počítačů PS5-2
VŠFS; Aplikovaná informatika; SW systémy 2005/2006 1 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací věk počítačů PS5-2 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 2 Osnova
VíceSpráva přístupu PS3-2
Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Správa přístupu PS3-2 1 Osnova II základní metody pro zajištění oprávněného přístupu; autentizace; autorizace; správa uživatelských účtů; srovnání současných
VíceZáklady kryptografie. Beret CryptoParty 11.02.2013. 11.02.2013 Základy kryptografie 1/17
Základy kryptografie Beret CryptoParty 11.02.2013 11.02.2013 Základy kryptografie 1/17 Obsah prezentace 1. Co je to kryptografie 2. Symetrická kryptografie 3. Asymetrická kryptografie Asymetrické šifrování
VícePokročilá kryptologie
Pokročilá kryptologie RSA doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních programů Informatika pro
VíceAsymetrická kryptografie a elektronický podpis. Ing. Mgr. Martin Henzl Mgr. Radim Janča ijanca@fit.vutbr.cz
Asymetrická kryptografie a elektronický podpis Ing. Mgr. Martin Henzl Mgr. Radim Janča ijanca@fit.vutbr.cz Obsah cvičení Asymetrická, symetrická a hybridní kryptografie Matematické problémy, na kterých
VíceJak funguje asymetrické šifrování?
Jak funguje asymetrické šifrování? Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikované matematiky, Fakulta elektrotechniky a informatiky, Vysoká škola báňská Technická univerzita Ostrava Petr Vodstrčil
VíceČínská věta o zbytcích RSA
Čínská věta o zbytcích RSA Matematické algoritmy (11MAG) Jan Přikryl 5. přednáška 11MAG pondělí 10. listopadu 2014 verze: 2014-11-10 10:52 Obsah 1 Čínská věta o zbytcích 2 1.1 Vlastní tvrzení.....................................
VíceŠifrová ochrana informací věk počítačů PS5-2
Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací věk počítačů PS5-2 1 Osnova šifrová ochrana využívající výpočetní techniku např. Feistelova šifra; symetrické a asymetrické šifry;
VíceAsymetrická kryptografie a elektronický podpis. Ing. Dominik Breitenbacher Mgr. Radim Janča
Asymetrická kryptografie a elektronický podpis Ing. Dominik Breitenbacher ibreiten@fit.vutbr.cz Mgr. Radim Janča ijanca@fit.vutbr.cz Obsah cvičení Asymetrická, symetrická a hybridní kryptografie Kryptoanalýza
VíceÚvod RSA Aplikace, související témata RSA. Ing. Štěpán Sem <stepan.sem@gmail.com> Festival Fantazie, 2013. Štěpán Sem
Ing. Festival Fantazie, 2013 Osnova 1 Základní pojmy Obtížnost Kryptografie 2 Základní princip Matematické souvislosti Historie 3 Vymezení pojmů Základní pojmy Obtížnost Kryptografie
VíceElGamal, Diffie-Hellman
Asymetrické šifrování 22. dubna 2010 Prezentace do předmětu UKRY Osnova 1 Diskrétní logaritmus 2 ElGamal 3 Diffie-Hellman Osnova 1 Diskrétní logaritmus 2 ElGamal 3 Diffie-Hellman Osnova 1 Diskrétní logaritmus
VíceŠifrování veřejným klíčem
Šifrování veřejným klíčem Jan Přikryl 6. ledna 2014 Toto je vývojová verze dokumentu. Obsahuje třetí kryptologickou kapitolu rozepsaných skript pro předmět 11KZK ve formě, v jaké se nacházela k datu, uvedenému
VíceC5 Bezpečnost dat v PC
C5 T1 Vybrané kapitoly počíta tačových s sítí Bezpečnost dat v PC 1. Počíta tačová bezpečnost 2. Symetrické šifrování 3. Asymetrické šifrování 4. Velikost klíče 5. Šifrování a dešifrov ifrování 6. Steganografie
VíceDiffieho-Hellmanův protokol ustanovení klíče
Diffieho-Hellmanův protokol ustanovení klíče Andrew Kozlík KA MFF UK Diffieho-Hellmanův protokol ustanovení klíče (1976) Před zahájením protokolu se ustanoví veřejně známé parametry: Konečná grupa (G,
VíceZáklady šifrování a kódování
Materiál byl vytvořen v rámci projektu Nové výzvy, nové příležitosti, nová škola Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Základy šifrování a kódování
VíceProtokol RSA. Tvorba klíčů a provoz protokolu Bezpečnost a korektnost protokolu Jednoduché útoky na provoz RSA Další kryptosystémy
Protokol RSA Jiří Velebil: X01DML 3. prosince 2010: Protokol RSA 1/18 Protokol RSA Autoři: Ronald Rivest, Adi Shamir a Leonard Adleman. a Publikováno: R. L. Rivest, A. Shamir a L. Adleman, A Method for
VíceMFF UK Praha, 22. duben 2008
MFF UK Praha, 22. duben 2008 Elektronický podpis / CA / PKI část 1. http://crypto-world.info/mff/mff_01.pdf P.Vondruška Slide2 Přednáška pro ty, kteří chtějí vědět PROČ kliknout ANO/NE a co zatím všechno
VíceObsah. Protokol RSA. Protokol RSA Bezpečnost protokolu RSA. 5. a 6. přednáška z kryptografie
Obsah RSA šifrování 5. a 6. přednáška z kryptografie 1 RSA šifrování 2 Útoky na protokol RSA Útoky při sdíleném modulu nebo exponentu Útoky při malém soukromém exponentu Implementační útoky 3 Digitální
VíceAutentizace uživatelů
Autentizace uživatelů základní prvek ochrany sítí a systémů kromě povolování přístupu lze uživatele členit do skupin, nastavovat různá oprávnění apod. nejčastěji dvojicí jméno a heslo další varianty: jednorázová
VíceJihomoravske centrum mezina rodnı mobility. T-exkurze. Teorie c ı sel, aneb elektronicky podpis a s ifrova nı
Jihomoravske centrum mezina rodnı mobility T-exkurze Teorie c ı sel, aneb elektronicky podpis a s ifrova nı Brno 2013 Petr Pupı k Obsah Obsah 2 Šifrovací algoritmy RSA a ElGamal 12 2.1 Algoritmus RSA.................................
VíceKryptografie založená na problému diskrétního logaritmu
Kryptografie založená na problému diskrétního logaritmu Andrew Kozlík KA MFF UK Diffieho-Hellmanův protokol ustanovení klíče (1976) Před zahájením protokolu se ustanoví veřejně známé parametry: Konečná
VíceIdentifikátor materiálu: ICT-2-04
Identifikátor materiálu: ICT-2-04 Předmět Téma sady Informační a komunikační technologie Téma materiálu Zabezpečení informací Autor Ing. Bohuslav Nepovím Anotace Student si procvičí / osvojí kryptografii.
Více5. a 6. přednáška z kryptografie
RSA šifrování 5. a 6. přednáška z kryptografie Alena Gollová RSA širování 1/33 Obsah 1 RSA šifrování 2 Útoky při sdíleném modulu nebo exponentu Útoky při malém soukromém exponentu Implementační útoky 3
VíceCO JE KRYPTOGRAFIE Šifrovací algoritmy Kódovací algoritmus Prolomení algoritmu
KRYPTOGRAFIE CO JE KRYPTOGRAFIE Kryptografie je matematický vědní obor, který se zabývá šifrovacími a kódovacími algoritmy. Dělí se na dvě skupiny návrh kryptografických algoritmů a kryptoanalýzu, která
VíceY36PSI Bezpečnost v počítačových sítích. Jan Kubr - 10_11_bezpecnost Jan Kubr 1/41
Y36PSI Bezpečnost v počítačových sítích Jan Kubr - 10_11_bezpecnost Jan Kubr 1/41 Osnova základní pojmy typy šifer autentizace integrita distribuce klíčů firewally typy útoků zabezpečení aplikací Jan Kubr
VíceDigitální podepisování pomocí asymetrické kryptografie
Digitální podepisování pomocí asymetrické kryptografie Jan Máca, FJFI ČVUT v Praze 26. března 2012 Jan Máca () Digitální podepisování 26. března 2012 1 / 22 Obsah 1 Digitální podpis 2 Metoda RSA 3 Metoda
VíceZáklady kryptologie. Kamil Malinka malinka@fit.vutbr.cz Fakulta informačních technologií
Základy kryptologie Kamil Malinka malinka@fit.vutbr.cz Fakulta informačních technologií 1 Detaily zkoušky Během semestru je možno získat maximální počet 100 bodů projekty - 20b. vnitrosemestrální písemka
VíceOchrana dat 2.12.2014. Obsah. Výměna tajných klíčů ve veřejném kanálu. Radim Farana Podklady pro výuku. Kryptografické systémy s tajným klíčem,
Ochrana dat Radim Farana Podklady pro výuku Obsah Kryptografické systémy s tajným klíčem, výměna tajných klíčů veřejným kanálem, systémy s tajným klíčem. Elektronický podpis. Certifikační autorita. Metody
VíceAsymetrická kryptografie
Mendelova zemědělská a lesnická univerzita v Brně Provozně ekonomická fakulta Asymetrická kryptografie Diplomová práce Vedoucí práce: Mgr. Tomáš Foltýnek, Ph.D. Bc. Antonín Moravec Brno 2009 2 . 4 Tímto
VíceDigitální podepisování pomocí asymetrické kryptografie
Digitální podepisování pomocí asymetrické kryptografie 11. dubna 2011 Trocha historie Asymetrické metody Historie Historie Vlastnosti Asymetrické šifrování 1976 Whitfield Diffie a Martin Hellman první
VíceŠifrová ochrana informací věk počítačů KS - 5
VŠFS; Aplikovaná informatika; SW systémy 2005/2006 1 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací věk počítačů KS - 5 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 2
VíceŠIFROVÁNÍ, EL. PODPIS. Kryptografie Elektronický podpis Datové schránky
ŠIFROVÁNÍ, EL. PODPIS Kryptografie Elektronický podpis Datové schránky Kryptografie Kryptografie neboli šifrování je nauka o metodách utajování smyslu zpráv převodem do podoby, která je čitelná jen se
VíceKryptografie, elektronický podpis. Ing. Miloslav Hub, Ph.D. 27. listopadu 2007
Kryptografie, elektronický podpis Ing. Miloslav Hub, Ph.D. 27. listopadu 2007 Kryptologie Kryptologie věda o šifrování, dělí se: Kryptografie nauka o metodách utajování smyslu zpráv převodem do podoby,
VíceRozlišujeme dva základní typy šifrování a to symetrické a asymetrické. Symetrické
1 Šifrování Kryptografie Každý z nás si určitě umí představit situaci, dy je důležité utajit obsah posílané zprávy ta aby ho byl schopen přečíst jen ten omu je určená a nido nepovolaný nebyl schopen zjistit
VíceElektronický podpis. Základní princip. Digitální podpis. Podpis vs. šifrování. Hashování. Jednosměrné funkce. Odesílatel. Příjemce
Základní princip Elektronický podpis Odesílatel podepíše otevřený text vznikne digitálně podepsaný text Příjemce ověří zda podpis patří odesílateli uvěří v pravost podpisu ověří zda podpis a text k sobě
VíceDiskrétní logaritmus
13. a 14. přednáška z kryptografie Alena Gollová 1/38 Obsah 1 Protokoly Diffieho-Hellmanův a ElGamalův Diffieho-Hellmanův a ElGamalův protokol Bezpečnost obou protokolů 2 Baby step-giant step algoritmus
VíceSměry rozvoje v oblasti ochrany informací PS 7
1 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Směry rozvoje v oblasti ochrany informací PS 7 2 Osnova vývoj symetrických a asymetrických metod; bezpečnostní protokoly; PKI; šifrováochranavinternetu;
VíceKvantová kryptografie
Kvantová kryptografie aneb ŠIFROVÁNÍ POMOCÍ FOTONŮ Miloslav Dušek Kvantová kryptografie je metoda pro bezpečný (utajený) přenos informací. Její bezpečnost je garantována fundamentálními zákony kvantové
VícePA159 - Bezpečnostní aspekty
PA159 - Bezpečnostní aspekty 19. 10. 2007 Formulace oblasti Kryptografie (v moderním slova smyslu) se snaží minimalizovat škodu, kterou může způsobit nečestný účastník Oblast bezpečnosti počítačových sítí
Vícekryptosystémy obecně další zajímavé substituční šifry klíčové hospodářství kryptografická pravidla Hillova šifra Vernamova šifra Knižní šifra
kryptosystémy obecně klíčové hospodářství klíč K, prostor klíčů T K kryptografická pravidla další zajímavé substituční šifry Hillova šifra Vernamova šifra Knižní šifra klíč K různě dlouhá posloupnost znaků
VíceHesla a bezpečnost na internetu MjUNI 2019 Dětská univerzita,
Hesla a bezpečnost na internetu MjUNI 2019 Dětská univerzita, 13. 4. 2019 Vladimír Sedláček, vlada.sedlacek@mail.muni.cz Marek Sýs, syso@mail.muni.cz Osnova Hesla: Jaké jsou typické problémy? Jak si zvolit
VíceKomerční výrobky pro kvantovou kryptografii
Cryptofest 05 Katedra počítačů, Fakulta elektrotechnická České vysoké učení technické v Praze 19. března 2005 O čem bude řeč Kryptografie Kryptografie se zejména snaží řešit: autorizovanost přístupu autenticitu
VíceEliptické křivky a RSA
Přehled Katedra informatiky FEI VŠB TU Ostrava 11. února 2005 Přehled Část I: Matematický základ Část II: RSA Část III: Eliptické křivky Matematický základ 1 Základní pojmy a algoritmy Základní pojmy Složitost
VíceAndrew Kozlík KA MFF UK
Autentizační kód zprávy Andrew Kozlík KA MFF UK Autentizační kód zprávy Anglicky: message authentication code (MAC). MAC algoritmus je v podstatě hashovací funkce s klíčem: MAC : {0, 1} k {0, 1} {0, 1}
VíceTel.: (+420) 312 608 207 E-mail: szabo@fbmi.cvut.cz
Internet a zdravotnická informatika ZS 2007/2008 Zoltán Szabó Tel.: (+420) 312 608 207 E-mail: szabo@fbmi.cvut.cz č.dv.: : 504, 5.p Dnešní přednáškař Bezpečnost dat Virus, červ a trojský kůň Základní bezpečnostní
VíceMichaela Sluková, Lenka Ščepánková 15.5.2014
ČVUT FJFI 15.5.2014 1 Úvod 2 3 4 OpenPGP Úvod Jak? Zašifrovat email lze pomocí šifrování zprávy samotné či elektronickým podpisem emailových zpráv. Proč? Zprávu nepřečte někdo jiný a nemůže být změněna,
VíceMatematika IV - 5. přednáška Polynomy
S Matematika IV - 5. přednáška Polynomy Michal Bulant Masarykova univerzita Fakulta informatiky 17. 3. 2008 s Obsah přednášky O Dělitelnost a nerozložitelnost Kořeny a rozklady polynomů Polynomy více proměnných
Vícezákladní informace o kurzu základní pojmy literatura ukončení, požadavky, podmiňující předměty,
základní informace o kurzu ukončení, požadavky, podmiňující předměty, základní pojmy kód x šifra kryptologie x steganografie kryptografie x kryptoanalyza literatura klasická x moderní kryptologie základní,
Více9. DSA, PKI a infrastruktura. doc. Ing. Róbert Lórencz, CSc.
Bezpečnost 9. DSA, PKI a infrastruktura doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních programů Informatika
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY SOFTWAROVÁ PODPORA VÝUKY KRYPTOSYSTÉMŮ ZALOŽENÝCH NA PROBLÉMU DISKRÉTNÍHO LOGARITMU
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF TELECOMMUNICATIONS
VíceKódování a Šifrování. Iveta Nastoupilová
Kódování a Šifrování Iveta Nastoupilová 12.11.2007 Kódování Přeměna, transformace, šifrování signálů Převádění informace z jednoho systému do jiného systému znaků Kódování Úzce souvisí s procesem komunikace
Vícepomocí asymetrické kryptografie 15. dubna 2013
pomocí asymetrické kryptografie ČVUT v Praze FJFI Katedra fyzikální elektroniky 15. dubna 2013 Digitální podpis Postup, umožňující ověřit autenticitu a integritu digitální zprávy. Symetrické šifry nejsou
VíceBEZPEČNOST INFORMACÍ
Předmět Bezpečnost informací je zaměřen na bezpečnostní aspekty informačních systémů a na zkoumání základních prvků vytvářeného bezpečnostního programu v organizacích. Tyto prvky technologie, procesy a
Vícebit/p6d-h.d 22. března
bit/pd-h.d 22. března 2003 Needham-Schroederův protokol... * základní varianta Needham a Schroeder 978 * zajímavý zejména z historických důvodů, protože je základem mnoha autentizačních protokolů a protokolů
VíceUKRY - Symetrické blokové šifry
UKRY - Symetrické blokové šifry Martin Franěk (frankiesek@gmail.com) Fakulta jaderná a fyzikálně inženýrská, ČVUT Praha 18. 3. 2013 Obsah 1 Typy šifer Typy šifer 2 Operační mody Operační mody 3 Přiklady
VíceBezpečnost dat. Možnosti ochrany - realizována na několika úrovních
Bezpečnost dat Možnosti ochrany - realizována na několika úrovních 1. ochrana přístupu k počítači 2. ochrana přístupu k datům 3. ochrana počítačové sítě 4. ochrana pravosti a celistvosti dat (tzv. autenticity
VíceŠifrová ochrana informací věk počítačů PS5-1
Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací věk počítačů PS5-1 1 Osnova šifrová ochrana využívající výpočetní techniku např. Feistelova šifra; symetrické a asymetrické šifry;
VíceMatematika IV - 5. přednáška Polynomy
Matematika IV - 5. přednáška Polynomy Michal Bulant Masarykova univerzita Fakulta informatiky 17. 3. 2008 Obsah přednášky O Dělitelnost a nerozložitelnost Kořeny a rozklady polynomů Polynomy více proměnných
VíceInformatika / bezpečnost
Informatika / bezpečnost Bezpečnost, šifry, elektronický podpis ZS 2015 KIT.PEF.CZU Bezpečnost IS pojmy aktiva IS hardware software data citlivá data hlavně ta chceme chránit autorizace subjekt má právo
VíceBezpečnostní mechanismy
Hardwarové prostředky kontroly přístupu osob Bezpečnostní mechanismy Identifikační karty informace umožňující identifikaci uživatele PIN Personal Identification Number úroveň oprávnění informace o povolených
VíceMODERNÍ ASYMETRICKÉ KRYPTOSYSTÉMY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF TELECOMMUNICATIONS
VíceKryptografické protokoly. Stříbrnice,
Kryptografické protokoly Stříbrnice, 12.-16.2. 2011 Kryptografie Nauka o metodách utajování smyslu zpráv a způsobech zajištění bezpečného přenosu informací xteorie kódování xsteganografie Historie Klasická
VíceOd Enigmy k PKI. principy moderní kryptografie T-SEC4 / L3. Tomáš Herout Cisco. Praha, hotel Clarion 10. 11. dubna 2013.
Praha, hotel Clarion 10. 11. dubna 2013 Od Enigmy k PKI principy moderní kryptografie T-SEC4 / L3 Tomáš Herout Cisco 2013 2011 Cisco and/or its affiliates. All rights reserved. Cisco Connect 1 Největší
VíceINFORMATIKA (ŠIFROVÁNÍ A PODPIS) 2010/11
INFORMATIKA (ŠIFROVÁNÍ A PODPIS) 2010/11 1.1 Šifrovaná a nešifrovaná komunikace Při přenosu dat (v technice i v živých organismech) se užívá: Kódování realizace nebo usnadnění přenosu informace. Morse
VíceDSY-6. Přenosový kanál kódy pro zabezpečení dat Základy šifrování, autentizace Digitální podpis Základy měření kvality přenosu signálu
DSY-6 Přenosový kanál kódy pro zabezpečení dat Základy šifrování, autentizace Digitální podpis Základy měření kvality přenosu signálu Kódové zabezpečení přenosu dat Popis přiřazení kódových slov jednotlivým
VíceKapitola 9. Kryptografie v běžném životě. Úvod. Výběr hotovosti z bankomatu
Kapitola 9 Úvod V této knize jsme už opakovaně zdůrazňovali vliv kryptografie na podobu moderního světa a některé z důležitých prvků jsme ilustrovali na situacích z běžného života. V následující kapitole
Víceegovernment DEFINICE
egovernment 1 egovernment DEFINICE Série procesů vedoucí k výkonu státní správy a samosprávy a uplatňování občanských práv a povinností fyzických a právnických osob, realizovaných elektronickými prostředky.
VíceŠifrování Kafková Petra Kryptografie Věda o tvorbě šifer (z řečtiny: kryptós = skrytý, gráphein = psát) Kryptoanalýza Věda o prolamování/luštění šifer Kryptologie Věda o šifrování obecné označení pro kryptografii
VíceModerní kryptografie a problém diskrétního logaritmu
Bankovní institut vysoká škola, a.s. Katedra informatiky a kvantitativních metod Moderní kryptografie a problém diskrétního logaritmu Diplomová práce Autor: Bc. Michal Novák, DiS. Informační technologie
VíceProblematika převodu zprávy na body eliptické křivky
Problematika převodu zprávy na body eliptické křivky Ing. Filip Buršík Ústav telekomunikací Fakulta elektrotechniky a komunikačních technologií Vysoké Učení Technické v Brně Purkyňova 118, 612 00 Brno,
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF TELECOMMUNICATIONS
VíceKRYPTOGRAFICKÝ PROTOKOL VÝMĚNY KLÍČŮ DIFFIE-HELLMAN
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF TELECOMMUNICATIONS
VíceKryptografie - Síla šifer
Kryptografie - Síla šifer Rozdělení šifrovacích systémů Krátká charakteristika Historie a současnost kryptografie Metody, odolnost Praktické příklady Slabá místa systémů Lidský faktor Rozdělení šifer Obousměrné
VíceGenerátory náhodných a
Kapitola 5 Generátory náhodných a pseudonáhodných čísel, generátory prvočísel V roce 1917 si Gilbert Vernam nechal patentovat šifru, která nyní nese jeho jméno. Byl přesvědčen, že je to zcela bezpečná
VíceInformační systémy ve zdravotnictví
Informační systémy ve zdravotnictví ZS 2008/2009 Zoltán Szabó Tel.: (+420) 312 608 207 E-mail: szabo@fbmi.cvut.cz č.dv.: 504, 5.p Dnešní přednáška Bezpečnost dat Počítačové č viry Úvod do kryptologie,
VíceSymetrické šifry, DES
Symetrické šifry, DES Jiří Vejrosta Fakulta jaderná a fyzikálně inženýrská, ČVUT Jiří Vejrosta (FJFI) UKRY 1 / 20 Klíče Symetrická šifra tajný klíč klíč stejný u odesilatele i příjemce Asymetrická šifra
VíceMixy a systémy pro poskytování anonymity. Marek Kumpošt, Vašek Matyáš Fakulta informatiky, MU Brno {xkumpost
Mixy a systémy pro poskytování anonymity Marek Kumpošt, Vašek Matyáš Fakulta informatiky, MU Brno {xkumpost matyas}@fi.muni.cz Obsah přednášky Motivace Charakteristiky anonymity Typy mixů prezentace Mixminionu
VíceMINIMÁLNÍ POŽADAVKY NA KRYPTOGRAFICKÉ ALGORITMY. doporučení v oblasti kryptografických prostředků
MINIMÁLNÍ POŽADAVKY NA KRYPTOGRAFICKÉ ALGORITMY doporučení v oblasti kryptografických prostředků Verze 1.0, platná ke dni 28.11.2018 Obsah Úvod... 3 1 Doporučení v oblasti kryptografických prostředků...
VíceBAKALÁŘSKÁ PRÁCE. Kvantová kryptografie. Miroslav Gavenda
BAKALÁŘSKÁ PRÁCE Kvantová kryptografie Miroslav Gavenda září 2001 Obsah 1 Úvod 3 2 Jemný úvod do klasické kryptografie 3 2.1 Historická zmínka............................ 3 2.2 Jak si stojí klasická kryptografie?.................
VíceINFORMATIKA. Moderní šifry I
INFORMATIKA Moderní šifry I EDUARD BARTL Přírodovědecká fakulta UP, Olomouc Série článků o šifrování se snaží přiblížit problematiku moderních šifrovacích metod čtenáři se základními znalostmi středoškolské
VíceKvantová kryptografie
PEF MZLU v Brně 18. listopadu 2009 Úvod V dnešní době se používá pro bezpečnou komunikaci asymetrická kryptografie. Jde o silnou šifrovací metodu, která je v dnešní době s použitím současných technologií
VíceNávrh kryptografického zabezpečení systémů hromadného sběru dat
Návrh kryptografického zabezpečení systémů hromadného sběru dat Ing. Martin Koutný Ing. Jiří Hošek Fakulta elektrotechniky a komunikačních technologií VUT v Brně, Ústav telekomunikací, Purkyňova 118, 612
VíceÚvod do kryptografie. Tomáš Dvořák
Úvod do kryptografie Tomáš Dvořák ryptologie κρνπτοσ (skrytý) a λογοσ (věda), tedy věda o šifrování s dešifrování zpráv Kryptografie - teoretické aspekty navrhování šifrovacích metod Kryptologie - metody,
Víceklasická kryptologie základní pojmy požadavky na kryptosystém typologie šifer transpoziční šifry substituční šifry
klasická kryptologie transpoziční šifry substituční šifry základní pojmy požadavky na kryptosystém pravidla bezpečnosti silný kryptosystém typologie šifer bloková x proudová s tajným klíčem x s veřejným
VíceŠifrovací stroje. Dějiny kryptografie. Zpracováno podle knihy Simon Singh: Kniha kódů a šifer. Alena Gollová Dějiny kryptografie 1/44
Dějiny kryptografie Zpracováno podle knihy Simon Singh: Kniha kódů a šifer Alena Gollová Dějiny kryptografie 1/44 Obsah 1 Ruční šifrování Monoalfabetické šifry Polyalfabetické šifry 2 Šifrovací disky Enigma
VíceHistorie Kryptografie
Historie Kryptografie Co je kryptografie? Kryptografie je věda o šifrování dat za pomoci matematických metod. S tímto pojmem musíme ještě zavést pojem kryptoanalýza. Kryptoanalýza se snaží bez znalosti
Vícepříklad Steganografie Matematické základy šifrování šifrování pomocí křížů Hebrejské šifry
příklad Steganografie Matematické základy šifrování modulární aritmetika modulární inverze prvočísla faktorizace diskrétní logaritmus eliptické křivky generátory náhodných čísel šifrování pomocí křížů
Více