Čínská věta o zbytcích RSA
|
|
- Ladislav Havlíček
- před 6 lety
- Počet zobrazení:
Transkript
1 Čínská věta o zbytcích RSA Matematické algoritmy (11MAG) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MAG pondělí 10. listopadu 2014 verze: :20
2 Obsah přednášky 1 Čínská věta o zbytcích Vlastní tvrzení Problém nůše s vejci 2 Modulární mocnění 3 Eulerova funkce 4 Šifrování 5 Závěr
3 Čínská věta o zbytcích (Chinese Reminder Theorem, CRT) Více vzájemně ekvivalentních tvrzení z algebry a teorie čísel. Nejstarší zmínka z Číny ve 3. století našeho letopočtu. Problém Jak najít x, jenž je řešením více kongruencí najednou, například x 2 (mod 3), x 3 (mod 5), x 2 (mod 7)?
4 Čínská věta o zbytcích Postup řešení (1/3) Zbytkové třídy jsou [2] 3, [3] 5 a [2] 7, výsledné řešení musí spadat do všech tří z nich. 2κ 1 + 3κ 2 + 2κ 3 2 (mod 3), 2κ 1 + 3κ 2 + 2κ 3 3 (mod 5), 2κ 1 + 3κ 2 + 2κ 3 2 (mod 7).
5 Čínská věta o zbytcích Postup řešení (2/3) V prvním kroku hledáme nulové a jednotkové zbytkové třídy pro kombinace původních modulů. V našem případě platí κ 1 = 70 0 (mod 5 7) κ 1 = 70 1 (mod 3), κ 2 = 21 0 (mod 3 7) κ 2 = 21 1 (mod 5), κ 3 = 15 0 (mod 3 5) κ 3 = 15 1 (mod 7).
6 Čínská věta o zbytcích Postup řešení (3/3) Řešením dané soustavy kongruencí je v takovém případě číslo ˆx = = 233. Minimální hodnota x je dána třídou kongruence modulo = 105, tedy x = 233 mod 105 = 23.
7 Čínská věta o zbytcích Vlastní tvrzení Nechť n 1, n 2,..., n k jsou navzájem nesoudělná přirozená čísla, n i 2 pro všechna i = 1,..., k. Potom řešení soustavy rovnic x a 1 (mod n 1 ) x a 2 (mod n 2 ). x a k (mod n k ) existuje a je určeno jednoznačně v modulo n = n 1 n 2... n k.
8 Jak si Sun Tzu ušetří práci Lehký náznak důkazu Díky nesoudělnosti existuje ve třídě operací modulo n i ke každému N i = n/n i jeho multiplikativní inverze M i, tedy M i N i 1 (mod n i ) a platí k x = a i M i N i. i=1 Ve výše uvedeném případě se zbytkovými třídami [2] 3, [3] 5 a [2] 7 je x = = 233.
9 Praktický význam věty Výpočty modulo velké M lze převést na výpočty modulo menší součinitelé čísla M zrychlení výpočtu. Lze generalizovat pro soudělná čísla. Význam hlavně v šifrovacích systémech.
10 Problém nůše s vejci Ilustrace použití CRT V nůši je v vajec. Pokud z ní odebíráme vejce po dvou, třech a pěti najednou, v nůši nakonec zůstane 1, 2, respektive 4 vejce. Pokud odebíráme vejce po sedmi kusech, v nůši nakonec nezůstane vejce žádné. Jaká je nejmenší hodnota v pro niž může uvedená situace nastat?
11 Problém nůše s vejci Ilustrace použití CRT (2) Zbytkové třídy jsou [1] 2, [2] 3, [4] 5 a [0] 7. Hledáme řešení soustavy v 1 (mod 2) v 2 (mod 3) v 4 (mod 5) v 0 (mod 7) Výsledek bude nějaká třída kongruence modulo 210.
12 Problém nůše s vejci Ilustrace použití CRT (3) Pro jednotlivé ekvivalence máme i n i N i M i a i v = ( ) mod 210 = ( ) mod 210 = 749 mod 210 = 119
13 Obsah přednášky 1 Čínská věta o zbytcích 2 Modulární mocnění Definice 3 Eulerova funkce 4 Šifrování 5 Závěr
14 Modulární mocnění Výpočet c b r (mod n) Neefektivně lze opakovaným násobením a redukcí: Jde to ale i lépe. c = b [ b [... [ b b }{{} r krát mod n ]... ] mod n ] mod n
15 Modulární mocnění Rychlejší výpočet c b r (mod n) Opakovaný kvadrát Efektivní algoritmus pro b Z, r N je následující Require: b Z, r, n N Ensure: c b r (mod n) Nechť r = k j=0 a j 2 j, a j {0, 1} c 1 + a 0 (b 1); b 0 b for j = 1 to k do b j b 2 j 1 mod n if a j > 0 then c c b j mod n end if end for return c b r (mod n)
16 Modulární mocnění Příklad Příklad (Spočtěte c = 3 17 mod 7) Nejprve rozložíme r = 17 = b. Je a 0 = 1 a proto prvotní hodnota c = b = 3 a b 0 = 3. Potom b 1 = 3 2 mod 7 = 9 mod 7 = 2, a 1 = 0, b 2 = 2 2 mod 7 = 4 mod 7 = 4, a 2 = 0, b 3 = 4 2 mod 7 = 16 mod 7 = 2, a 3 = 0, b 4 = 2 2 mod 7 = 4 mod 7 = 4, a 4 = 1. Nyní přepočteme c = 3 4 mod 7 = 12 mod 7 = 5. Další binární cifry už v r nejsou, výsledkem je proto c = 5. Kontrola: 3 17 = mod 7 = 5.
17 Obsah přednášky 1 Čínská věta o zbytcích 2 Modulární mocnění 3 Eulerova funkce Definice 4 Šifrování 5 Závěr
18 Eulerova funkce φ(n) Rozšíření Malé Fermatovy věty Definice (Eulerova věta) Malou Fermatovu větu lze zobecnit na tvar a φ(n) 1 (mod n), kde φ(n) je tak zvaná Eulerova funkce, která udává počet přirozených čísel 1 x n, jež jsou s n nesoudělná. Někdy φ(n) označuje názvem totient.
19 Eulerova funkce φ(n) Rozšíření Malé Fermatovy věty Pro prvočísla je φ(p) = p 1, pro nesoudělná x a y platí φ(x y) = φ(x) φ(y) a proto pro prvočísla p a q také φ(p)φ(q) = (p 1)(q 1). Pro libovolné přirozené n platí také φ(n) = n ( 1 1 ). p p n
20 Obsah přednášky 1 Čínská věta o zbytcích 2 Modulární mocnění 3 Eulerova funkce 4 Šifrování Symetrické a asymetrické šifry Výměna klíčů RSA (Rivest, Shamir a Adelman 1977) CRT-RSA Prolomení RSA při nevhodné volbě p a q
21 Šifrování Symetrické a asymetrické šifry Existují dvě základní skupiny šifrovacích algoritmů: Symetrické šifry u nichž se ten samý klíč používá jak k šifrování, tak i k dešifrování zprávy. Odesílatel i příjemce musí mít k dispozici identické klíče. Příkladem je DES, 3DES, AES. Asymetrické šifry u nichž se šifruje jiným klíčem, než je klíč určený k dešifrování. Odesílatel po zašifrování již nemá možnost zprávu dešifrovat. Příkladem je RSA (PGP), GnuPG, ElGamal. Symetrické šifry jsou při stejné délce šifrovacího klíče výrazně bezpečnější, než šifry asymetrické...
22 Diffieho-Hellmanova výměna klíčů Jak se dohodnout na klíči přes nezabezpečený kanál... ale symetrické šifrování má základní problém: distribuci klíčů. Diffie a Hellman, 1976 Alice a Bob se na klíči mohou dohodnout přes nezabezpečený komunikační kanál. Je pouze třeba zajistit, aby operace, jež Alice a Bob provádějí, nebyly výpočetně snadno invertovatelné. Diffieho-Hellmanova výměna klíčů Veřejně známé prvočíslo p a α {2,..., p 2}. Oba jako klíč použijí α xy mod p Alice si vymyslí veliké x N a Bobovi pošle α x mod p, Bob pošle Alici α y mod p. Alice pak provede (α y ) x mod p, Bob obdobně.
23 Diffieho-Hellmanova výměna klíčů Vysvětlení Vzhledem k tomu, že [a] p [b] p = [ab] p platí pro Alicí přijaté Bobovo α y mod p následující: a po umocnění na x-tou: [ α } α {{ α } y krát x ] p α y mod p [ α } α {{ α } ] p, y krát = [ α } α {{ α } ] p [ α } α {{ α } ] p [ } α α {{ α } ] p } y krát y krát {{ y krát } x krát [ α } α {{ α } ] p. xy krát Recipročně to platí i pro Bobem přijaté Aličino α x mod p.
24 Diffieho-Hellmanova výměna klíčů Příklad Příklad výměny pro p = 17 a α = 5 Alice si zvolí x = Bob si zvolí x = Po nezašifrovaném spojení pošle Alice Bobovi mod 17 = 7 a Bob pošle Alici mod 17 = 10. Bob si spočte svůj klíč jako mod 17 = 12, Alice jako mod 17 = 12. Ve skutečnosti budou p, α, x, y mnohem větší čísla (proč)?
25 Šifrování veřejným klíčem Myšlenka RSA RSA vychází z předpokladu, že faktorizace součinu prvočísel p a q je časově náročná všichni proto mohou znát šifrovací klíč e a šifrovací modul n = p q, ale nepomůže jim to ke zjištění dešifrovacího klíče d, založeného na p a q. V praxi je šifrovací modul n = p q {0, 1} 1024 až {0, 1} Poslední faktorizovaný RSA klíč je RSA-768 (n = {0, 1} 768, 232 dekadických číslic) za necelé 3 roky na až 618 pracovních stanicích v roce Ale pozor: Už v květnu 2007 padlo M 1039 = za 11 měsíců v laboratořích EPFL, Uni Bonn a NTT.
26 Algoritmy šifrování veřejným klíčem Prerekvizity Algoritmus RSA staví na několika již objasněných algebraických postupech: Modulární mocnění Modulární inverze a 1 a 1 (mod n) Čínská věta o zbytcích Eulerova funkce
27 Algoritmus RSA Generování veřejného a soukromého klíče Přípravná fáze: 1 Zvolíme nepříliš si blízká prvočísla p a q. 2 Spočteme modul šifrovací a dešifrovací transformace, n = p q. 3 Vypočteme Eulerovu funkci pro n, φ(n) = (p 1)(q 1). 4 Zvolíme šifrovací exponent e takový, že 1 < e < φ(n) a gcd(e, φ(n)) = 1. 5 Dopočteme dešifrovací exponent d tak, aby d bylo multiplikativní inverzí k e modulo φ(n), d e 1 (mod φ(n)). Veřejný klíč pro zašifrování zprávy je (n, e), soukromý klíč pro dešifrování je (n, d).
28 Algoritmus RSA Jak to funguje Princip přenosu zprávy X je primitivní: Šifrování Po lince přenášíme šifrovaný text c, jenž vznikne jako c = X e mod n. Dešifrování Příjemce si z přijatého šifrovaného textu spočítá původní zprávu jako X = c d mod n. Trik celého postupu spočívá v tom, že z pouhé znalosti (n, e) nelze v rozumném čase určit d.
29 Algoritmus RSA Důkaz (1/3) Obdržíme dešifrováním opravdu původní text? Při dešifrování c X e (mod n) máme c d (X e ) d X ed (mod n) X ed (mod pq). Prozkoumáme vlastnosti c d X ed (mod p) a c d X ed (mod q) a zobecníme je na operace modulo n. Z definice součinu ed v algoritmu RSA plyne ed 1 (mod φ(n)) g Z : ed = 1 + g(p 1)(q 1), což můžeme dále upravit na a tedy ed = 1 + f (p 1)(q 1) = 1 + g(q 1) = 1 + h(p 1) ed 1 (mod φ(n)) 1 (mod φ(p)) 1 (mod φ(q)).
30 Algoritmus RSA Důkaz (2/3) Dokazujeme nadále p a q odděleně: Pro p X je podle Malé Fermatovy věty X p 1 1 (mod p) a tedy ( X ed = X 1+h(p 1) = X X h(p 1) = X X (p 1)) h X 1 h X (mod p). Pro p X je X ed 0 ed (mod p) X (mod p) To samé platí pro q a tedy X ed X (mod p) X ed X (mod q)
31 Algoritmus RSA Důkaz (3/3) Jedním z důsledků CRT je pro nesoudělná x a y ekvivalence a b (mod x) a b (mod y) a b (mod xy). Proto také z X ed X (mod p) X ed X (mod q) plyne X ed X (mod pq).
32 RSA pomocí CRT Urychlení dešifrování (1) Jak modul n, tak i dešifrovací exponent d jsou hodně velká čísla, a proces dešifrování X c d (mod n) trvá dlouho. Pro n = pq použijme již jednou provedený trik X X p (mod p) c dp X X q (mod q) c dq (mod p), (mod q), a tedy c d c dp+j(p 1) (mod p) c dp 1 j (mod p) c dp (mod p), c d c dq+k(q 1) (mod q) c dq 1 k (mod q) c dq (mod q).
33 RSA pomocí CRT Urychlení dešifrování (2) Zpráva X je tedy řešením soustavy dvou kongruencí sestavených pro c: X c dp X c dq (mod p), (mod q). Řešením je X = [ ] c dp M p q + c dq M q p mod pq, kde M p = q 1 mod p a M q = p 1 mod q.
34 Algoritmus RSA Prolomení při nevhodné volbě p a q Pokud zvolíme p a q nevhodně (blízko sebe, příliš malá, atd.), útočník využije znalosti (n, e): 1 Faktorizuje n na p a q. 2 Vypočte Eulerovu funkci pro n, φ(n) = (p 1)(q 1). 3 Dopočte dešifrovací exponent d tak, aby d e 1 (mod φ(n)). Náš soukromý klíč pro dešifrování (n, d) v ten okamžik zná i útočník a může moje zprávy dešifrovat.
35 Obsah přednášky 1 Čínská věta o zbytcích 2 Modulární mocnění 3 Eulerova funkce 4 Šifrování 5 Závěr
36 A co nás čeká příště? Grafy a grafové algoritmy.
RSA. Matematické algoritmy (11MAG) Jan Přikryl. Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní. verze: :01
Čínská věta o zbytcích Mocnění Eulerova funkce Šifrování Závěr Čínská věta o zbytcích RSA Matematické algoritmy (11MAG) Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 4. přednáška 11MAG ponděĺı
RSA. Matematické algoritmy (11MA) Miroslav Vlček, Jan Přikryl. Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní. čtvrtek 21.
Čínská věta o zbytcích Šifrování Závěr Čínská věta o zbytcích RSA Matematické algoritmy (11MA) Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 4. přednáška 11MA čtvrtek 21. října 2010 verze:
Čínská věta o zbytcích RSA
Čínská věta o zbytcích RSA Matematické algoritmy (11MAG) Jan Přikryl 5. přednáška 11MAG pondělí 10. listopadu 2014 verze: 2014-11-10 10:52 Obsah 1 Čínská věta o zbytcích 2 1.1 Vlastní tvrzení.....................................
Šifrování veřejným klíčem
Šifrování veřejným klíčem Jan Přikryl 6. ledna 2014 Toto je vývojová verze dokumentu. Obsahuje třetí kryptologickou kapitolu rozepsaných skript pro předmět 11KZK ve formě, v jaké se nacházela k datu, uvedenému
8. RSA, kryptografie s veřejným klíčem. doc. Ing. Róbert Lórencz, CSc.
Bezpečnost 8. RSA, kryptografie s veřejným klíčem doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních programů
Pokročilá kryptologie
Pokročilá kryptologie RSA doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních programů Informatika pro
Asymetrická kryptografie
PEF MZLU v Brně 12. listopadu 2007 Problém výměny klíčů Problém výměny klíčů mezi odesílatelem a příjemcem zprávy trápil kryptografy po několik století. Problém spočívá ve výměně tajné informace tak, aby
Šifrová ochrana informací věk počítačů PS5-2
VŠFS; Aplikovaná informatika; SW systémy 2005/2006 1 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací věk počítačů PS5-2 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 2 Osnova
Asymetrické šifry. Pavla Henzlová 28.3.2011. FJFI ČVUT v Praze. Pavla Henzlová (FJFI ČVUT v Praze) Asymetrické šifry 28.3.
Asymetrické šifry Pavla Henzlová FJFI ČVUT v Praze 28.3.2011 Pavla Henzlová (FJFI ČVUT v Praze) Asymetrické šifry 28.3.2011 1 / 16 Obsah 1 Asymetrická kryptografie 2 Diskrétní logaritmus 3 Baby step -
Protokol RSA. Tvorba klíčů a provoz protokolu Bezpečnost a korektnost protokolu Jednoduché útoky na provoz RSA Další kryptosystémy
Protokol RSA Jiří Velebil: X01DML 3. prosince 2010: Protokol RSA 1/18 Protokol RSA Autoři: Ronald Rivest, Adi Shamir a Leonard Adleman. a Publikováno: R. L. Rivest, A. Shamir a L. Adleman, A Method for
Asymetrická kryptografie a elektronický podpis. Ing. Dominik Breitenbacher Mgr. Radim Janča
Asymetrická kryptografie a elektronický podpis Ing. Dominik Breitenbacher ibreiten@fit.vutbr.cz Mgr. Radim Janča ijanca@fit.vutbr.cz Obsah cvičení Asymetrická, symetrická a hybridní kryptografie Kryptoanalýza
Jak funguje asymetrické šifrování?
Jak funguje asymetrické šifrování? Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikované matematiky, Fakulta elektrotechniky a informatiky, Vysoká škola báňská Technická univerzita Ostrava Petr Vodstrčil
Obsah. Euler-Fermatova věta. Reziduální aritmetika. 3. a 4. přednáška z kryptografie
Obsah Počítání modulo n a jeho časová složitost 3. a 4. přednáška z kryptografie 1 Počítání modulo n - dokončení Umocňování v Zn 2 Časová složitost výpočtů modulo n Asymptotická notace Základní aritmetické
Diffieho-Hellmanův protokol ustanovení klíče
Diffieho-Hellmanův protokol ustanovení klíče Andrew Kozlík KA MFF UK Diffieho-Hellmanův protokol ustanovení klíče (1976) Před zahájením protokolu se ustanoví veřejně známé parametry: Konečná grupa (G,
ElGamal, Diffie-Hellman
Asymetrické šifrování 22. dubna 2010 Prezentace do předmětu UKRY Osnova 1 Diskrétní logaritmus 2 ElGamal 3 Diffie-Hellman Osnova 1 Diskrétní logaritmus 2 ElGamal 3 Diffie-Hellman Osnova 1 Diskrétní logaritmus
Šifrová ochrana informací věk počítačů PS5-2
Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací věk počítačů PS5-2 1 Osnova šifrová ochrana využívající výpočetní techniku např. Feistelova šifra; symetrické a asymetrické šifry;
Úvod RSA Aplikace, související témata RSA. Ing. Štěpán Sem <stepan.sem@gmail.com> Festival Fantazie, 2013. Štěpán Sem
Ing. Festival Fantazie, 2013 Osnova 1 Základní pojmy Obtížnost Kryptografie 2 Základní princip Matematické souvislosti Historie 3 Vymezení pojmů Základní pojmy Obtížnost Kryptografie
Hlubší věty o počítání modulo
Hlubší věty o počítání modulo Jiří Velebil: X01DML 3. prosince 2007: Hlubší věty o počítání modulo 1/17 Příklad Vyřešte: Idea řešení: x = 3 v Z 4 x = 2 v Z 5 x = 6 v Z 21 x = 3 + 2 + 6 Musí být: 1 První
MFF UK Praha, 22. duben 2008
MFF UK Praha, 22. duben 2008 Elektronický podpis / CA / PKI část 1. http://crypto-world.info/mff/mff_01.pdf P.Vondruška Slide2 Přednáška pro ty, kteří chtějí vědět PROČ kliknout ANO/NE a co zatím všechno
Diskrétní logaritmus
13. a 14. přednáška z kryptografie Alena Gollová 1/38 Obsah 1 Protokoly Diffieho-Hellmanův a ElGamalův Diffieho-Hellmanův a ElGamalův protokol Bezpečnost obou protokolů 2 Baby step-giant step algoritmus
Složitost a moderní kryptografie
Složitost a moderní kryptografie Radek Pelánek Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024 Složitost a moderní kryptografie
Hlubší věty o počítání modulo
Hlubší věty o počítání modulo Jiří Velebil: A7B01MCS 31. října 2011: Hlubší věty o počítání modulo 1/18 Příklad Vyřešte: Idea řešení: x = 3 v Z 4 x = 2 v Z 5 x = 6 v Z 21 x = 3 + 2 + 6 Musí být: 1 První
Modulární aritmetika, Malá Fermatova věta.
Modulární aritmetika, Malá Fermatova věta. Matematické algoritmy (11MAG) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 4. přednáška 11MAG pondělí 10. listopadu 2014 verze: 2014-11-03
Obsah. Protokol RSA. Protokol RSA Bezpečnost protokolu RSA. 5. a 6. přednáška z kryptografie
Obsah RSA šifrování 5. a 6. přednáška z kryptografie 1 RSA šifrování 2 Útoky na protokol RSA Útoky při sdíleném modulu nebo exponentu Útoky při malém soukromém exponentu Implementační útoky 3 Digitální
MPI - 7. přednáška. Hledání inverzí v Z n. Rychlé mocnění modulo n. Lineární rovnice v Z + n. Soustavy lineárních rovnic v Z + n.
MPI - 7. přednáška vytvořeno: 31. října 2016, 10:18 Co bude v dnešní přednášce Hledání inverzí v Z n. Rychlé mocnění modulo n. Lineární rovnice v Z + n. Soustavy lineárních rovnic v Z + n. Rovnice a b
Kryptografie založená na problému diskrétního logaritmu
Kryptografie založená na problému diskrétního logaritmu Andrew Kozlík KA MFF UK Diffieho-Hellmanův protokol ustanovení klíče (1976) Před zahájením protokolu se ustanoví veřejně známé parametry: Konečná
5. a 6. přednáška z kryptografie
RSA šifrování 5. a 6. přednáška z kryptografie Alena Gollová RSA širování 1/33 Obsah 1 RSA šifrování 2 Útoky při sdíleném modulu nebo exponentu Útoky při malém soukromém exponentu Implementační útoky 3
Úvod. Karel Klouda c KTI, FIT, ČVUT v Praze 18. dubna, letní semestr 2010/2011
MI-MPI, Přednáška č. 11 Karel Klouda karel.klouda@fit.cvut.cz c KTI, FIT, ČVUT v Praze 18. dubna, letní semestr 2010/2011 RSA potřiapadesáté šifrování Co potřebuje k zašifrování zprávy x: číslo n, které
asymetrická kryptografie
asymetrická kryptografie princip šifrování Zavazadlový algoritmus RSA EL GAMAL další asymetrické blokové algoritmy Skipjack a Kea, DSA, ECDSA D H, ECDH asymetrická kryptografie jeden klíč pro šifrování
C5 Bezpečnost dat v PC
C5 T1 Vybrané kapitoly počíta tačových s sítí Bezpečnost dat v PC 1. Počíta tačová bezpečnost 2. Symetrické šifrování 3. Asymetrické šifrování 4. Velikost klíče 5. Šifrování a dešifrov ifrování 6. Steganografie
Jihomoravske centrum mezina rodnı mobility. T-exkurze. Teorie c ı sel, aneb elektronicky podpis a s ifrova nı
Jihomoravske centrum mezina rodnı mobility T-exkurze Teorie c ı sel, aneb elektronicky podpis a s ifrova nı Brno 2013 Petr Pupı k Obsah Obsah 2 Šifrovací algoritmy RSA a ElGamal 12 2.1 Algoritmus RSA.................................
Karel Klouda c KTI, FIT, ČVUT v Praze 28. února, letní semestr 2010/2011
MI-MPI, Přednáška č. 3 Karel Klouda karel.klouda@fit.cvut.cz c KTI, FIT, ČVUT v Praze 28. února, letní semestr 2010/2011 Množiny s jednou binární operací Neprázdná množina M s binární operací (resp. +
Modulární aritmetika, Malá Fermatova věta.
Modulární aritmetika, Malá Fermatova věta. Matematické algoritmy (11MAG) Jan Přikryl 4. přednáška 11MAG pondělí 3. listopadu 2014 verze: 2014-11-10 10:42 Obsah 1 Dělitelnost 1 1.1 Největší společný dělitel................................
Informatika Ochrana dat
Informatika Ochrana dat Radim Farana Podklady předmětu Informatika pro akademický rok 2007/2008 Obsah Kryptografické systémy s veřejným klíčem, výměna tajných klíčů veřejným kanálem, systémy s veřejným
Asymetrická kryptografie a elektronický podpis. Ing. Mgr. Martin Henzl Mgr. Radim Janča ijanca@fit.vutbr.cz
Asymetrická kryptografie a elektronický podpis Ing. Mgr. Martin Henzl Mgr. Radim Janča ijanca@fit.vutbr.cz Obsah cvičení Asymetrická, symetrická a hybridní kryptografie Matematické problémy, na kterých
Správa přístupu PS3-2
Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Správa přístupu PS3-2 1 Osnova II základní metody pro zajištění oprávněného přístupu; autentizace; autorizace; správa uživatelských účtů; srovnání současných
Úvod do kryptologie. 6. března L. Balková (FJFI ČVUT v Praze) Primality Testing and Factorization 6. března / 41
Testování prvočíselnosti L ubomíra Balková Úvod do kryptologie 6. března 2014 L. Balková (FJFI ČVUT v Praze) Primality Testing and Factorization 6. března 2014 1 / 41 Problémy 1 Primality problem: Rozhodni,
Rozlišujeme dva základní typy šifrování a to symetrické a asymetrické. Symetrické
1 Šifrování Kryptografie Každý z nás si určitě umí představit situaci, dy je důležité utajit obsah posílané zprávy ta aby ho byl schopen přečíst jen ten omu je určená a nido nepovolaný nebyl schopen zjistit
Zbytky a nezbytky Vazební věznice Orličky Kondr (Brkos 2010) Zbytky a nezbytky / 22
Zbytky a nezbytky aneb stručný úvod do kongruencí Zbyněk Konečný Vazební věznice Orličky 2009 23. 27.2.2009 Kondr (Brkos 2010) Zbytky a nezbytky 23. 27.2.2009 1 / 22 O čem to dnes bude? 1 Úvod 2 Lineární
Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz
Y36BEZ Bezpečnost přenosu a zpracování dat Róbert Lórencz 1. přednáška Úvod http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Róbert Lórencz (ČVUT FEL, 2007) Y36BEZ Bezpečnost přenosu a zpracování
Eliptické křivky a RSA
Přehled Katedra informatiky FEI VŠB TU Ostrava 11. února 2005 Přehled Část I: Matematický základ Část II: RSA Část III: Eliptické křivky Matematický základ 1 Základní pojmy a algoritmy Základní pojmy Složitost
Trocha teorie Ošklivé lemátko První generace Druhá generace Třetí generace Čtvrtá generace O OŠKLIVÉM LEMÁTKU PAVEL JAHODA
O OŠKLIVÉM LEMÁTKU PAVEL JAHODA Prezentace pro přednášku v rámci ŠKOMAM 2014. Dělitelnost na množině celých čísel 3 dělí 6 Dělitelnost na množině celých čísel 3 dělí 6 protože Dělitelnost na množině celých
Prvočísla, dělitelnost
Prvočísla, dělitelnost Matematické algoritmy (11MAG) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 3. přednáška 11MAG pondělí 3. listopadu 2013 verze: 2014-11-03 11:28 Obsah přednášky
Historie matematiky a informatiky Cvičení 2
Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic
Šifrová ochrana informací věk počítačů KS - 5
VŠFS; Aplikovaná informatika; SW systémy 2005/2006 1 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací věk počítačů KS - 5 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 2
Matematika IV - 5. přednáška Polynomy
S Matematika IV - 5. přednáška Polynomy Michal Bulant Masarykova univerzita Fakulta informatiky 17. 3. 2008 s Obsah přednášky O Dělitelnost a nerozložitelnost Kořeny a rozklady polynomů Polynomy více proměnných
PSK2-16. Šifrování a elektronický podpis I
PSK2-16 Název školy: Autor: Anotace: Vzdělávací oblast: Předmět: Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Jak funguje asymetrická šifra a elektronický podpis Informační
Moderní metody substitučního šifrování
PEF MZLU v Brně 11. listopadu 2010 Úvod V současné době se pro bezpečnou komunikaci používají elektronická média. Zprávy se před šifrováním převádí do tvaru zpracovatelného technickým vybavením, do binární
Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod 2. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz
Y36BEZ Bezpečnost přenosu a zpracování dat Róbert Lórencz 2. přednáška Úvod 2 http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Róbert Lórencz (ČVUT FEL, 2007) Y36BEZ Bezpečnost přenosu a
Matematické algoritmy (11MAG) Jan Přikryl
Prvočísla, dělitelnost Matematické algoritmy (11MAG) Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 2. přednáška 11MAG ponděĺı 7. října 2013 verze: 2013-10-22 14:28 Obsah přednášky Prvočísla
kryptosystémy obecně další zajímavé substituční šifry klíčové hospodářství kryptografická pravidla Hillova šifra Vernamova šifra Knižní šifra
kryptosystémy obecně klíčové hospodářství klíč K, prostor klíčů T K kryptografická pravidla další zajímavé substituční šifry Hillova šifra Vernamova šifra Knižní šifra klíč K různě dlouhá posloupnost znaků
KRYPTOGRAFIE VER EJNE HO KLI Č E
KRYPTOGRAFIE VER EJNE HO KLI Č E ÚVOD Patricie Vyzinová Jako téma jsem si vybrala asymetrickou kryptografii (kryptografie s veřejným klíčem), což je skupina kryptografických metod, ve kterých se pro šifrování
Algoritmy okolo teorie čísel
Úvodem Algoritmy okolo teorie čísel Martin Mareš mj@ucw.cz Tento textík rozebírá několik základních algoritmických problémů souvisících s teorií čísel: Notace. počítání největších společných dělitelů řešení
Matematické algoritmy (11MAG) Jan Přikryl. verze: :29
Prvočísla, dělitelnost Matematické algoritmy (11MAG) Jan Přikryl 2. přednáška 11MAG pondělí 7. října 2013 verze: 2013-10-22 14:29 Obsah 1 Prvočísla 1 1.1 Vlastnosti prvočísel...................................
Základy kryptologie. Kamil Malinka malinka@fit.vutbr.cz Fakulta informačních technologií
Základy kryptologie Kamil Malinka malinka@fit.vutbr.cz Fakulta informačních technologií 1 Detaily zkoušky Během semestru je možno získat maximální počet 100 bodů projekty - 20b. vnitrosemestrální písemka
Algoritmy okolo teorie čísel
Algoritmy okolo teorie čísel Martin Mareš mj@ucw.cz, 22. 1. 2011 Úvodem Tento textík rozebírá několik základních algoritmických problémů souvisících s teorií čísel: počítání největších společných dělitelů
Y36PSI Bezpečnost v počítačových sítích. Jan Kubr - 10_11_bezpecnost Jan Kubr 1/41
Y36PSI Bezpečnost v počítačových sítích Jan Kubr - 10_11_bezpecnost Jan Kubr 1/41 Osnova základní pojmy typy šifer autentizace integrita distribuce klíčů firewally typy útoků zabezpečení aplikací Jan Kubr
Programování: základní konstrukce, příklady, aplikace. IB111 Programování a algoritmizace
Programování: základní konstrukce, příklady, aplikace IB111 Programování a algoritmizace 2011 Připomenutí z minule, ze cvičení proměnné, výrazy, operace řízení výpočtu: if, for, while funkce příklady:
Matematika IV - 5. přednáška Polynomy
Matematika IV - 5. přednáška Polynomy Michal Bulant Masarykova univerzita Fakulta informatiky 17. 3. 2008 Obsah přednášky O Dělitelnost a nerozložitelnost Kořeny a rozklady polynomů Polynomy více proměnných
Základy šifrování a kódování
Materiál byl vytvořen v rámci projektu Nové výzvy, nové příležitosti, nová škola Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Základy šifrování a kódování
Charakteristika tělesa
16 6 Konečná tělesa V této kapitole budeme pod pojmem těleso mít na mysli vždy konečné komutativní těleso, tedy množinu s dvěma binárními operacemi (T, +, ), kde (T, +) je komutativní grupa s neutrálním
České vysoké učení technické v Praze Fakulta elektrotechnická Katedra telekomunikační techniky Asymetrické kryptosystémy I
České vysoké učení technické v Praze Fakulta elektrotechnická Katedra telekomunikační techniky Asymetrické kryptosystémy I Ing. Tomáš Vaněk, Ph.D. tomas.vanek@fel.cvut.cz Osnova obecné informace IFP RSA
Generující kořeny cyklických kódů. Generující kořeny. Alena Gollová, TIK Generující kořeny 1/30
Generující kořeny cyklických kódů 6. přednáška z algebraického kódování Alena Gollová, TIK Generující kořeny 1/30 Obsah 1 Alena Gollová, TIK Generující kořeny 2/30 Hammingovy kódy Hammingovy kódy jsou
Diskrétní matematika 1. týden
Diskrétní matematika 1. týden Elementární teorie čísel dělitelnost Jan Slovák Masarykova univerzita Fakulta informatiky jaro 2015 Obsah přednášky 1 Problémy teorie čísel 2 Dělitelnost 3 Společní dělitelé
J.Breier, M.Vančo, J.Ďaďo, M.Klement, J.Michelfeit, Masarykova univerzita Fakulta informatiky
Analýza postranních kanálů (kryptoanalýza hardvérových zařízení) J.Breier, M.Vančo, J.Ďaďo, M.Klement, J.Michelfeit, M.Moráček, J.Kusák, J.Hreško Masarykova univerzita Fakulta informatiky 6.5.2010 Klasifikace
PA159 - Bezpečnostní aspekty
PA159 - Bezpečnostní aspekty 19. 10. 2007 Formulace oblasti Kryptografie (v moderním slova smyslu) se snaží minimalizovat škodu, kterou může způsobit nečestný účastník Oblast bezpečnosti počítačových sítí
Kvantové algoritmy a bezpečnost. Václav Potoček
Kvantové algoritmy a bezpečnost Václav Potoček Osnova Úvod: Kvantové zpracování informace Shorův algoritmus Kvantová distribuce klíče Post-kvantové zabezpečení Úvod Kvantové zpracování informace Kvantový
Počet kreditů: 5 Forma studia: kombinovaná. Anotace: Předmět seznamuje se základy dělitelnosti, vybranými partiemi algebry, šifrování a kódování.
Název předmětu: Matematika pro informatiky Zkratka předmětu: MIE Počet kreditů: 5 Forma studia: kombinovaná Forma zkoušky: kombinovaná (písemná a ústní část) Anotace: Předmět seznamuje se základy dělitelnosti,
Základy kryptografie. Beret CryptoParty 11.02.2013. 11.02.2013 Základy kryptografie 1/17
Základy kryptografie Beret CryptoParty 11.02.2013 11.02.2013 Základy kryptografie 1/17 Obsah prezentace 1. Co je to kryptografie 2. Symetrická kryptografie 3. Asymetrická kryptografie Asymetrické šifrování
grupa těleso podgrupa konečné těleso polynomy komutativní generovaná prvkem, cyklická, řád prvku charakteristika tělesa
grupa komutativní podgrupa těleso generovaná prvkem, cyklická, řád prvku Malá Fermatova věta konečné těleso charakteristika tělesa polynomy ireducibilní prvky, primitivní prvky definice: G, je grupa kde
online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.
Teorie čísel a úvod do šifrování RNDr. Zbyněk Šír, Ph.D. Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím online
Digitální podepisování pomocí asymetrické kryptografie
Digitální podepisování pomocí asymetrické kryptografie Jan Máca, FJFI ČVUT v Praze 26. března 2012 Jan Máca () Digitální podepisování 26. března 2012 1 / 22 Obsah 1 Digitální podpis 2 Metoda RSA 3 Metoda
Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací
Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména
Komerční výrobky pro kvantovou kryptografii
Cryptofest 05 Katedra počítačů, Fakulta elektrotechnická České vysoké učení technické v Praze 19. března 2005 O čem bude řeč Kryptografie Kryptografie se zejména snaží řešit: autorizovanost přístupu autenticitu
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE. Jiří Mareš Srovnání algoritmů pro kryptografii s veřejným klíčem
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Jiří Mareš Srovnání algoritmů pro kryptografii s veřejným klíčem Katedra algebry Vedoucí bakalářské práce: RNDr. David Stanovský,
Univerzita Karlova v Praze Matematicko fyzikální fakulta BAKALÁŘSKÁ PRÁCE
Univerzita Karlova v Praze Matematicko fyzikální fakulta BAKALÁŘSKÁ PRÁCE Petr Růžička Přehled útoků na RSA Katedra Algebry Vedoucí bakalářské práce: Doc. RNDr. Jiří Tůma DrSc. Studijní program: obecná
příklad Steganografie Matematické základy šifrování šifrování pomocí křížů Hebrejské šifry
příklad Steganografie Matematické základy šifrování modulární aritmetika modulární inverze prvočísla faktorizace diskrétní logaritmus eliptické křivky generátory náhodných čísel šifrování pomocí křížů
Základy elementární teorie čísel
Základy elementární teorie čísel Jiří Velebil: X01DML 29. října 2010: Základy elementární teorie čísel 1/14 Definice Řekneme, že přirozené číslo a dělí přirozené číslo b (značíme a b), pokud existuje přirozené
Osnova přednášky. Seznámení s asymetrickou kryptografií, díl 1. O pojmu bezpečnost Poznámka o hodnocení kryptografické bezpečnosti.
Seznámení s asymetrickou kryptografií, díl 1. Ing. omáš Rosa ICZ a.s., Praha Katedra počítačů, FEL, ČVU v Praze tomas.rosa@i.cz Osnova přednášky Základní principy pojem bezpečnost související (snad) složité
Identifikátor materiálu: ICT-2-04
Identifikátor materiálu: ICT-2-04 Předmět Téma sady Informační a komunikační technologie Téma materiálu Zabezpečení informací Autor Ing. Bohuslav Nepovím Anotace Student si procvičí / osvojí kryptografii.
Kryptografie, elektronický podpis. Ing. Miloslav Hub, Ph.D. 27. listopadu 2007
Kryptografie, elektronický podpis Ing. Miloslav Hub, Ph.D. 27. listopadu 2007 Kryptologie Kryptologie věda o šifrování, dělí se: Kryptografie nauka o metodách utajování smyslu zpráv převodem do podoby,
Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30
Počítání modulo polynom 3. přednáška z algebraického kódování Alena Gollová, TIK Počítání modulo polynom 1/30 Obsah 1 Polynomy nad Zp Okruh Zp[x] a věta o dělení se zbytkem 2 Kongruence modulo polynom,
doc. Ing. Róbert Lórencz, CSc.
Bezpečnost 3. Blokové, transpoziční a exponenciální šifry doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních
Základy elementární teorie čísel
Základy elementární teorie čísel Jiří Velebil: A7B01MCS 3. října 2011: Základy elementární teorie čísel 1/15 Dělení se zbytkem v oboru celých čísel Ať a, b jsou libovolná celá čísla, b 0. Pak existují
Lineární algebra : Násobení matic a inverzní matice
Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
Šifrová ochrana informací věk počítačů PS5-1
Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací věk počítačů PS5-1 1 Osnova šifrová ochrana využívající výpočetní techniku např. Feistelova šifra; symetrické a asymetrické šifry;
Testování prvočíselnosti
Dokumentace zápočtového programu z Programování II (NPRG031) Testování prvočíselnosti David Pěgřímek http://davpe.net Úvodem V různých oborech (například v kryptografii) je potřeba zjistit, zda je číslo
Generátory náhodných a
Kapitola 5 Generátory náhodných a pseudonáhodných čísel, generátory prvočísel V roce 1917 si Gilbert Vernam nechal patentovat šifru, která nyní nese jeho jméno. Byl přesvědčen, že je to zcela bezpečná
2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC
.6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom
21ˆx 0 mod 112, 21x p 35 mod 112. x p mod 16. x 3 mod 17. α 1 mod 13 α 0 mod 17. β 0 mod 13 β 1 mod 17.
1. 2. test - varianta A Příklad 1.1. Kompletně vyřešte rovnici 21x 35 mod 112. Řešení. Protože gcd(112, 21) 21 má dle Frobeniovy věty rovnice řešení. Řešení nalezneme ve dvou krocích. Nejprve kompletně
CO JE KRYPTOGRAFIE Šifrovací algoritmy Kódovací algoritmus Prolomení algoritmu
KRYPTOGRAFIE CO JE KRYPTOGRAFIE Kryptografie je matematický vědní obor, který se zabývá šifrovacími a kódovacími algoritmy. Dělí se na dvě skupiny návrh kryptografických algoritmů a kryptoanalýzu, která
Zpracování informací
Ústav automatizace a informatiky Fakulta strojního inženýrství Vysoké učení technické v Brně Cvičení č. 2 z předmětu Zpracování informací Ing. Radek Poliščuk, Ph.D. 1/9 Téma cvičení Cvičení 2 Přenos dat
Dynamické programování
Dynamické programování prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)
Matematika pro informatiku 2
Matematika pro informatiku 2 Doc. RNDr. Alena Šolcová, Ph. D., KTI FIT ČVUT v Praze 21. února 2011 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Lámejte si hlavu - L1 Určete všechny
Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012
Algebra - třetí díl Lenka Zalabová Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita v Českých Budějovicích zima 2012 Obsah 1 Dělitelnost 2 Grupy zbytkových tříd 3 Jedna z
Kódování a Šifrování. Iveta Nastoupilová
Kódování a Šifrování Iveta Nastoupilová 12.11.2007 Kódování Přeměna, transformace, šifrování signálů Převádění informace z jednoho systému do jiného systému znaků Kódování Úzce souvisí s procesem komunikace
Hesla a bezpečnost na internetu MjUNI 2019 Dětská univerzita,
Hesla a bezpečnost na internetu MjUNI 2019 Dětská univerzita, 13. 4. 2019 Vladimír Sedláček, vlada.sedlacek@mail.muni.cz Marek Sýs, syso@mail.muni.cz Osnova Hesla: Jaké jsou typické problémy? Jak si zvolit
Ochrana dat 2.12.2014. Obsah. Výměna tajných klíčů ve veřejném kanálu. Radim Farana Podklady pro výuku. Kryptografické systémy s tajným klíčem,
Ochrana dat Radim Farana Podklady pro výuku Obsah Kryptografické systémy s tajným klíčem, výměna tajných klíčů veřejným kanálem, systémy s tajným klíčem. Elektronický podpis. Certifikační autorita. Metody
Univerzita Karlova v Praze Pedagogická fakulta
Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ 1 TEORIE ČÍSEL 000/001 Cifrik, M-ZT Příklad ze zadávacích listů 10 101 Dokažte, že číslo 101 +10 je dělitelné číslem 51 Důkaz: