Jihomoravske centrum mezina rodnı mobility. T-exkurze. Teorie c ı sel, aneb elektronicky podpis a s ifrova nı

Rozměr: px
Začít zobrazení ze stránky:

Download "Jihomoravske centrum mezina rodnı mobility. T-exkurze. Teorie c ı sel, aneb elektronicky podpis a s ifrova nı"

Transkript

1 Jihomoravske centrum mezina rodnı mobility T-exkurze Teorie c ı sel, aneb elektronicky podpis a s ifrova nı Brno 2013 Petr Pupı k

2 Obsah Obsah 2 Šifrovací algoritmy RSA a ElGamal Algoritmus RSA ElGamal Závěr 19 Literatura 20

3 Kapitola 2 Šifrovací algoritmy RSA a ElGamal Představme si, že chceme poslat nějakou zprávu. Potřebujeme však, aby ji nepřečetl nikdo jiný, než adresát. Je třeba ji tedy nějakým způsobem zašifrovat. Máme několik možností. Jedna z nich je, že se s adresátem dopředu sejdeme, domluvíme si, jakým způsobem budeme šifrovat, poté se rozejdeme a následně si můžeme posílat zašifrované zprávy. Protože jsme se již sešli, víme, jak danou zprávu dešifrovat. Ne vždy však máme možnost se s adresátem sejít, nebo si s ním domluvit, jakým způsobem budeme danou zprávu šifrovat. Musíme tedy zprávu šifrovat jiným způsobem. My si v tomto textu ukážeme algoritmy RSA a ElGamal. 2.1 Algoritmus RSA Algoritmus RSA publikovali poprvé matematici Ron Rivest, Adi Shamir a Leonard Adleman v roce Svůj název dostal podle prvních písmen příjmení svých objevitelů. RSA algrotimus využívá nemožnosti rozložit dané číslo na součin prvočísel. Pojd me si nyní tento algoritmus popsat. Představme si, že Bob chce poslat zprávu Alici. Zprávou je vždy nějaké přirozené číslo. Pojd me si tedy říci, co musí oba udělat. Dejme tomu, že Bob chce Alici poslat zprávu m N. Začít však musí Alice: 1. Alice si zvolí dvě velká prvočísla p, q. 2. Alice spočítá n = p q. 3. Alice spočítá ϕ(n) = (p 1) (q 1). 4. Alice zvolí přirozené číslo e takové, že je s ϕ(n) nesoudělné. 5. Alice určí přirozené číslo d takové, že e d 1 (mod ϕ(n)). 6. Alice odešle nešifrovaně Bobovi takzvaný veřejný klíč (n, e). 12

4 Bob tedy nyní zná čísla n a e. Tato čísla zná i kdokoliv jiný, protože byly odeslány nešifrovaně. Co však neví nikdo kromě Alice je, jak vzniklo číslo n, nikdo tedy kromě Alice nezná ϕ(n) a konečně, nikdo kromě Alice nezná číslo d. Pojd me si ještě vysvětlit, jakým způsobem Alice získá jednotlivá čísla. Hodnotu ϕ(n) zjistí snadno podle tvrzení??, protože zná prvočíselný rozklad čísla n. Číslo e, které je s ϕ(n) nesoudělné zvolí Alice snadno. Trochu obtížnější to bude s číslem d. Pro přirozené číslo d má platit, že e d 1 (mod ϕ(n)). My jsme však číslo e volili tak, že je s ϕ(n) nesoudělné. Platí tedy, že (e, ϕ(n)) = 1. Podle Bezoutovy identity?? však existují celá čísla x, y taková, že 1 = e x + ϕ(n) y. To v řeči kongruencí znamená, že e x 1 (mod ϕ(n)). Položme tedy d = x, kde x jsme dostali jako koeficient u čísla e v Bezoutově identitě. Nyní se podívejme, co provede Bob, aby poslal zprávu m. 1. Bob obdrží od Alice veřejný klíč (n, e). 2. Bob spočítá, jaký zbytek dává m e po dělení n. Označme ho c, tj. c m e (mod n). 3. Bob pošle nešifrovaně Alici zpět číslo c. Pokud nyní někdo sleduje konverzaci mezi Alicí a Bobem, má momentálně u sebe čísla n, e a c. Zajímavé je také to, že pokud Bob zašifruje zprávu m, již tuto zprávu taktéž nedokáže dešifrovat, stejně jako ostatní (kromě Alice). Pojd me se tedy podívat na to, jak Alice dešifruje zprávu c, kterou obdržela od Boba. 1. Alice obdržela od Boba zprávu c od Boba. 2. Alice spočítá, jaký zbytek dává c d po dělení číslem n a dostane tím zprávu m. Jistě vás nyní napadne, jak je možné, že skutečně dostala zprávu m. Pojd me si to hned dokázat. Bob vytvořil číslo c tak, že c m e (mod n). Platí proto, že c d (m e ) d m e d (mod n). Protože ed 1 (mod n), podle 5, je i ed 1 (mod p 1). To podle definice kongruence znamená, že existuje celé číslo k takové, že ed = 1 + k (p 1). Dosad me c d m e d m 1+k (p 1) m (m p 1 ) k Nyní využijeme Malé Fermatovy věty?? c d m e d m 1+k (p 1) m (m p 1 ) k m 1 k m To znamená, že c d Obdobně se odvodí, že c d m (mod q). Podle Čínské zbytkové věty?? tak dostáváme, že c d m (mod p q), tj. c d m (mod n). 13

5 Algoritmus RSA je tedy založen na nemožnosti určení čísla ϕ(n). To bychom zjistili, pokud bychom uměli rozložit číslo n na součin prvočísel. To však umí jen Alice. Zajímavé je, že pokud Bob zašifruje zprávu a zapomene ji, tak se mu ji nepodaří rozšifrovat. Pojd me si nyní ukázat konkrétně zašifrování nějaké zprávy pomocí RSA algoritmu. Volme však malá čísla, abychom zvládli sledovat, co se v algoritmu děje. Příklad Bob chce Alici odeslat zprávu m = 12. Alice si zvolí p = 23, q = 31. Určete, jak Bob zašifruje zprávu a dále tuto zprávu dešifrujte. Řešení. Pojd me postupovat přesně tak, jak jsme si tento algoritmus představili: 1. Alice má prvočísla p = 23, q = Alice spočítá n = p q = = Alice spočítá ϕ(n) = (p 1) (q 1) = = Alice zvolí přirozené číslo e takové, že je s ϕ(n) nesoudělné, volme e = Alice určí přirozené číslo d takové, že e d 1 (mod ϕ(n)). Stanovme toto číslo d přesně podle poznámky pod popisem algoritmu. Určeme největší společný dělitel čísel 660 a 17: 660 : 17 = 38 (zb. 14), tedy 14 = : 14 = 1 (zb. 3), tedy 3 = : 3 = 4 (zb. 2), tedy 2 = : 2 = 1 (zb. 1), tedy 1 = : 1 = 2 (zb. 0). Spočítejme nyní koeficienty v Bezoutově identitě pro čísla 660 a 17: 1 = = 3 1 (14 4 3) = = 5 ( ) 1 14 = = ( ) = Alice tedy volí d = 233. Její tzv. soukromý klíč tvoří dvojice (n, s) = (713, 233). Veřejný klíč pak tvoří dvojice (n, e) = (713, 17). 6. Alice odešle nešifrovaně Bobovi veřejný klíč (n, e) = (713, 17). Bob obdržel od Alice veřejný klíč. Nyní bude chtít zašifrovat zprávu m = 12: 1. Bob spočítá zbytek po dělení čísla m e číslem n, tj. zbytek po dělení čísla číslem 713. K tomu může využít například tzv. modulární umocňování: = = 12 (((12 2 ) 2 ) 2 ) 2 = 538 (mod 713). Bod tedy odeslal zašifrovanou zprávu 538. Alice ji chce dešifrovat. Musí tedy spočítat, jaký dává zbytek po dělení číslem 713. K výpočtu využijme nějaký matematický software (například program Sage: či http: // a vyjde nám skutečně zpráva m = 12. Nyní si představíme další z šifrovacích algoritmů, konkrétně algoritmus ElGamal. 14

6 2.2 ElGamal Algoritmus ElGamal publikoval poprvé v roce 1984 egyptský matematik Taher ElGamal (někdy též psaný Elgamal). Než se však s tímto algoritmem seznámíme, musíme si uvést trochu teorie. Definice Necht p je prvočíslo, a N takové, že (p, a) = 1. Nejmenší přirozené číslo n takové, že a n 1 (mod p), nazýváme řád čísla a modulo p. Možná vás napadne, proč vůbec takové přirozené číslo n existuje. Nemohlo by se náhodou stát, že pro všechna přirozená čísla n bude platit, že a n 1 (mod p)? Odpověd je snadná: nemohlo. Protože je (a, p) = 1, je podle Malé Fermatovy věty?? a p 1 1 Příklad Určete řády čísel 1, 2, 3, 4 modulo 5. Řešení. 1. Řád čísla 1 je zřejmě 1, protože 1 1 = Řád čísla 2 je 4, protože 2 1, 2 2 ani 2 3 nejsou kongruentní s číslem 1 modulo 5, ale podle Malé Fermatovy věty je (mod 5). 3. Obdobně se odvodí, že řád čísla 3 modulo 5 je Řád čísla 4 je 2, protože (mod 5), ale (mod 5). My budeme v algoritmu ElGamal potřebovat pro dané prvočíslo p číslo řádu p 1. To skutečně vždy existuje, jak nám řekne další tvrzení. Bohužel je však důkaz náročný, proto si ho neuvedeme, nicméně ho najdete v 1, kde se i dozvíte, jak takové číslo hledat. Tvrzení Pro každé prvočíslo p existuje celé číslo a, které má řád p 1 modulo p. Pojd me si nyní představit algoritmus ElGamal. Ten již není založen na náročnosti rozkladu čísla na součin prvočísel, ale na problému tzv. diskrétního logaritmu, jak si vysvětlíme později. Opět si budou předávat zprávu Alice a Bob. Bob bude chtít opět Alici poslat zprávu m. Alice nejprve musí vytvořit veřejný a soukromý klíč: 1. Alice zvolí prvočíslo p a číslo a řádu p 1 modulo p. 2. Alice zvolí přirozené číslo x a počítá jaký zbytek dává a x modulo p. Tento zbytek označme b. 3. Alice odešle Bobovi trojici (p, a, b). 15

7 Nyní jsme tedy ve stavu, kdy všichni znají čísla p, a a b. Pouze Alice však zná číslo x. Řeknete si, že číslo x může nyní kdokoliv určit tak, že bude postupně umocňovat číslo a a dívat se, jaký zbytek dává výsledek po dělení číslem p. Takto umocňovat tak dlouho, dokud nedostane číslo b. To je opět časově náročné a v reálném čase neproveditelné. Právě problém vyjádřit přirozené číslo x, pokud známe a i zbytek po dělení čísla a x číslem p, nazýváme problém diskrétního logaritmu. Bob nyní bude chtít zašifrovat zprávu m. Od Alice mu došla trojice (p, a, b). 1. Bob zvolí přirozené číslo y a spočítá, jaký zbytek dává číslo a y po dělení číslem p. Označme toto číslo c Bob spočítá, jaký zbytek dává číslo m b y po dělení číslem p. Tento zbytek označme c Bob pošle Alici dvojici (c 1, c 2 ) Dvojici (c 1, c 2 ) si opět může přečíst kdokoliv. Aby však mohl určit zprávu m, potřeboval by znát přirozené číslo y, které se mu však opět nepodaří zjistit. Pojd me nyní zjistit, jakým způsobem bude Alice zprávu dešifrovat. 1. Alice spočítá, jaký zbytek dává číslo c x 1 po dělení číslem p. Tento zbytek označme z. 2. Alice určí celé číslo d takové, že z d 1 3. Alice dostane zprávu m tak, že určí, jaký zbytek dává číslo c 2 d po dělení číslem p. To, že takto dostane Alice skutečně zprávu m, si samozřejmě dokážeme. Označme α zbytek po dělení čísla c 2 d číslem p. Chceme dokázat, že α m Máme tedy α c 2 d Bob dostal číslo c 2 jako zbytek čísla m b y po dělení číslem p. Proto α (m b y ) d Alice dostala číslo b jako zbytek po dělení čísla a x prvočíslem p. Máme tak α (m (a x ) y ) d Upravme α m a x y d (mod p) α m (a y ) x d Číslo a y ale dává zbytek c 2 po dělení prvočíslem p, jak to vypočítal Bob, proto α m c x 1 d 16

8 Číslo c x 1 dává po dělení číslem p zbytek z, což spočítala Alice. α m z d Číslo d bylo Alicí voleno tak, aby z d 1 Proto α m 1 To jsme ale chtěli dostat. Takto jsme dokázali správnost algoritmu ElGamal. Opět si ukážeme princip algoritmu ElGamal na konkrétním příkladu. Příklad Bob chce Alici odeslat zprávu m = 12. Alice si zvolí p = 23. Určete, jak Bob zašifruje zprávu a dále tuto zprávu dešifrujte. Řešení. Pojd me postupovat přesně tak, jak jsme si představili algoritmus ElGamal. 1. Alice zvolí číslo a řádu 22 modulo 23. Takovým číslem je například a = Alice zvolí přirozené číslo x a počítá jaký zbytek dává 5 x modulo 23. Zvolme x = 13. Potom (5 2 ) (mod 23). Máme tak b = Alice odešle Bobovi trojici (p, a, b) = (23, 5, 21). Bob obdržel trojici (p, a, b) = (23, 5, 21) a bude chtít zašifrovat zprávu m = Bob zvolí přirozené číslo y a spočítá, jaký zbytek dává číslo 5 y po dělení číslem 23. Zvolme y = 7. Potom Máme tak c 1 = (5 2 ) (mod 23). 2. Bob spočítá, jaký zbytek dává číslo po dělení číslem 23. Máme tak c 2 = Bob pošle Alici dvojici (c 1, c 2 ) = (17, 5). Alice bude chtít zprávu dešifrovat ( 2) 7 5 (mod 23). 1. Alice spočítá, jaký zbytek dává číslo po dělení číslem (17 2 ) (13 2 ) (mod 23). Tímto zbytkem je z =

9 2. Alice určí celé číslo d takové, že 10 d 1 (mod 23). Toto číslo můžeme opět určit pomocí Euklidova algoritmu obdobně, jako jsme postupovali v RSA algoritmu. My pro náš příklad zvolme jiný postup, který je však těžko aplikovatelný v obecném příkladu: Položme proto d = 7. 10d 1 (mod 23) 10d (mod 23) 10d 70 (mod 23) d 7 (mod 23). 3. Alice dostane zprávu m tak, že určí, jaký zbytek dává číslo 5 7 po dělení číslem 23, což je

10 Závěr Závěr V tomto textu jsme si ukázali, jak nám může být užitečná teorie čísel v šifrovacích algoritmech. V závěrečné lekci se pak ještě podíváme na další šifrovací algoritmus, konkrétně na šifrování pomocí eliptických křivek. Dále se podíváme na to, jak lze všechny algoritmy využít při tvorbě digitálního podpisu, což je v dnešní době poměrně aktuální téma. Opět uvidíme, že je vše založeno na teorii čísel. Teorie čísel nám ukazuje, jak krásná, užitečná, ale zároveň nečekaná dokáže být matematika. Ukazuje, že i zdánlivě jednoduchý problém rozkládání čísla na součin prvočísel může být základem šifrovacích algoritmů, díky kterým můžeme posílat informace, které si dokáže přečíst pouze adresát. Je to právě teorie čísel, která nám dává řadu zajímavých problémů, které jsou snadno pochopitelné, avšak jejich řešení nám dává spoustu nových a nových poznatků. Vzpomeňme zde Velkou Fermatovu větu, kdy chceme najít všechna nenulová celá čísla x, y, z, která budou splňovat rovnost x n + y n = z n. Tento lehce pochopitelný problém formuloval v 17. století francouzský matematik Pierre de Fermat. Až teprve nedávno, v roce 1994, dokázal britský matematik Andrew John Wiles, že tato rovnice nemá žádné nenulové řešení pro n > 2. Na konec ještě zmiňme dva problémy teorie čísel, které zatím nikdo nevyřešil. První je problém týkající se prvočíselných dvojčat. Prvočíselná dvojčata jsou dvě po sobě jdoucí lichá čísla, která jsou prvočísly (například 3 a 5, 11 a 13, 29 a 31). Doposud se však vůbec neví, kolik je prvočíselných dvojčat, zda jich je konečně, či nekonečně mnoho. Dalším problémem jsou dokonalá čísla. Dokonalé číslo je takové přirozené číslo, které je součtem svých kladných dělitelů (kromě sebe samého). Takovým číslem je například číslo 6 = Dalšími čísly jsou třeba 28 = , 496, Dosud je známo 48 dokonalých čísel, přičemž poslední z nich bylo objeveno v únoru Dodnes nikdo neví, zda je nekonečně mnoho dokonalých čísel a nikomu se zatím nepodařilo najít liché dokonalé číslo, či dokázat jeho neexistenci. 19

11 Literatura Literatura [1] Bulant, M.: Algebra 2 Teorie čísel, M6520/um/main-print.pdf,

Jak funguje asymetrické šifrování?

Jak funguje asymetrické šifrování? Jak funguje asymetrické šifrování? Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikované matematiky, Fakulta elektrotechniky a informatiky, Vysoká škola báňská Technická univerzita Ostrava Petr Vodstrčil

Více

8. RSA, kryptografie s veřejným klíčem. doc. Ing. Róbert Lórencz, CSc.

8. RSA, kryptografie s veřejným klíčem. doc. Ing. Róbert Lórencz, CSc. Bezpečnost 8. RSA, kryptografie s veřejným klíčem doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních programů

Více

Diskrétní matematika 1. týden

Diskrétní matematika 1. týden Diskrétní matematika 1. týden Elementární teorie čísel dělitelnost Jan Slovák Masarykova univerzita Fakulta informatiky jaro 2015 Obsah přednášky 1 Problémy teorie čísel 2 Dělitelnost 3 Společní dělitelé

Více

Úvod RSA Aplikace, související témata RSA. Ing. Štěpán Sem <stepan.sem@gmail.com> Festival Fantazie, 2013. Štěpán Sem

Úvod RSA Aplikace, související témata RSA. Ing. Štěpán Sem <stepan.sem@gmail.com> Festival Fantazie, 2013. Štěpán Sem Ing. Festival Fantazie, 2013 Osnova 1 Základní pojmy Obtížnost Kryptografie 2 Základní princip Matematické souvislosti Historie 3 Vymezení pojmů Základní pojmy Obtížnost Kryptografie

Více

Protokol RSA. Tvorba klíčů a provoz protokolu Bezpečnost a korektnost protokolu Jednoduché útoky na provoz RSA Další kryptosystémy

Protokol RSA. Tvorba klíčů a provoz protokolu Bezpečnost a korektnost protokolu Jednoduché útoky na provoz RSA Další kryptosystémy Protokol RSA Jiří Velebil: X01DML 3. prosince 2010: Protokol RSA 1/18 Protokol RSA Autoři: Ronald Rivest, Adi Shamir a Leonard Adleman. a Publikováno: R. L. Rivest, A. Shamir a L. Adleman, A Method for

Více

RSA. Matematické algoritmy (11MA) Miroslav Vlček, Jan Přikryl. Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní. čtvrtek 21.

RSA. Matematické algoritmy (11MA) Miroslav Vlček, Jan Přikryl. Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní. čtvrtek 21. Čínská věta o zbytcích Šifrování Závěr Čínská věta o zbytcích RSA Matematické algoritmy (11MA) Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 4. přednáška 11MA čtvrtek 21. října 2010 verze:

Více

Modulární aritmetika, Malá Fermatova věta.

Modulární aritmetika, Malá Fermatova věta. Modulární aritmetika, Malá Fermatova věta. Matematické algoritmy (11MAG) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 4. přednáška 11MAG pondělí 10. listopadu 2014 verze: 2014-11-03

Více

Diskrétní logaritmus

Diskrétní logaritmus 13. a 14. přednáška z kryptografie Alena Gollová 1/38 Obsah 1 Protokoly Diffieho-Hellmanův a ElGamalův Diffieho-Hellmanův a ElGamalův protokol Bezpečnost obou protokolů 2 Baby step-giant step algoritmus

Více

Šifrová ochrana informací věk počítačů PS5-2

Šifrová ochrana informací věk počítačů PS5-2 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 1 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací věk počítačů PS5-2 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 2 Osnova

Více

Čínská věta o zbytcích RSA

Čínská věta o zbytcích RSA Čínská věta o zbytcích RSA Matematické algoritmy (11MAG) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MAG pondělí 10. listopadu 2014 verze: 2014-11-10 11:20 Obsah

Více

Asymetrická kryptografie

Asymetrická kryptografie PEF MZLU v Brně 12. listopadu 2007 Problém výměny klíčů Problém výměny klíčů mezi odesílatelem a příjemcem zprávy trápil kryptografy po několik století. Problém spočívá ve výměně tajné informace tak, aby

Více

Správa přístupu PS3-2

Správa přístupu PS3-2 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Správa přístupu PS3-2 1 Osnova II základní metody pro zajištění oprávněného přístupu; autentizace; autorizace; správa uživatelských účtů; srovnání současných

Více

RSA. Matematické algoritmy (11MAG) Jan Přikryl. Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní. verze: :01

RSA. Matematické algoritmy (11MAG) Jan Přikryl. Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní. verze: :01 Čínská věta o zbytcích Mocnění Eulerova funkce Šifrování Závěr Čínská věta o zbytcích RSA Matematické algoritmy (11MAG) Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 4. přednáška 11MAG ponděĺı

Více

Pokročilá kryptologie

Pokročilá kryptologie Pokročilá kryptologie RSA doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních programů Informatika pro

Více

Diffieho-Hellmanův protokol ustanovení klíče

Diffieho-Hellmanův protokol ustanovení klíče Diffieho-Hellmanův protokol ustanovení klíče Andrew Kozlík KA MFF UK Diffieho-Hellmanův protokol ustanovení klíče (1976) Před zahájením protokolu se ustanoví veřejně známé parametry: Konečná grupa (G,

Více

KRYPTOGRAFIE VER EJNE HO KLI Č E

KRYPTOGRAFIE VER EJNE HO KLI Č E KRYPTOGRAFIE VER EJNE HO KLI Č E ÚVOD Patricie Vyzinová Jako téma jsem si vybrala asymetrickou kryptografii (kryptografie s veřejným klíčem), což je skupina kryptografických metod, ve kterých se pro šifrování

Více

Základy elementární teorie čísel

Základy elementární teorie čísel Základy elementární teorie čísel Jiří Velebil: X01DML 29. října 2010: Základy elementární teorie čísel 1/14 Definice Řekneme, že přirozené číslo a dělí přirozené číslo b (značíme a b), pokud existuje přirozené

Více

Asymetrická kryptografie a elektronický podpis. Ing. Dominik Breitenbacher Mgr. Radim Janča

Asymetrická kryptografie a elektronický podpis. Ing. Dominik Breitenbacher Mgr. Radim Janča Asymetrická kryptografie a elektronický podpis Ing. Dominik Breitenbacher ibreiten@fit.vutbr.cz Mgr. Radim Janča ijanca@fit.vutbr.cz Obsah cvičení Asymetrická, symetrická a hybridní kryptografie Kryptoanalýza

Více

Základy elementární teorie čísel

Základy elementární teorie čísel Základy elementární teorie čísel Jiří Velebil: A7B01MCS 3. října 2011: Základy elementární teorie čísel 1/15 Dělení se zbytkem v oboru celých čísel Ať a, b jsou libovolná celá čísla, b 0. Pak existují

Více

Šifrová ochrana informací věk počítačů PS5-2

Šifrová ochrana informací věk počítačů PS5-2 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací věk počítačů PS5-2 1 Osnova šifrová ochrana využívající výpočetní techniku např. Feistelova šifra; symetrické a asymetrické šifry;

Více

Obsah. Protokol RSA. Protokol RSA Bezpečnost protokolu RSA. 5. a 6. přednáška z kryptografie

Obsah. Protokol RSA. Protokol RSA Bezpečnost protokolu RSA. 5. a 6. přednáška z kryptografie Obsah RSA šifrování 5. a 6. přednáška z kryptografie 1 RSA šifrování 2 Útoky na protokol RSA Útoky při sdíleném modulu nebo exponentu Útoky při malém soukromém exponentu Implementační útoky 3 Digitální

Více

5. a 6. přednáška z kryptografie

5. a 6. přednáška z kryptografie RSA šifrování 5. a 6. přednáška z kryptografie Alena Gollová RSA širování 1/33 Obsah 1 RSA šifrování 2 Útoky při sdíleném modulu nebo exponentu Útoky při malém soukromém exponentu Implementační útoky 3

Více

Kryptografie založená na problému diskrétního logaritmu

Kryptografie založená na problému diskrétního logaritmu Kryptografie založená na problému diskrétního logaritmu Andrew Kozlík KA MFF UK Diffieho-Hellmanův protokol ustanovení klíče (1976) Před zahájením protokolu se ustanoví veřejně známé parametry: Konečná

Více

Složitost a moderní kryptografie

Složitost a moderní kryptografie Složitost a moderní kryptografie Radek Pelánek Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024 Složitost a moderní kryptografie

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ 1 TEORIE ČÍSEL 000/001 Cifrik, M-ZT Příklad ze zadávacích listů 10 101 Dokažte, že číslo 101 +10 je dělitelné číslem 51 Důkaz:

Více

Matematika IV - 5. přednáška Polynomy

Matematika IV - 5. přednáška Polynomy S Matematika IV - 5. přednáška Polynomy Michal Bulant Masarykova univerzita Fakulta informatiky 17. 3. 2008 s Obsah přednášky O Dělitelnost a nerozložitelnost Kořeny a rozklady polynomů Polynomy více proměnných

Více

ElGamal, Diffie-Hellman

ElGamal, Diffie-Hellman Asymetrické šifrování 22. dubna 2010 Prezentace do předmětu UKRY Osnova 1 Diskrétní logaritmus 2 ElGamal 3 Diffie-Hellman Osnova 1 Diskrétní logaritmus 2 ElGamal 3 Diffie-Hellman Osnova 1 Diskrétní logaritmus

Více

Modulární aritmetika, Malá Fermatova věta.

Modulární aritmetika, Malá Fermatova věta. Modulární aritmetika, Malá Fermatova věta. Matematické algoritmy (11MAG) Jan Přikryl 4. přednáška 11MAG pondělí 3. listopadu 2014 verze: 2014-11-10 10:42 Obsah 1 Dělitelnost 1 1.1 Největší společný dělitel................................

Více

online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.

online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165. Teorie čísel a úvod do šifrování RNDr. Zbyněk Šír, Ph.D. Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím online

Více

Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30

Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30 Počítání modulo polynom 3. přednáška z algebraického kódování Alena Gollová, TIK Počítání modulo polynom 1/30 Obsah 1 Polynomy nad Zp Okruh Zp[x] a věta o dělení se zbytkem 2 Kongruence modulo polynom,

Více

Matematika IV - 5. přednáška Polynomy

Matematika IV - 5. přednáška Polynomy Matematika IV - 5. přednáška Polynomy Michal Bulant Masarykova univerzita Fakulta informatiky 17. 3. 2008 Obsah přednášky O Dělitelnost a nerozložitelnost Kořeny a rozklady polynomů Polynomy více proměnných

Více

Řetězové zlomky. již čtenář obeznámen. Důraz bude kladen na implementační stránku, protože ta je ve

Řetězové zlomky. již čtenář obeznámen. Důraz bude kladen na implementační stránku, protože ta je ve Faktorizace čísel pomocí řetězových zlomků Tento text se zabývá algoritmem CFRAC (continued fractions algorithm) pro rozkládání velkých čísel (typicky součinů dvou velkých prvočísel). Nebudeme se zde zabývat

Více

asymetrická kryptografie

asymetrická kryptografie asymetrická kryptografie princip šifrování Zavazadlový algoritmus RSA EL GAMAL další asymetrické blokové algoritmy Skipjack a Kea, DSA, ECDSA D H, ECDH asymetrická kryptografie jeden klíč pro šifrování

Více

V každém kroku se a + b zmenší o min(a, b), tedy vždy alespoň o 1. Jestliže jsme na začátku dostali 2

V každém kroku se a + b zmenší o min(a, b), tedy vždy alespoň o 1. Jestliže jsme na začátku dostali 2 Euklidův algoritmus Doprovodný materiál pro cvičení Programování I. NPRM044 Autor: Markéta Popelová Datum: 31.10.2010 Euklidův algoritmus verze 1.0 Zadání: Určete největšího společného dělitele dvou zadaných

Více

Asymetrické šifry. Pavla Henzlová 28.3.2011. FJFI ČVUT v Praze. Pavla Henzlová (FJFI ČVUT v Praze) Asymetrické šifry 28.3.

Asymetrické šifry. Pavla Henzlová 28.3.2011. FJFI ČVUT v Praze. Pavla Henzlová (FJFI ČVUT v Praze) Asymetrické šifry 28.3. Asymetrické šifry Pavla Henzlová FJFI ČVUT v Praze 28.3.2011 Pavla Henzlová (FJFI ČVUT v Praze) Asymetrické šifry 28.3.2011 1 / 16 Obsah 1 Asymetrická kryptografie 2 Diskrétní logaritmus 3 Baby step -

Více

Aplikace matematiky. aneb Nedokonalosti dokonalé matematiky

Aplikace matematiky. aneb Nedokonalosti dokonalé matematiky Aplikace matematiky aneb Nedokonalosti dokonalé matematiky Petr Pupík 21. září 2015 K čemu je nám matematika? Matematika je jen počítání K čemu je nám matematika? Matematika je jen počítání Vše v matematice

Více

MPI - 7. přednáška. Hledání inverzí v Z n. Rychlé mocnění modulo n. Lineární rovnice v Z + n. Soustavy lineárních rovnic v Z + n.

MPI - 7. přednáška. Hledání inverzí v Z n. Rychlé mocnění modulo n. Lineární rovnice v Z + n. Soustavy lineárních rovnic v Z + n. MPI - 7. přednáška vytvořeno: 31. října 2016, 10:18 Co bude v dnešní přednášce Hledání inverzí v Z n. Rychlé mocnění modulo n. Lineární rovnice v Z + n. Soustavy lineárních rovnic v Z + n. Rovnice a b

Více

Matematické algoritmy (11MAG) Jan Přikryl

Matematické algoritmy (11MAG) Jan Přikryl Prvočísla, dělitelnost Matematické algoritmy (11MAG) Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 2. přednáška 11MAG ponděĺı 7. října 2013 verze: 2013-10-22 14:28 Obsah přednášky Prvočísla

Více

Matematické algoritmy (11MAG) Jan Přikryl. verze: :29

Matematické algoritmy (11MAG) Jan Přikryl. verze: :29 Prvočísla, dělitelnost Matematické algoritmy (11MAG) Jan Přikryl 2. přednáška 11MAG pondělí 7. října 2013 verze: 2013-10-22 14:29 Obsah 1 Prvočísla 1 1.1 Vlastnosti prvočísel...................................

Více

Věta o dělení polynomů se zbytkem

Věta o dělení polynomů se zbytkem Věta o dělení polynomů se zbytkem Věta. Nechť R je okruh, f, g R[x], přičemž vedoucí koeficient polynomu g 0 je jednotka okruhu R. Pak existuje jediná dvojice polynomů q, r R[x] taková, že st(r) < st(g)

Více

2.8.6 Čísla iracionální, čísla reálná

2.8.6 Čísla iracionální, čísla reálná .8.6 Čísla iracionální, čísla reálná Předpoklady: 0080 Př. : Doplň tabulku (všechny sloupce je možné vypočítat bez kalkulačky). 00 x 0 0,0004 00 900,69 6 8 x 0,09 0, x 0 0,0004 00 x 0 0,0 0 6 6 900 0 00

Více

1.5.7 Prvočísla a složená čísla

1.5.7 Prvočísla a složená čísla 17 Prvočísla a složená čísla Předpolady: 103, 106 Dnes bez alulačy Číslo 1 je dělitelné čísly 1,, 3,, 6 a 1 Množinu, terou tvoří právě tato čísla, nazýváme D 1 množina dělitelů čísla 1, značíme ( ) Platí:

Více

Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY

Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY VYBRANÉ KAPITOLY Z ELEMENTÁRNÍ ALGEBRY DIPLOMOVÁ PRÁCE Bc. Jiří KRYČ Učitelství pro 2. stupeň ZŠ, obor

Více

2. V Q[x] dělte se zbytkem polynomy:

2. V Q[x] dělte se zbytkem polynomy: Sbírka příkladů z polynomů pro předmět Cvičení z algebry I Dělení v okruzích polynomů 1. V Q[x] dělte se zbytkem polynomy a) (x 5 + x 3 2x + 1) : ( x 3 + x + 1), b) (3x 3 + 10x 2 + 2x 3) : (5x 2 + 25x

Více

Trocha teorie Ošklivé lemátko První generace Druhá generace Třetí generace Čtvrtá generace O OŠKLIVÉM LEMÁTKU PAVEL JAHODA

Trocha teorie Ošklivé lemátko První generace Druhá generace Třetí generace Čtvrtá generace O OŠKLIVÉM LEMÁTKU PAVEL JAHODA O OŠKLIVÉM LEMÁTKU PAVEL JAHODA Prezentace pro přednášku v rámci ŠKOMAM 2014. Dělitelnost na množině celých čísel 3 dělí 6 Dělitelnost na množině celých čísel 3 dělí 6 protože Dělitelnost na množině celých

Více

Prvočísla, dělitelnost

Prvočísla, dělitelnost Prvočísla, dělitelnost Matematické algoritmy (11MAG) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 3. přednáška 11MAG pondělí 3. listopadu 2013 verze: 2014-11-03 11:28 Obsah přednášky

Více

Úvod do teorie dělitelnosti

Úvod do teorie dělitelnosti Úvod do teorie dělitelnosti V předchozích hodinách matematiky jste se seznámili s desítkovou soustavou. Umíte v ní zapisovat celá i desetinná čísla a provádět zpaměti i písemně základní aritmetické operace

Více

Důkazové metody v teorii čísel

Důkazové metody v teorii čísel Důkazové metody v teorii čísel Michal Kenny Rolínek ØÖ ØºPříspěveknejenukazujeklasickátvrzenízelementárníteoriečísel, ale především ukazuje obvyklé postupy při jejich používání, a to převážně na úlohách

Více

Hlubší věty o počítání modulo

Hlubší věty o počítání modulo Hlubší věty o počítání modulo Jiří Velebil: A7B01MCS 31. října 2011: Hlubší věty o počítání modulo 1/18 Příklad Vyřešte: Idea řešení: x = 3 v Z 4 x = 2 v Z 5 x = 6 v Z 21 x = 3 + 2 + 6 Musí být: 1 První

Více

MFF UK Praha, 22. duben 2008

MFF UK Praha, 22. duben 2008 MFF UK Praha, 22. duben 2008 Elektronický podpis / CA / PKI část 1. http://crypto-world.info/mff/mff_01.pdf P.Vondruška Slide2 Přednáška pro ty, kteří chtějí vědět PROČ kliknout ANO/NE a co zatím všechno

Více

Co víme o přirozených číslech

Co víme o přirozených číslech Co víme o přirozených číslech 2. Dělení se zbytkem a dělení beze zbytku In: Jiří Sedláček (author): Co víme o přirozených číslech. (Czech). Praha: Mladá fronta, 1961. pp. 9 15. Persistent URL: http://dml.cz/dmlcz/403438

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

Hlubší věty o počítání modulo

Hlubší věty o počítání modulo Hlubší věty o počítání modulo Jiří Velebil: X01DML 3. prosince 2007: Hlubší věty o počítání modulo 1/17 Příklad Vyřešte: Idea řešení: x = 3 v Z 4 x = 2 v Z 5 x = 6 v Z 21 x = 3 + 2 + 6 Musí být: 1 První

Více

Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty.

Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty. Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty. (A7B01MCS) I. Matematická indukce a rekurse. Indukční principy patří

Více

Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012

Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012 Algebra - třetí díl Lenka Zalabová Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita v Českých Budějovicích zima 2012 Obsah 1 Dělitelnost 2 Grupy zbytkových tříd 3 Jedna z

Více

4 Počítání modulo polynom

4 Počítání modulo polynom 8 4 Počítání modulo polynom Co se vyplatilo jendou, vyplatí se i podruhé. V této kapitole zavedeme polynomy nad Z p a ukážeme, že množina všech polynomů nad Z p tvoří komutativní okruh s jednotkou. Je-li

Více

Eliptické křivky a RSA

Eliptické křivky a RSA Přehled Katedra informatiky FEI VŠB TU Ostrava 11. února 2005 Přehled Část I: Matematický základ Část II: RSA Část III: Eliptické křivky Matematický základ 1 Základní pojmy a algoritmy Základní pojmy Složitost

Více

Historie matematiky a informatiky Cvičení 1

Historie matematiky a informatiky Cvičení 1 Historie matematiky a informatiky Cvičení 1 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Kapitola z teorie čísel Co

Více

O dělitelnosti čísel celých

O dělitelnosti čísel celých O dělitelnosti čísel celých 9. kapitola. Malá věta Fermatova In: František Veselý (author): O dělitelnosti čísel celých. (Czech). Praha: Mladá fronta, 1966. pp. 98 105. Persistent URL: http://dml.cz/dmlcz/403572

Více

8 Kořeny cyklických kódů, BCH-kódy

8 Kořeny cyklických kódů, BCH-kódy 24 8 Kořeny cyklických kódů, BCH-kódy Generující kořeny cyklických kódů Nechť K je cyklický kód délky n nad Z p s generujícím polynomem g(z). Chceme najít rozšíření T tělesa Z p, tedy nějaké těleso GF

Více

Riemannova hypotéza Martin Havlík 2. A

Riemannova hypotéza Martin Havlík 2. A Riemannova hypotéza Martin Havlík 2. A Motivace: Motivace mého projektu je jednoduchá, pochopit matematiky označovaný nejtěžší a nejdůležitější problém současné matematiky. Cíle: Dokázání téhle hypotézy

Více

HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27

HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27 Řetězové zlomky HL Academy - Chata Lopata 2012 13.2. 18.2.2012 Emu (Brkos 2012) Řetězové zlomky 13.2. 18.2.2012 1 / 27 Obsah 1 Úvod 2 Základní pojmy 3 Konečné řetězové zlomky Sblížené zlomky Euklidův algoritmus

Více

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice 9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky

Více

Zbytky a nezbytky Vazební věznice Orličky Kondr (Brkos 2010) Zbytky a nezbytky / 22

Zbytky a nezbytky Vazební věznice Orličky Kondr (Brkos 2010) Zbytky a nezbytky / 22 Zbytky a nezbytky aneb stručný úvod do kongruencí Zbyněk Konečný Vazební věznice Orličky 2009 23. 27.2.2009 Kondr (Brkos 2010) Zbytky a nezbytky 23. 27.2.2009 1 / 22 O čem to dnes bude? 1 Úvod 2 Lineární

Více

Obsah. Euler-Fermatova věta. Reziduální aritmetika. 3. a 4. přednáška z kryptografie

Obsah. Euler-Fermatova věta. Reziduální aritmetika. 3. a 4. přednáška z kryptografie Obsah Počítání modulo n a jeho časová složitost 3. a 4. přednáška z kryptografie 1 Počítání modulo n - dokončení Umocňování v Zn 2 Časová složitost výpočtů modulo n Asymptotická notace Základní aritmetické

Více

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28. INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ107/2200/280141 Soustavy lineárních rovnic Michal Botur Přednáška 4 KAG/DLA1M: Lineární

Více

Karel Klouda c KTI, FIT, ČVUT v Praze 28. února, letní semestr 2010/2011

Karel Klouda c KTI, FIT, ČVUT v Praze 28. února, letní semestr 2010/2011 MI-MPI, Přednáška č. 3 Karel Klouda karel.klouda@fit.cvut.cz c KTI, FIT, ČVUT v Praze 28. února, letní semestr 2010/2011 Množiny s jednou binární operací Neprázdná množina M s binární operací (resp. +

Více

Pomocný text. Polynomy

Pomocný text. Polynomy Pomocný text Polynomy Tato série bude o polynomech a to zejména o polynomech jedné proměnné (pokud nebude uvedeno explicitně, že jde o polynom více proměnných). Formálně je někdy polynom jedné proměnné

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška sedmá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Čísla a číselné obory 2 Princip indukce 3 Vybrané

Více

Kongruence na množině celých čísel

Kongruence na množině celých čísel 121 Kapitola 4 Kongruence na množině celých čísel 4.1 Relace kongruence na množině celých čísel Vraťme se k úvahám o dělení se zbytkem. Na základní škole jsme se naučili, že když podělíme číslo 11 číslem

Více

2 Důkazové techniky, Indukce

2 Důkazové techniky, Indukce Důkazové techniky, Indukce Náš hlubší úvod do matematických formalismů pro informatiku začneme základním přehledem technik matematických důkazů. Z nich pro nás asi nejdůležitější je technika důkazů matematickou

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

C5 Bezpečnost dat v PC

C5 Bezpečnost dat v PC C5 T1 Vybrané kapitoly počíta tačových s sítí Bezpečnost dat v PC 1. Počíta tačová bezpečnost 2. Symetrické šifrování 3. Asymetrické šifrování 4. Velikost klíče 5. Šifrování a dešifrov ifrování 6. Steganografie

Více

Kritéria dělitelnosti Divisibility Criterions

Kritéria dělitelnosti Divisibility Criterions VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra aplikované matematiky Kritéria dělitelnosti Divisibility Criterions 2014 Veronika Balcárková Ráda bych na tomto místě poděkovala

Více

Rozlišujeme dva základní typy šifrování a to symetrické a asymetrické. Symetrické

Rozlišujeme dva základní typy šifrování a to symetrické a asymetrické. Symetrické 1 Šifrování Kryptografie Každý z nás si určitě umí představit situaci, dy je důležité utajit obsah posílané zprávy ta aby ho byl schopen přečíst jen ten omu je určená a nido nepovolaný nebyl schopen zjistit

Více

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28. INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Báze vektorových prostorů, transformace souřadnic Michal Botur Přednáška

Více

Kryptografické protokoly. Stříbrnice,

Kryptografické protokoly. Stříbrnice, Kryptografické protokoly Stříbrnice, 12.-16.2. 2011 Kryptografie Nauka o metodách utajování smyslu zpráv a způsobech zajištění bezpečného přenosu informací xteorie kódování xsteganografie Historie Klasická

Více

Charakteristika tělesa

Charakteristika tělesa 16 6 Konečná tělesa V této kapitole budeme pod pojmem těleso mít na mysli vždy konečné komutativní těleso, tedy množinu s dvěma binárními operacemi (T, +, ), kde (T, +) je komutativní grupa s neutrálním

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Dělitelnost přirozených čísel. Násobek a dělitel

Dělitelnost přirozených čísel. Násobek a dělitel Dělitelnost přirozených čísel Násobek a dělitel VY_42_INOVACE_ČER_10 1. Autor: Mgr. Soňa Černá 2. Datum vytvoření: 2.1.2012 3. Ročník: 6. 4. Vzdělávací oblast: Matematika 5. Vzdělávací obor: Matematika

Více

Základy matematické analýzy

Základy matematické analýzy Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

Zavedení a vlastnosti reálných čísel

Zavedení a vlastnosti reálných čísel Zavedení a vlastnosti reálných čísel jsou základním kamenem matematické analýzy. Konstrukce reálných čísel sice není náplní matematické analýzy, ale množina reálných čísel R je pro matematickou analýzu

Více

O dělitelnosti čísel celých

O dělitelnosti čísel celých O dělitelnosti čísel celých 10. kapitola. Některé staré i nové problémy číselné teorie In: František Veselý (author): O dělitelnosti čísel celých. (Czech). Praha: Mladá fronta, 1966. pp. 106 115. Persistent

Více

České vysoké učení technické v Praze Fakulta elektrotechnická Katedra telekomunikační techniky Asymetrické kryptosystémy I

České vysoké učení technické v Praze Fakulta elektrotechnická Katedra telekomunikační techniky Asymetrické kryptosystémy I České vysoké učení technické v Praze Fakulta elektrotechnická Katedra telekomunikační techniky Asymetrické kryptosystémy I Ing. Tomáš Vaněk, Ph.D. tomas.vanek@fel.cvut.cz Osnova obecné informace IFP RSA

Více

Historie matematiky a informatiky Cvičení 4

Historie matematiky a informatiky Cvičení 4 Historie matematiky a informatiky Cvičení 4 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Čísla speciálních tvarů a jejich

Více

Matematika IV - 3. přednáška Rozklady grup

Matematika IV - 3. přednáška Rozklady grup S Matematika IV - 3. přednáška Rozklady grup Michal Bulant Masarykova univerzita Fakulta informatiky 3. 3. 2008 s Obsah přednášky Rozklady podle podgrup ô Normální podgrupy s Doporučene zdroje Martin Panák,

Více

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p KOMENTÁŘE ÚLOH 43. ROČNÍKU MO, KATEGORIE A 1. Přirozené číslo m > 1 nazveme k násobným dělitelem přirozeného čísla n, pokud platí rovnost n = m k q, kde q je celé číslo, které není násobkem čísla m. Určete,

Více

Matematická analýza pro informatiky I. Limita posloupnosti (I)

Matematická analýza pro informatiky I. Limita posloupnosti (I) Matematická analýza pro informatiky I. 3. přednáška Limita posloupnosti (I) Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 25. února 2011 tomecek@inf.upol.cz

Více

Lineární algebra : Báze a dimenze

Lineární algebra : Báze a dimenze Lineární algebra : Báze a dimenze (5. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 9. dubna 2014, 13:33 1 2 5.1 Báze lineárního prostoru Definice 1. O množině vektorů M z LP V řekneme,

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů? Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti

Více

Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz

Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Y36BEZ Bezpečnost přenosu a zpracování dat Róbert Lórencz 1. přednáška Úvod http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Róbert Lórencz (ČVUT FEL, 2007) Y36BEZ Bezpečnost přenosu a zpracování

Více

Matematika IV - 3. přednáška Rozklady grup

Matematika IV - 3. přednáška Rozklady grup Matematika IV - 3. přednáška Rozklady grup Michal Bulant Masarykova univerzita Fakulta informatiky 3. 3. 2008 Obsah přednášky Rozklady podle podgrup ô Normální podgrupy Martin Panák, Jan Slovák, Drsná

Více

Prvočísla a čísla složená

Prvočísla a čísla složená Prvočísla a čísla složená Prvočíslo je každé přirozené číslo, které má právě dva různé dělitele, číslo 1 a samo sebe. Nejmenším a jediným sudým je prvočíslo 2. Další prvočísla: 2, 3, 5, 7, 11, 13, 17,

Více

Autentizace uživatelů

Autentizace uživatelů Autentizace uživatelů základní prvek ochrany sítí a systémů kromě povolování přístupu lze uživatele členit do skupin, nastavovat různá oprávnění apod. nejčastěji dvojicí jméno a heslo další varianty: jednorázová

Více

Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty.

Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty. Kapitola 4 Tělesa Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty. Všechna čísla byla reálná, vektory měly reálné souřadnice, matice měly reálné prvky. Také řešení soustav

Více

Lineární algebra : Polynomy

Lineární algebra : Polynomy Lineární algebra : Polynomy (2. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 15. dubna 2014, 11:21 1 2 2.1 Značení a těleso komplexních čísel Značení N := {1, 2, 3... }... množina

Více

)(x 2 + 3x + 4),

)(x 2 + 3x + 4), 3 IREDUCIBILNÍ ROZKLADY POLYNOMŮ V T [X] 3 Ireducibilní rozklady polynomů v T [x] - rozklady polynomů na ireducibilní (dále nerozložitelné) prvky v oboru integrity polynomů jedné neurčité x nad tělesem

Více