Úvod do kryptografie. Tomáš Dvořák

Rozměr: px
Začít zobrazení ze stránky:

Download "Úvod do kryptografie. Tomáš Dvořák"

Transkript

1 Úvod do kryptografie Tomáš Dvořák

2 ryptologie κρνπτοσ (skrytý) a λογοσ (věda), tedy věda o šifrování s dešifrování zpráv Kryptografie - teoretické aspekty navrhování šifrovacích metod Kryptologie - metody, jak takové šifry rozluštit.

3 ormulace problému Alice Bob

4 ubstituční metoda n-tý znak abecedy n+k-tý znak abecedy k = 3 Caesarova šifra a b c d e f g h i j k l m n o p q r s t u v w x y z d e f g h i j k l m n o p q r s t u v w x y z a b c důvěra gxyhud Snadné prolomení šifry: stačí vyzkoušet všechna možná posunutí obecnější substituce permutace abecedy

5 ymetrická kryptografie jeden tajný klíč šifrování i dešifrování jednorázová šifra ( one-time pad ) zpráva x : bitový řetězec klíč k : bitový řetězec téže délky šifrování: x k bitová nonekvivalence

6 ednorázová šifra příklad x k k = = 0011 šifrování dešifrování

7 ezpečnost jednorázové šifry Dešifrování probíhá stejně jako šifrování, protože (x k) k = x Ze zašifrované zprávy nelze odvodit obsah bez znalosti klíče: Známe-li x k a x, známe též x (x k)= k Problém: délka klíče

8 symetrická kryptografie Systém s veřejným klíčem (W.Diffie,M.Hellman,R.Merkle,1976) veřejný V soukromý vu x šifruje V V(x) dešifruje S obdrží S(V(x)) = x

9 ednosměrné funkce f: * * je jednosměrná funkce, pokud (i) f je prostá a existuje konstanta k > 0 tak, že x 1/k f(x) x k pro každé x (ii) funkce f je vyčíslitelná v polynomiálně omezeném čase, (iii) inverzní funkce f -1 není vyčíslitelná v polynomiálně omezeném čase.

10 říklady jednosměrných funkcí f mult (p,q) = p q pro prvočísla p,q f mult -1 : problém faktorizace na prvočinitele f exp (p,r,x) = r x mod p pro prvočíslo p, 0<x<p, generátor r grupy Z p * f exp -1 : problém diskrétního logaritmu (iii) (iii ) není znám polynomiální algoritmus pro výpočet f 1 (iv) neexistuje algoritmus, který by pro nějaké přirozené k v čase O(n k )určil hodnoty f 1 (y) pro alespoň n /n k řetězců y délky n.

11 lastnost padacích dvířek trapdoor function) v) prvky definičního oboru funkce f lz ektivně generovat ) existuje funkce, vyčíslitelná v polynomiálním se, s jejíž znalostí je f -1 výpočet hodnoty iviální.

12 ifrování založené na problému atohu (R.Merkle,M.Hellman,1978) Problém batohu Vstup: přirozená čísla a 1,a 2,, a n Otázka: Existuje (x 1,x 2,, x n ) {0,1} n tž. x i a i = S? NP-úplný problém Posloupnost a 1,a 2,, a n je superrostoucí, pokud a i > a 1 +a a i-1 pro každé i {1,,n} Existuje efektivní algoritmus pro problém batohu se superrostoucí posloupností!

13 enerování klíčů a šifrování Vygeneruj superrostoucí posloupnost a 1,a 2,, a n a dvě nesoudělná přirozená čísla u,v tak, že u > x i a i Spočti b i = v a i mod u pro každé i V = (b 1,b 2,, b n ) S = (u,v,a 1,a 2,, a n ) x 1, x 2,, x n V(x 1, x 2,, x n ) = b i x i

14 ešifrování Spočítej v -1 splňující v v -1 mod u =1 S(V(x 1,x 2,, x n )) = řešení batohu velikosti v -1 V(x 1,x 2,, x n ) mod u s předměty (a 1,a 2,, a n ) Proč? v 1 V ( ) 1 x = 1, K, xn modu v = n i 1 b x i i modu = v 1 = n = n 1 va = = ixi modu v 1 = i 1 i a i x i modu n i 1 va i x i modu =

15 ryptografický systém RSA R.Rivest, A.Shamir, L.Aldeman (1978) Vygeneruj tři velká prvočísla, největší označ s, zbylá p,q. Spočti n = p q Spočti v tak, aby v s mod (p-1)(q-1) = 1 V = (v,n) S = (s,n)

16 ifrování a dešifrování x, x < n V(x) = x v mod n S(y) = y s mod n Bezpečnost : složitost problému rozkladu na prvočinitele

17 andomizovaná verze RSA = jediný bit b x := random(1, n/2 ) odeslat zašifrovanou hodnotu y = 2x+b V(2x+b) S(V(2x+b))=2x+b poslední bit b

18 ryptografické protokoly Kryptografický protokol = množina pravidel pro výměnu informací, zaručující ochranu proti podvodu jedné z komunikujících stran či třetí osoby. Alice Bob veřejný V A soukromý S A veřejný V B soukromý S B

19 právy s doručenkou Alice chce mít jistotou, že její zpráva pro Boba byla skutečně doručena adresátovi v původním stavu. vu x šifruje V B epíše ruje S A troluje x V B (x);a V A (x);b dešifruje S B přečte x apodpisa zprávu x šifruje a podepíše

20 e protokol bezpečný? V B (x);a V B (x);p dešifruje S B přečte x apodpis P zprávu x šifruje podepíše a odešle P V A (x);b V P (x);b šifruje S A ontroluje x

21 ezpečný protokol Alice opatří zprávu x svým podpisem A, zašifruje Bobovým veřejným klíčem a výsledek V B (x,a) odešle adresátovi. Bob obdrženou zprávu dešifruje svým soukromým klíčem S B, extrahuje původní zprávu x, opatří ji svým podpisem B, zašifruje veřejným klíčem Alice a výslede V A (x,b) jí pošle zpět. Alice dešifruje obdržené potvrzení svým soukromým klíčem S B, extrahuje x a srovnáním s původní zprávou ověří, zdali byla zpráva doručena Bobovi v původním stavu.

22 lastnosti protokolu Alice má garanci, že komunikuje s Bobem: Nikdo jiný nepřečte zprávu, šifrovanou V B Bob nemá žádnou záruku, že komunikuje s Alicí!

23 igitální podpis Šifrování: potřebujeme S A (V A (x)) = x Podpis: potřebujeme V A (S A (x)) = x rávu x šifruje S A řipojí jako podpis x;s A (x) V A dešifruje podpis S A (x) výsledek srovná se zprávou x

24 lastnosti digitálního podpisu Bob má nejen jistotu, že zpráva skutečně pochází od Alice, ale též garanci toho, že zpráva nebyla během přenosu změněna. Je-li třeba zaručit důvěrnost, může být navíc celý dokument šifrován Bobovým veřejným klíčem. Bob ji pak po obdržení nejprve dešifruje svým soukromým klíčem. Dvojnásobná délka dat hašovací funkce místo S A (x) S A (h(x)) rychlý výpočet h(x) pro dané y obtížné nalezení x tž. y = h(x)

25 rotokoly s nulovou informací Alici se podařilo obarvit vrcholy velkého grafu třemi barvami tak, že žádné dva sousední vrcholy nejsou obarveny stejnou barvou. Jak přesvědčí Boba o korektnosti svého výsledku, aniž by mu poslala celé řešení, které by Bob případně mohl zneužít a vydávat za své vlastní?

26 rotokol: Alice Obarvení b:v {00,01,11} Alice generuje náhodnou permutaci π({00,01,11}) pro každý vrchol i V vygeneruje veřejný a soukrom RSA klíč (V i,s i ) randomizovaným RSA zašifruje barvu tohoto vrcho π(b(i)) obdrží zašifrované bity y i,y i Bobovi zašle (V i,y i,y i ) pro každé i.

27 rotokol: pokračování Bob náhodně vybere hranu {i,j} E a zašle Alici. Alice obratem vrátí soukromé klíče S i, S j Bob dešifruje barvy vrcholů π(b(i))=s i (y i ) a π(b(j))=s j (y j ) a prověří, zdali jsou skutečně různé. Opakuje se k E - krát, k kde k je zvolená spolehlivost protokolu

28 o když Alice podvádí? Pak v každém kroku existuje hrana s koncovým vrcholy obarvenými stejně, kterou Bob odhalí s pravděpodobností alespoň 1/ E. Po k E krocích zjistí Bob, že obarvení není korektní, s pravděpodobností alespoň E k E 1 e k

29 íťový poker Každý hráč si z balíčku tří karet náhodně vybere jednu, vyšší hodnota vyhrává. Karty = 3 různá n-bitová přirozená čísla a < b < c velké prvočíslo p Každý hráč si dále vygeneruje dvě přirozená čísla = tajné klíče E A D A E B D B 1 (mod p-1) šifrovací E A dešifrovací D A šifrovací E B dešifrovací D B

30 ak se rozdává? lice rozdává, a posílá tedy Bobovi zašifrované karty E A mod p, b E A mod p,c E A mod p v nějakém náhodném pořadí. ob vybere jednu kartu a vrátí ji Alici, která ji dešifruje uloží jako svoji kartu. Nechť je to karta b. ob zašifruje zbylé karty a E AE B mod p, c E AE B mod p a pošle ejich náhodnou permutaci Alici. lice vybere jednu ze dvou obdržených karet, řekněme E A E B mod p, dešifruje ji svým klíčem D A a výsledek E A E B D A mod p = c E B pošle Bobovi. ob dešifruje c a uloží ji jako svoji kartu. ak vítěz přesvědčí druhého hráče, že opravdu vyhrál?

31 ryptografie v praxi.net Framework Assembly = logický balíček tvořený manifestem jedním či více moduly (.exe,.dll,.netmodule apod.) zdroji (resources) Obdoba DLL knihovny

32 ssembly - příklad Hodiny.netmodule Priklad2.exe manifest MSIL kód metadata MSIL kód Datum.netmodule metadata MSIL kód

33 nstalace v.net Klasická instalace kopírování souborů do aplikačních adresářů kopírování souborů do systémových adresářů registrace v systémovém registru Problémy odstranění aplikace zpětná kompatibilita sdílených komponent ( DLL Hell ) Sdílené assembly v.net např. knihovny Base Class Library, Windows Forms do Global Assembly Cache,např. \WinNT\Assembly

34 v prohlížeči

35 dílená jména využívají kryptografii s veřejným klíčem manifest obsahuje s odkazem na soubor v assembly též jeho otisk

36 dílená jména otisk obsahu manifestu je digitálně podepsán soukromým klíčem a připojen k manifestu veřejný klíč uložen do manifestu sdílené jméno=jméno assembly+veřejný klíč Protože veřejný klíč má délku 160B, v odkazech se používá jen Public Key Token = posledních 8B otisku veřejného klíče

37 lektronický podpis v praxi Zákon o elektronickém podpisu, který byl přijat parlamentem ČR v r (v r novelizován) dal digitálně podepsaným elektronickým dokumentům právní sílu. Akreditovaní poskytovatelé certifikačních služeb v ČR = {I.CA}

38 rojekty využívající EP MPSV : informačního systému státní sociální podpory MF : podání přiznání DPH, daně silniční, daně z nemovitosti daň z příjmu fyzických i právnických osob Elektronický obchod B2C, B2B Elektronické bankovnictví Zdravotnictví: projekt Portál ZP pro smluvní zdravotnická zařízení

39 roblémy Popište efektivní algoritmus, který vyřeší problém batohu se perrostoucí posloupností. Podle tzv. Bezoutovy rovnosti pro každá dvě přirozená čísla m,n istují jednoznačně určená celá čísla p,q, splňujíc SD(m,n)=pm + qn. Zobecněte známý Euklidův algoritmus pro jvětšího společného dělitele tak, aby nalezl i čísla p a q. Využijte řešení předchozí úlohy k návrhu efektivního algoritmu erý pro daná nesoudělná přirozená čísla u a v určí přirozené číslo 1 splňující v v -1 mod u =1. Dokončete protokol síťového pokeru. Jak oba hráči vylož rty, aby žádný z nich nemohl podvádět?

40 iteratura B.Schneier: Applied cryptography: protocols, algorithms, and source code in C. Wiley, New York Ron Rivest s Cryptography Page, J.Peterka: Elektronický podpis, e-archiv J.Peterky,

Správa přístupu PS3-2

Správa přístupu PS3-2 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Správa přístupu PS3-2 1 Osnova II základní metody pro zajištění oprávněného přístupu; autentizace; autorizace; správa uživatelských účtů; srovnání současných

Více

Šifrová ochrana informací věk počítačů PS5-2

Šifrová ochrana informací věk počítačů PS5-2 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 1 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací věk počítačů PS5-2 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 2 Osnova

Více

asymetrická kryptografie

asymetrická kryptografie asymetrická kryptografie princip šifrování Zavazadlový algoritmus RSA EL GAMAL další asymetrické blokové algoritmy Skipjack a Kea, DSA, ECDSA D H, ECDH asymetrická kryptografie jeden klíč pro šifrování

Více

Šifrová ochrana informací věk počítačů PS5-2

Šifrová ochrana informací věk počítačů PS5-2 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací věk počítačů PS5-2 1 Osnova šifrová ochrana využívající výpočetní techniku např. Feistelova šifra; symetrické a asymetrické šifry;

Více

Kryptografie založená na problému diskrétního logaritmu

Kryptografie založená na problému diskrétního logaritmu Kryptografie založená na problému diskrétního logaritmu Andrew Kozlík KA MFF UK Diffieho-Hellmanův protokol ustanovení klíče (1976) Před zahájením protokolu se ustanoví veřejně známé parametry: Konečná

Více

Kryptografické protokoly. Stříbrnice,

Kryptografické protokoly. Stříbrnice, Kryptografické protokoly Stříbrnice, 12.-16.2. 2011 Kryptografie Nauka o metodách utajování smyslu zpráv a způsobech zajištění bezpečného přenosu informací xteorie kódování xsteganografie Historie Klasická

Více

Diffieho-Hellmanův protokol ustanovení klíče

Diffieho-Hellmanův protokol ustanovení klíče Diffieho-Hellmanův protokol ustanovení klíče Andrew Kozlík KA MFF UK Diffieho-Hellmanův protokol ustanovení klíče (1976) Před zahájením protokolu se ustanoví veřejně známé parametry: Konečná grupa (G,

Více

8. RSA, kryptografie s veřejným klíčem. doc. Ing. Róbert Lórencz, CSc.

8. RSA, kryptografie s veřejným klíčem. doc. Ing. Róbert Lórencz, CSc. Bezpečnost 8. RSA, kryptografie s veřejným klíčem doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních programů

Více

Složitost a moderní kryptografie

Složitost a moderní kryptografie Složitost a moderní kryptografie Radek Pelánek Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024 Složitost a moderní kryptografie

Více

MFF UK Praha, 22. duben 2008

MFF UK Praha, 22. duben 2008 MFF UK Praha, 22. duben 2008 Elektronický podpis / CA / PKI část 1. http://crypto-world.info/mff/mff_01.pdf P.Vondruška Slide2 Přednáška pro ty, kteří chtějí vědět PROČ kliknout ANO/NE a co zatím všechno

Více

Kryptografie, elektronický podpis. Ing. Miloslav Hub, Ph.D. 27. listopadu 2007

Kryptografie, elektronický podpis. Ing. Miloslav Hub, Ph.D. 27. listopadu 2007 Kryptografie, elektronický podpis Ing. Miloslav Hub, Ph.D. 27. listopadu 2007 Kryptologie Kryptologie věda o šifrování, dělí se: Kryptografie nauka o metodách utajování smyslu zpráv převodem do podoby,

Více

Asymetrická kryptografie a elektronický podpis. Ing. Mgr. Martin Henzl Mgr. Radim Janča ijanca@fit.vutbr.cz

Asymetrická kryptografie a elektronický podpis. Ing. Mgr. Martin Henzl Mgr. Radim Janča ijanca@fit.vutbr.cz Asymetrická kryptografie a elektronický podpis Ing. Mgr. Martin Henzl Mgr. Radim Janča ijanca@fit.vutbr.cz Obsah cvičení Asymetrická, symetrická a hybridní kryptografie Matematické problémy, na kterých

Více

Asymetrická kryptografie a elektronický podpis. Ing. Dominik Breitenbacher Mgr. Radim Janča

Asymetrická kryptografie a elektronický podpis. Ing. Dominik Breitenbacher Mgr. Radim Janča Asymetrická kryptografie a elektronický podpis Ing. Dominik Breitenbacher ibreiten@fit.vutbr.cz Mgr. Radim Janča ijanca@fit.vutbr.cz Obsah cvičení Asymetrická, symetrická a hybridní kryptografie Kryptoanalýza

Více

Asymetrické šifry. Pavla Henzlová 28.3.2011. FJFI ČVUT v Praze. Pavla Henzlová (FJFI ČVUT v Praze) Asymetrické šifry 28.3.

Asymetrické šifry. Pavla Henzlová 28.3.2011. FJFI ČVUT v Praze. Pavla Henzlová (FJFI ČVUT v Praze) Asymetrické šifry 28.3. Asymetrické šifry Pavla Henzlová FJFI ČVUT v Praze 28.3.2011 Pavla Henzlová (FJFI ČVUT v Praze) Asymetrické šifry 28.3.2011 1 / 16 Obsah 1 Asymetrická kryptografie 2 Diskrétní logaritmus 3 Baby step -

Více

ElGamal, Diffie-Hellman

ElGamal, Diffie-Hellman Asymetrické šifrování 22. dubna 2010 Prezentace do předmětu UKRY Osnova 1 Diskrétní logaritmus 2 ElGamal 3 Diffie-Hellman Osnova 1 Diskrétní logaritmus 2 ElGamal 3 Diffie-Hellman Osnova 1 Diskrétní logaritmus

Více

Asymetrická kryptografie

Asymetrická kryptografie PEF MZLU v Brně 12. listopadu 2007 Problém výměny klíčů Problém výměny klíčů mezi odesílatelem a příjemcem zprávy trápil kryptografy po několik století. Problém spočívá ve výměně tajné informace tak, aby

Více

Komerční výrobky pro kvantovou kryptografii

Komerční výrobky pro kvantovou kryptografii Cryptofest 05 Katedra počítačů, Fakulta elektrotechnická České vysoké učení technické v Praze 19. března 2005 O čem bude řeč Kryptografie Kryptografie se zejména snaží řešit: autorizovanost přístupu autenticitu

Více

Pokročilá kryptologie

Pokročilá kryptologie Pokročilá kryptologie RSA doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních programů Informatika pro

Více

Obsah. Protokol RSA. Protokol RSA Bezpečnost protokolu RSA. 5. a 6. přednáška z kryptografie

Obsah. Protokol RSA. Protokol RSA Bezpečnost protokolu RSA. 5. a 6. přednáška z kryptografie Obsah RSA šifrování 5. a 6. přednáška z kryptografie 1 RSA šifrování 2 Útoky na protokol RSA Útoky při sdíleném modulu nebo exponentu Útoky při malém soukromém exponentu Implementační útoky 3 Digitální

Více

5. a 6. přednáška z kryptografie

5. a 6. přednáška z kryptografie RSA šifrování 5. a 6. přednáška z kryptografie Alena Gollová RSA širování 1/33 Obsah 1 RSA šifrování 2 Útoky při sdíleném modulu nebo exponentu Útoky při malém soukromém exponentu Implementační útoky 3

Více

Základy kryptologie. Kamil Malinka malinka@fit.vutbr.cz Fakulta informačních technologií

Základy kryptologie. Kamil Malinka malinka@fit.vutbr.cz Fakulta informačních technologií Základy kryptologie Kamil Malinka malinka@fit.vutbr.cz Fakulta informačních technologií 1 Detaily zkoušky Během semestru je možno získat maximální počet 100 bodů projekty - 20b. vnitrosemestrální písemka

Více

Protokol RSA. Tvorba klíčů a provoz protokolu Bezpečnost a korektnost protokolu Jednoduché útoky na provoz RSA Další kryptosystémy

Protokol RSA. Tvorba klíčů a provoz protokolu Bezpečnost a korektnost protokolu Jednoduché útoky na provoz RSA Další kryptosystémy Protokol RSA Jiří Velebil: X01DML 3. prosince 2010: Protokol RSA 1/18 Protokol RSA Autoři: Ronald Rivest, Adi Shamir a Leonard Adleman. a Publikováno: R. L. Rivest, A. Shamir a L. Adleman, A Method for

Více

KRYPTOGRAFIE VER EJNE HO KLI Č E

KRYPTOGRAFIE VER EJNE HO KLI Č E KRYPTOGRAFIE VER EJNE HO KLI Č E ÚVOD Patricie Vyzinová Jako téma jsem si vybrala asymetrickou kryptografii (kryptografie s veřejným klíčem), což je skupina kryptografických metod, ve kterých se pro šifrování

Více

CO JE KRYPTOGRAFIE Šifrovací algoritmy Kódovací algoritmus Prolomení algoritmu

CO JE KRYPTOGRAFIE Šifrovací algoritmy Kódovací algoritmus Prolomení algoritmu KRYPTOGRAFIE CO JE KRYPTOGRAFIE Kryptografie je matematický vědní obor, který se zabývá šifrovacími a kódovacími algoritmy. Dělí se na dvě skupiny návrh kryptografických algoritmů a kryptoanalýzu, která

Více

Y36PSI Bezpečnost v počítačových sítích. Jan Kubr - 10_11_bezpecnost Jan Kubr 1/41

Y36PSI Bezpečnost v počítačových sítích. Jan Kubr - 10_11_bezpecnost Jan Kubr 1/41 Y36PSI Bezpečnost v počítačových sítích Jan Kubr - 10_11_bezpecnost Jan Kubr 1/41 Osnova základní pojmy typy šifer autentizace integrita distribuce klíčů firewally typy útoků zabezpečení aplikací Jan Kubr

Více

Projekt: 1.5, Registrační číslo: CZ.1.07/1.5.00/ Digitální podpisy

Projekt: 1.5, Registrační číslo: CZ.1.07/1.5.00/ Digitální podpisy VY_32_INOVACE_BEZP_08 Projekt: 1.5, Registrační číslo: CZ.1.07/1.5.00/34.0304 Digitální podpisy Základní myšlenkou elektronického podpisu je obdoba klasického podpisu, jež má zaručit jednoznačnou identifikaci

Více

Diskrétní logaritmus

Diskrétní logaritmus 13. a 14. přednáška z kryptografie Alena Gollová 1/38 Obsah 1 Protokoly Diffieho-Hellmanův a ElGamalův Diffieho-Hellmanův a ElGamalův protokol Bezpečnost obou protokolů 2 Baby step-giant step algoritmus

Více

Jak funguje asymetrické šifrování?

Jak funguje asymetrické šifrování? Jak funguje asymetrické šifrování? Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikované matematiky, Fakulta elektrotechniky a informatiky, Vysoká škola báňská Technická univerzita Ostrava Petr Vodstrčil

Více

Šifrová ochrana informací věk počítačů KS - 5

Šifrová ochrana informací věk počítačů KS - 5 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 1 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací věk počítačů KS - 5 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 2

Více

Základy kryptografie. Beret CryptoParty 11.02.2013. 11.02.2013 Základy kryptografie 1/17

Základy kryptografie. Beret CryptoParty 11.02.2013. 11.02.2013 Základy kryptografie 1/17 Základy kryptografie Beret CryptoParty 11.02.2013 11.02.2013 Základy kryptografie 1/17 Obsah prezentace 1. Co je to kryptografie 2. Symetrická kryptografie 3. Asymetrická kryptografie Asymetrické šifrování

Více

Matematika IV - 5. přednáška Polynomy

Matematika IV - 5. přednáška Polynomy S Matematika IV - 5. přednáška Polynomy Michal Bulant Masarykova univerzita Fakulta informatiky 17. 3. 2008 s Obsah přednášky O Dělitelnost a nerozložitelnost Kořeny a rozklady polynomů Polynomy více proměnných

Více

Autentizace uživatelů

Autentizace uživatelů Autentizace uživatelů základní prvek ochrany sítí a systémů kromě povolování přístupu lze uživatele členit do skupin, nastavovat různá oprávnění apod. nejčastěji dvojicí jméno a heslo další varianty: jednorázová

Více

Kvantové algoritmy a bezpečnost. Václav Potoček

Kvantové algoritmy a bezpečnost. Václav Potoček Kvantové algoritmy a bezpečnost Václav Potoček Osnova Úvod: Kvantové zpracování informace Shorův algoritmus Kvantová distribuce klíče Post-kvantové zabezpečení Úvod Kvantové zpracování informace Kvantový

Více

Jihomoravske centrum mezina rodnı mobility. T-exkurze. Teorie c ı sel, aneb elektronicky podpis a s ifrova nı

Jihomoravske centrum mezina rodnı mobility. T-exkurze. Teorie c ı sel, aneb elektronicky podpis a s ifrova nı Jihomoravske centrum mezina rodnı mobility T-exkurze Teorie c ı sel, aneb elektronicky podpis a s ifrova nı Brno 2013 Petr Pupı k Obsah Obsah 2 Šifrovací algoritmy RSA a ElGamal 12 2.1 Algoritmus RSA.................................

Více

Matematika IV - 5. přednáška Polynomy

Matematika IV - 5. přednáška Polynomy Matematika IV - 5. přednáška Polynomy Michal Bulant Masarykova univerzita Fakulta informatiky 17. 3. 2008 Obsah přednášky O Dělitelnost a nerozložitelnost Kořeny a rozklady polynomů Polynomy více proměnných

Více

C5 Bezpečnost dat v PC

C5 Bezpečnost dat v PC C5 T1 Vybrané kapitoly počíta tačových s sítí Bezpečnost dat v PC 1. Počíta tačová bezpečnost 2. Symetrické šifrování 3. Asymetrické šifrování 4. Velikost klíče 5. Šifrování a dešifrov ifrování 6. Steganografie

Více

PSK2-16. Šifrování a elektronický podpis I

PSK2-16. Šifrování a elektronický podpis I PSK2-16 Název školy: Autor: Anotace: Vzdělávací oblast: Předmět: Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Jak funguje asymetrická šifra a elektronický podpis Informační

Více

Informatika Ochrana dat

Informatika Ochrana dat Informatika Ochrana dat Radim Farana Podklady předmětu Informatika pro akademický rok 2007/2008 Obsah Kryptografické systémy s veřejným klíčem, výměna tajných klíčů veřejným kanálem, systémy s veřejným

Více

RSA. Matematické algoritmy (11MA) Miroslav Vlček, Jan Přikryl. Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní. čtvrtek 21.

RSA. Matematické algoritmy (11MA) Miroslav Vlček, Jan Přikryl. Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní. čtvrtek 21. Čínská věta o zbytcích Šifrování Závěr Čínská věta o zbytcích RSA Matematické algoritmy (11MA) Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 4. přednáška 11MA čtvrtek 21. října 2010 verze:

Více

kryptosystémy obecně další zajímavé substituční šifry klíčové hospodářství kryptografická pravidla Hillova šifra Vernamova šifra Knižní šifra

kryptosystémy obecně další zajímavé substituční šifry klíčové hospodářství kryptografická pravidla Hillova šifra Vernamova šifra Knižní šifra kryptosystémy obecně klíčové hospodářství klíč K, prostor klíčů T K kryptografická pravidla další zajímavé substituční šifry Hillova šifra Vernamova šifra Knižní šifra klíč K různě dlouhá posloupnost znaků

Více

Základy šifrování a kódování

Základy šifrování a kódování Materiál byl vytvořen v rámci projektu Nové výzvy, nové příležitosti, nová škola Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Základy šifrování a kódování

Více

Problematika převodu zprávy na body eliptické křivky

Problematika převodu zprávy na body eliptické křivky Problematika převodu zprávy na body eliptické křivky Ing. Filip Buršík Ústav telekomunikací Fakulta elektrotechniky a komunikačních technologií Vysoké Učení Technické v Brně Purkyňova 118, 612 00 Brno,

Více

Eliptické křivky a RSA

Eliptické křivky a RSA Přehled Katedra informatiky FEI VŠB TU Ostrava 11. února 2005 Přehled Část I: Matematický základ Část II: RSA Část III: Eliptické křivky Matematický základ 1 Základní pojmy a algoritmy Základní pojmy Složitost

Více

PV157 Autentizace a řízení přístupu

PV157 Autentizace a řízení přístupu PV157 Autentizace a řízení přístupu Zdeněk Říha Vašek Matyáš Konzultační hodiny FI MU: B415 St 17:00 18:00 část semestru mimo CZ Microsoft Research Cambridge Email: zriha / matyas @fi.muni.cz Průběh kurzu

Více

České vysoké učení technické v Praze Fakulta elektrotechnická Katedra telekomunikační techniky Asymetrické kryptosystémy I

České vysoké učení technické v Praze Fakulta elektrotechnická Katedra telekomunikační techniky Asymetrické kryptosystémy I České vysoké učení technické v Praze Fakulta elektrotechnická Katedra telekomunikační techniky Asymetrické kryptosystémy I Ing. Tomáš Vaněk, Ph.D. tomas.vanek@fel.cvut.cz Osnova obecné informace IFP RSA

Více

RSA. Matematické algoritmy (11MAG) Jan Přikryl. Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní. verze: :01

RSA. Matematické algoritmy (11MAG) Jan Přikryl. Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní. verze: :01 Čínská věta o zbytcích Mocnění Eulerova funkce Šifrování Závěr Čínská věta o zbytcích RSA Matematické algoritmy (11MAG) Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 4. přednáška 11MAG ponděĺı

Více

Čínská věta o zbytcích RSA

Čínská věta o zbytcích RSA Čínská věta o zbytcích RSA Matematické algoritmy (11MAG) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MAG pondělí 10. listopadu 2014 verze: 2014-11-10 11:20 Obsah

Více

klasická kryptologie základní pojmy požadavky na kryptosystém typologie šifer transpoziční šifry substituční šifry

klasická kryptologie základní pojmy požadavky na kryptosystém typologie šifer transpoziční šifry substituční šifry klasická kryptologie transpoziční šifry substituční šifry základní pojmy požadavky na kryptosystém pravidla bezpečnosti silný kryptosystém typologie šifer bloková x proudová s tajným klíčem x s veřejným

Více

9. DSA, PKI a infrastruktura. doc. Ing. Róbert Lórencz, CSc.

9. DSA, PKI a infrastruktura. doc. Ing. Róbert Lórencz, CSc. Bezpečnost 9. DSA, PKI a infrastruktura doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních programů Informatika

Více

bit/p6d-h.d 22. března

bit/p6d-h.d 22. března bit/pd-h.d 22. března 2003 Needham-Schroederův protokol... * základní varianta Needham a Schroeder 978 * zajímavý zejména z historických důvodů, protože je základem mnoha autentizačních protokolů a protokolů

Více

Matematické základy šifrování a kódování

Matematické základy šifrování a kódování Matematické základy šifrování a kódování Permutace Pojem permutace patří mezi základní pojmy a nachází uplatnění v mnoha oblastech, např. kombinatorice, algebře apod. Definice Nechť je n-prvková množina.

Více

INFORMATIKA (ŠIFROVÁNÍ A PODPIS) 2010/11

INFORMATIKA (ŠIFROVÁNÍ A PODPIS) 2010/11 INFORMATIKA (ŠIFROVÁNÍ A PODPIS) 2010/11 1.1 Šifrovaná a nešifrovaná komunikace Při přenosu dat (v technice i v živých organismech) se užívá: Kódování realizace nebo usnadnění přenosu informace. Morse

Více

4. Teorie informace, teorie složitosti algoritmů. doc. Ing. Róbert Lórencz, CSc.

4. Teorie informace, teorie složitosti algoritmů. doc. Ing. Róbert Lórencz, CSc. Bezpečnost 4. Teorie informace, teorie složitosti algoritmů doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Kryptografie - Síla šifer

Kryptografie - Síla šifer Kryptografie - Síla šifer Rozdělení šifrovacích systémů Krátká charakteristika Historie a současnost kryptografie Metody, odolnost Praktické příklady Slabá místa systémů Lidský faktor Rozdělení šifer Obousměrné

Více

Kryptografie a počítačová

Kryptografie a počítačová Kryptografie a počítačová Úvod KPB 2018/19, 1. přednáška 1 Informace k předmětu Kontakt Kancelář EA439 eliska.ochodkova@vsb.cz Všechny důležité informace na www.cs.vsb.cz/ochodkova Organizace výuky sledujte

Více

Šifrování Kafková Petra Kryptografie Věda o tvorbě šifer (z řečtiny: kryptós = skrytý, gráphein = psát) Kryptoanalýza Věda o prolamování/luštění šifer Kryptologie Věda o šifrování obecné označení pro kryptografii

Více

Vzdálenost jednoznačnosti a absolutně

Vzdálenost jednoznačnosti a absolutně Vzdálenost jednoznačnosti a absolutně bezpečné šifry Andrew Kozlík KA MFF UK Značení Pracujeme s šifrou (P, C, K, E, D), kde P je množina otevřených textů, C je množina šifrových textů, K je množina klíčů,

Více

Informatika / bezpečnost

Informatika / bezpečnost Informatika / bezpečnost Bezpečnost, šifry, elektronický podpis ZS 2015 KIT.PEF.CZU Bezpečnost IS pojmy aktiva IS hardware software data citlivá data hlavně ta chceme chránit autorizace subjekt má právo

Více

dokumentaci Miloslav Špunda

dokumentaci Miloslav Špunda Možnosti elektronického podpisu ve zdravotnické dokumentaci Možnosti elektronického podpisu ve zdravotnické dokumentaci Miloslav Špunda Anotace Příspěvek se zabývá problematikou užití elektronického podpisu

Více

Problematika Internetového bankovnictví v ČR a jeho bezpečnosti. Problems of Internet banking at Czech republic and its security

Problematika Internetového bankovnictví v ČR a jeho bezpečnosti. Problems of Internet banking at Czech republic and its security Problematika Internetového bankovnictví v ČR a jeho bezpečnosti Problems of Internet banking at Czech republic and its security Dagmar Brechlerová Adresa autorky: RNDR. Dagmar Brechlerová, Česká zemědělská

Více

Od Enigmy k PKI. principy moderní kryptografie T-SEC4 / L3. Tomáš Herout Cisco. Praha, hotel Clarion 10. 11. dubna 2013.

Od Enigmy k PKI. principy moderní kryptografie T-SEC4 / L3. Tomáš Herout Cisco. Praha, hotel Clarion 10. 11. dubna 2013. Praha, hotel Clarion 10. 11. dubna 2013 Od Enigmy k PKI principy moderní kryptografie T-SEC4 / L3 Tomáš Herout Cisco 2013 2011 Cisco and/or its affiliates. All rights reserved. Cisco Connect 1 Největší

Více

Osnova přednášky. Seznámení s asymetrickou kryptografií, díl 1. O pojmu bezpečnost Poznámka o hodnocení kryptografické bezpečnosti.

Osnova přednášky. Seznámení s asymetrickou kryptografií, díl 1. O pojmu bezpečnost Poznámka o hodnocení kryptografické bezpečnosti. Seznámení s asymetrickou kryptografií, díl 1. Ing. omáš Rosa ICZ a.s., Praha Katedra počítačů, FEL, ČVU v Praze tomas.rosa@i.cz Osnova přednášky Základní principy pojem bezpečnost související (snad) složité

Více

Protokol pro zabezpečení elektronických transakcí - SET

Protokol pro zabezpečení elektronických transakcí - SET Protokol pro zabezpečení elektronických transakcí - SET Ing. Petr Číka Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, Ústav telekomunikací, Purkyňova 118, 612 00 Brno,

Více

Andrew Kozlík KA MFF UK

Andrew Kozlík KA MFF UK Autentizační kód zprávy Andrew Kozlík KA MFF UK Autentizační kód zprávy Anglicky: message authentication code (MAC). MAC algoritmus je v podstatě hashovací funkce s klíčem: MAC : {0, 1} k {0, 1} {0, 1}

Více

Základy elementární teorie čísel

Základy elementární teorie čísel Základy elementární teorie čísel Jiří Velebil: X01DML 29. října 2010: Základy elementární teorie čísel 1/14 Definice Řekneme, že přirozené číslo a dělí přirozené číslo b (značíme a b), pokud existuje přirozené

Více

Identifikátor materiálu: ICT-2-04

Identifikátor materiálu: ICT-2-04 Identifikátor materiálu: ICT-2-04 Předmět Téma sady Informační a komunikační technologie Téma materiálu Zabezpečení informací Autor Ing. Bohuslav Nepovím Anotace Student si procvičí / osvojí kryptografii.

Více

Úvod RSA Aplikace, související témata RSA. Ing. Štěpán Sem <stepan.sem@gmail.com> Festival Fantazie, 2013. Štěpán Sem

Úvod RSA Aplikace, související témata RSA. Ing. Štěpán Sem <stepan.sem@gmail.com> Festival Fantazie, 2013. Štěpán Sem Ing. Festival Fantazie, 2013 Osnova 1 Základní pojmy Obtížnost Kryptografie 2 Základní princip Matematické souvislosti Historie 3 Vymezení pojmů Základní pojmy Obtížnost Kryptografie

Více

Elektronický podpis. Základní princip. Digitální podpis. Podpis vs. šifrování. Hashování. Jednosměrné funkce. Odesílatel. Příjemce

Elektronický podpis. Základní princip. Digitální podpis. Podpis vs. šifrování. Hashování. Jednosměrné funkce. Odesílatel. Příjemce Základní princip Elektronický podpis Odesílatel podepíše otevřený text vznikne digitálně podepsaný text Příjemce ověří zda podpis patří odesílateli uvěří v pravost podpisu ověří zda podpis a text k sobě

Více

klasická kryptologie základní pojmy požadavky na kryptosystém typologie šifer transpoziční šifry substituční šifry

klasická kryptologie základní pojmy požadavky na kryptosystém typologie šifer transpoziční šifry substituční šifry Květuše Sýkorová Květuše Sýkorová klasická kryptologie transpoziční šifry substituční šifry základní pojmy požadavky na kryptosystém pravidla bezpečnosti silný kryptosystém typologie šifer bloková x proudová

Více

Přednáška 10. X Window. Secure shell. Úvod do Operačních Systémů Přednáška 10

Přednáška 10. X Window. Secure shell. Úvod do Operačních Systémů Přednáška 10 Přednáška 10 X Window. Secure shell. 1 X Window systém I Systém pro správu oken. Poskytuje nástroje pro tvorbu GUI (Graphical User Interface) a grafických aplikací. Nezávislý na hardwaru. Transparentní

Více

Základy elementární teorie čísel

Základy elementární teorie čísel Základy elementární teorie čísel Jiří Velebil: A7B01MCS 3. října 2011: Základy elementární teorie čísel 1/15 Dělení se zbytkem v oboru celých čísel Ať a, b jsou libovolná celá čísla, b 0. Pak existují

Více

Miroslav Kureš. Aplikovaná matematika Ostravice 2012 2. workshop A-Math-Net Sít pro transfer znalostí v aplikované matematice

Miroslav Kureš. Aplikovaná matematika Ostravice 2012 2. workshop A-Math-Net Sít pro transfer znalostí v aplikované matematice O Weilově párování na eliptických křivkách Miroslav Kureš Aplikovaná matematika Ostravice 2012 2. workshop A-Math-Net Sít pro transfer znalostí v aplikované matematice Abstrakt. Pracovní seminární text,

Více

základní informace o kurzu základní pojmy literatura ukončení, požadavky, podmiňující předměty,

základní informace o kurzu základní pojmy literatura ukončení, požadavky, podmiňující předměty, základní informace o kurzu ukončení, požadavky, podmiňující předměty, základní pojmy kód x šifra kryptologie x steganografie kryptografie x kryptoanalyza literatura klasická x moderní kryptologie základní,

Více

Hesla a bezpečnost na internetu MjUNI 2019 Dětská univerzita,

Hesla a bezpečnost na internetu MjUNI 2019 Dětská univerzita, Hesla a bezpečnost na internetu MjUNI 2019 Dětská univerzita, 13. 4. 2019 Vladimír Sedláček, vlada.sedlacek@mail.muni.cz Marek Sýs, syso@mail.muni.cz Osnova Hesla: Jaké jsou typické problémy? Jak si zvolit

Více

Pokročilá kryptologie

Pokročilá kryptologie Pokročilá kryptologie Kryptografie eliptických křivkek doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Šifrová ochrana informací věk počítačů PS5-1

Šifrová ochrana informací věk počítačů PS5-1 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací věk počítačů PS5-1 1 Osnova šifrová ochrana využívající výpočetní techniku např. Feistelova šifra; symetrické a asymetrické šifry;

Více

Bezpečnost internetového bankovnictví, bankomaty

Bezpečnost internetového bankovnictví, bankomaty , bankomaty Filip Marada, filipmarada@gmail.com KM FJFI 15. května 2014 15. května 2014 1 / 18 Obsah prezentace 1 Bezpečnost internetového bankovnictví Možná rizika 2 Bankomaty Výběr z bankomatu Možná

Více

Využití Diffie-Hellmanova protokolu pro anonymní autentizaci

Využití Diffie-Hellmanova protokolu pro anonymní autentizaci Rok / Year: Svazek / Volume: Číslo / Issue: 2013 15 1 Využití Diffie-Hellmanova protokolu pro anonymní autentizaci The use of Diffie-Hellman protocol for anonymous authentication Petr Ležák xlezak02@stud.feec.vutbr.cz

Více

ŠIFROVÁNÍ, EL. PODPIS. Kryptografie Elektronický podpis Datové schránky

ŠIFROVÁNÍ, EL. PODPIS. Kryptografie Elektronický podpis Datové schránky ŠIFROVÁNÍ, EL. PODPIS Kryptografie Elektronický podpis Datové schránky Kryptografie Kryptografie neboli šifrování je nauka o metodách utajování smyslu zpráv převodem do podoby, která je čitelná jen se

Více

Šifrová ochrana informací historie KS4

Šifrová ochrana informací historie KS4 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 1 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací historie KS4 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 2 Osnova

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY SOFTWAROVÁ PODPORA VÝUKY KRYPTOSYSTÉMŮ ZALOŽENÝCH NA PROBLÉMU DISKRÉTNÍHO LOGARITMU

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY SOFTWAROVÁ PODPORA VÝUKY KRYPTOSYSTÉMŮ ZALOŽENÝCH NA PROBLÉMU DISKRÉTNÍHO LOGARITMU VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF TELECOMMUNICATIONS

Více

Návrh a implementace bezpečnosti v podnikových aplikacích. Pavel Horal

Návrh a implementace bezpečnosti v podnikových aplikacích. Pavel Horal Návrh a implementace bezpečnosti v podnikových aplikacích Pavel Horal Kryptologie nauka zkoumající metody dosažení cílů informační bezpečnosti důvěrnost, integrita, autenticita,

Více

Moderní metody substitučního šifrování

Moderní metody substitučního šifrování PEF MZLU v Brně 11. listopadu 2010 Úvod V současné době se pro bezpečnou komunikaci používají elektronická média. Zprávy se před šifrováním převádí do tvaru zpracovatelného technickým vybavením, do binární

Více

Návrh kryptografického zabezpečení systémů hromadného sběru dat

Návrh kryptografického zabezpečení systémů hromadného sběru dat Návrh kryptografického zabezpečení systémů hromadného sběru dat Ing. Martin Koutný Ing. Jiří Hošek Fakulta elektrotechniky a komunikačních technologií VUT v Brně, Ústav telekomunikací, Purkyňova 118, 612

Více

Kvantová kryptografie

Kvantová kryptografie Kvantová kryptografie aneb ŠIFROVÁNÍ POMOCÍ FOTONŮ Miloslav Dušek Kvantová kryptografie je metoda pro bezpečný (utajený) přenos informací. Její bezpečnost je garantována fundamentálními zákony kvantové

Více

Symetrické šifry, DES

Symetrické šifry, DES Symetrické šifry, DES Jiří Vejrosta Fakulta jaderná a fyzikálně inženýrská, ČVUT Jiří Vejrosta (FJFI) UKRY 1 / 20 Klíče Symetrická šifra tajný klíč klíč stejný u odesilatele i příjemce Asymetrická šifra

Více

PA159 - Bezpečnostní aspekty

PA159 - Bezpečnostní aspekty PA159 - Bezpečnostní aspekty 19. 10. 2007 Formulace oblasti Kryptografie (v moderním slova smyslu) se snaží minimalizovat škodu, kterou může způsobit nečestný účastník Oblast bezpečnosti počítačových sítí

Více

Moderní komunikační technologie. Ing. Petr Machník, Ph.D.

Moderní komunikační technologie. Ing. Petr Machník, Ph.D. Moderní komunikační technologie Ing. Petr Machník, Ph.D. Virtuální privátní sítě Základní vlastnosti VPN sítí Virtuální privátní síť (VPN) umožňuje bezpečně přenášet data přes nezabezpečenou síť. Zabezpečení

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF TELECOMMUNICATIONS

Více

Počet kreditů: 5 Forma studia: kombinovaná. Anotace: Předmět seznamuje se základy dělitelnosti, vybranými partiemi algebry, šifrování a kódování.

Počet kreditů: 5 Forma studia: kombinovaná. Anotace: Předmět seznamuje se základy dělitelnosti, vybranými partiemi algebry, šifrování a kódování. Název předmětu: Matematika pro informatiky Zkratka předmětu: MIE Počet kreditů: 5 Forma studia: kombinovaná Forma zkoušky: kombinovaná (písemná a ústní část) Anotace: Předmět seznamuje se základy dělitelnosti,

Více

Obsah. Úroveň I - Přehled. Úroveň II - Principy. Kapitola 1. Kapitola 2

Obsah. Úroveň I - Přehled. Úroveň II - Principy. Kapitola 1. Kapitola 2 Úroveň I - Přehled Úroveň II - Principy Kapitola 1 Kapitola 2 1. Základní pojmy a souvislosti 27 1.1 Zpráva vs. dokument 27 1.2 Písemná, listinná a elektronická podoba dokumentu 27 1.3 Podpis, elektronický

Více

Rozlišujeme dva základní typy šifrování a to symetrické a asymetrické. Symetrické

Rozlišujeme dva základní typy šifrování a to symetrické a asymetrické. Symetrické 1 Šifrování Kryptografie Každý z nás si určitě umí představit situaci, dy je důležité utajit obsah posílané zprávy ta aby ho byl schopen přečíst jen ten omu je určená a nido nepovolaný nebyl schopen zjistit

Více

Obsah. Nastavení elektronické komunikace v IS PREMIER

Obsah. Nastavení elektronické komunikace v IS PREMIER Nastavení elektronické komunikace v IS PREMIER Obsah Elektronický podpis... 2 Další možnosti... 4 Registrace knihoven... 6 Modul epodání... 7 Komunikace s ČSSZ přes rozhraní VREP... 8 Komunikace s MFCR

Více

Šifrování dat, kryptografie

Šifrování dat, kryptografie Metody a využití Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 5. prosince 201 Úvod do kryptografie Kryptografie a kryptoanalýza Co to je kryptografie

Více

Bezpečnost dat. Možnosti ochrany - realizována na několika úrovních

Bezpečnost dat. Možnosti ochrany - realizována na několika úrovních Bezpečnost dat Možnosti ochrany - realizována na několika úrovních 1. ochrana přístupu k počítači 2. ochrana přístupu k datům 3. ochrana počítačové sítě 4. ochrana pravosti a celistvosti dat (tzv. autenticity

Více

EU-OPVK:VY_32_INOVACE_FIL13 Vojtěch Filip, 2014

EU-OPVK:VY_32_INOVACE_FIL13 Vojtěch Filip, 2014 Číslo projektu CZ.1.07/1.5.00/34.0036 Tématický celek Inovace výuky ICT na BPA Název projektu Inovace a individualizace výuky Název materiálu Kryptografie Číslo materiálu VY_32_INOVACE_FIL13 Ročník První

Více

pomocí asymetrické kryptografie 15. dubna 2013

pomocí asymetrické kryptografie 15. dubna 2013 pomocí asymetrické kryptografie ČVUT v Praze FJFI Katedra fyzikální elektroniky 15. dubna 2013 Digitální podpis Postup, umožňující ověřit autenticitu a integritu digitální zprávy. Symetrické šifry nejsou

Více

Základní definice Aplikace hašování Kontrukce Známé hašovací funkce. Hašovací funkce. Jonáš Chudý. Úvod do kryptologie

Základní definice Aplikace hašování Kontrukce Známé hašovací funkce. Hašovací funkce. Jonáš Chudý. Úvod do kryptologie Úvod do kryptologie Základní definice Kryptografická hašovací funkce Kryptografickou hašovací funkcí nazveme zobrazení h, které vstupu X libovolné délky přiřadí obraz h(x) pevné délky m a navíc splňuje

Více

Šifrování. Tancuj tak, jako když se nikdo nedívá. Šifruj tak, jako když se dívají všichni! Martin Kotyk IT Security Consultnant

Šifrování. Tancuj tak, jako když se nikdo nedívá. Šifruj tak, jako když se dívají všichni! Martin Kotyk IT Security Consultnant Šifrování Tancuj tak, jako když se nikdo nedívá. Šifruj tak, jako když se dívají všichni! Martin Kotyk IT Security Consultnant Šifrování pevných disků Don't send the encryption key by email! Šifrování

Více