Fyziologie buněčných systémů (proliferace, diferenciace) A. Kozubík
|
|
- Vladimíra Staňková
- před 7 lety
- Počet zobrazení:
Transkript
1 Fyziologie buněčných systémů (proliferace, diferenciace) A. Kozubík Biofyzikální ústav AVČR, v.v.i., (Oddělení cytokinetiky) Ústav experimentální biologie, PřF MU (Oddělení fyziologie a imunologie živočichů) Brno
2 Diferenciace
3 Differences in mrna expression patterns among different types of human cancer cells
4 Differences in the proteins expressed by two human tissues
5 Polyklonální charakter kostních buněk Přirovnání kmenové buňky ke stromu: a kmenová buňka v embryonální podobě b kmenová buňka v dospělosti a b b
6 Buněčné komponenty hematopoetického mikroprostředí (H.I.M.) v kostní dřeni (podle Knospe 1978) Buněčný typ Endotelie sinusoidů Fibroblasty Tukové buňky Retikuloendotelové buňky, monocyty Endostální buňky Kost předpokládaná funkce zachycování kmenových buněk, výměna metabolitů uvolňování zralých buněk do cirkulace, část mikroprostředí umožňující buněčnou proliferaci tvorba kolagenu, mukopolysacharid ů, indukce diferenciace? vyplění prostoru po zaniklé kostní dřeni, proliferace pluripotentních kmenových buněk fagocytóza, tvorba CSF a jiných hemokininů indukce diferenciace? tvorba CSF a jiných hemokininů kmenové buňky stromatu? mechanická ochrana, tvorba hemokininů?
7 LYMFOPOÉZA Kostní dřeň PRIMÁRNÍ L.O. Thymus thymové hormony Primární imunitní odpověď SEKUNDÁRNÍ L.O. (Lymfatické uzliny a slezina) Sekundární imunitní odpověď Recirkulující paměťové buňky s dlouhou dobou života T- lymfocyty Buněčná imunita Plazmatická buňka B lymfocyty Humorální (IG) imunita
8
9 Hematopoetické buňky kostní dřeně Přestup do krve Pluripotentní buňka již neschopná vytvořit slezinnou kolonii % - BFU-E - CFU-E - CFU-C - CFU-eozinofilů - CFU-Meg - CFU-makrofágů 2 - CFU-BL 3 - CFU-TL 3 erytroblasty - myelocyty - megakaryocyty 50 % CFU-S 0 % Pluripotentní buňky Morfologicky rozpoznatelné buňky Proliferující buňky Neproliferující buňky Schéma kvantitativního zastoupení různých prekurzorů krevních buněk v krvetvorné tkáni. 1 Podle Gregorové a Henkelmana (1977); 2 podle MacVittieho a Porvaznika (1978); 3 nejsou odvozeny od CFU-S.
10 BFU-E CFU-E Progenitorové erytroidní kmenové bunky Obr. 23. Na obrázku je znázorněna zvýšená proliferace při erytropoetickém stresu, která může vést k značné expanzi kompartmentu progenitorových erytroidních kmenových buněk. Citlivost k erytropoetinu (EP) se objevuje až v pozdějších stádiích. Upraveno podle Schofielda a Lajthy (1977). Citlivost na erytropoetin Zvýšená proliferace za erytropoetického stresu EP stimulace
11 CFU-E Kmenová buňka BFU-E citlivé na erytropoetin CFU-C citlivé na CSF citlivé na IL 3 Obr.27. Model humorálního řízení hemopoézy. Nejnezralejší buňky obsahují receptory k faktorům nezávislým na diferenciaci jednotlivých řad, jako je IL 3. Při maturaci se postupně tyto receptory ztrácejí a objevují se specifické receptory pro humorální faktory jednotlivých řad [pro erytropoetin ( ) a pro CSF ( ) ]. Podle Iscova (1978)
12 Polyklonální charakter kostních buněk - Přirovnání kmenové buňky ke stromu: a kmenová buňka v embryonální podobě b kmenová buňka v dospělosti a b b
13 Attractor cílový pohyb
14 Attractor cílový pohyb Některé pojmy Limita je matematická konstrukce, vyjadřující, že se hodnoty zadané posloupnosti nebo funkce blíží libovolně blízko k nějakému bodu. Právě tento bod je pak označován jako limita. Trajektorie souvislá čára, kterou hmotný bod při svém pohybu opisuje, se nazývá trajektorie hmotného bodu.
15 Atraktory - vizualizace Jedním způsobem vizualizace chaotického pohybu, nebo opravdu libovolného typu pohybu, je vytvoření fázového diagramu pohybu. Jiný příklad někdo kreslí pozici kyvadla vůči jeho rychlosti. Kyvadlo v klidu bude zobrazeno jako bod a kyvadlo v periodickém pohybu bude nakresleno jako jednoduchá uzavřená křivka. Když takový graf vytváří, uzavřenou křivku, křivka se nazývá orbita.
16 Příklady takových systémů zahrnují atmosféru, solární systém, tektoniku zemských desek, turbulenci tekutin, ekonomii, vývoj populace. Lorenzův atraktor popisuje pohyb systému ve stavovém prostoru. V matematice a fyzice se teorie chaosu zabývá chováním jistých nelineárních dynamických systémů, které (za jistých podmínek) vykazují jev známý jako deterministický chaos, nejvýznamněji charakterizovaný citlivostí na počáteční podmínky (viz motýlí efekt). Malá změna v počátečních podmínkách vede po čase k velmi odlišnému výsledku. V důsledku této citlivosti se chování těchto fyzikálních systémů, vykazujících chaos, jeví jako náhodné, i když model systému je deterministický v tom smyslu, že je dobře definovaný a neobsahuje žádné náhodné parametry.
17 Systémy, které vykazují deterministický chaos, jsou v jistém smyslu složitě uspořádané. Tím je význam slova v matematice a fyzice v jistém nesouladu s obvyklým chápáním slova chaos jako totálního nepořádku. Původ tohoto slova lze najít v řecké mytologii - viz chaos. Chaotický pohyb Abychom mohli klasifikovat chování systému jako chaotické musí systém vykazovat následující vlastnosti: musí být citlivý na počáteční podmínky musí být topologicky tranzitivní jeho periodické orbity musí být husté
18 Citlivost k počátečním podmínkám znamená, že dvě blízké trajektorie ve fázovém prostoru se s rostoucím časem rozbíhají (exponenciálně). Systém se chová identicky pouze když jeho počáteční konfigurace je úplně stejná. Již při malých diferencích toto neplatí. Příkladem takové citlivosti je tzv. které ale v průběhu času mohou vést až k tak dramatickým změnám, jako je výskyt tornáda. Mávnutí křídel motýla zde představuje malou změnu počátečních podmínek systému, která ale způsobí řetěz událostí vedoucí k rozsáhlým jevům, jako jsou tornáda. Kdyby motýl nemávl svými křídly, trajektorie systému by mohla být zcela odlišná.
19 3D model Attractor cílový pohyb 1 attractor (malá miokroheterogenita) 2 oddělené attractory Atraktor většina stavových trajektorií (drah hmotného bodu) se přibližuje a obmotává nějakou obecnou limitu. Systém končí ve stejném pohybu pro všechny počáteční stavy v oblasti okolo tohoto pohybu, téměř jako by byl systém k tomuto pohybu (trajektorii fázového prostoru) přitahován (anglicky 'attracted').
20 Six steps at which eucaryotic gene expression can be controlled
21 early Děje v buněčné diferenciaci growth factors receptor later cell 3. kinases/2nd messengers 11. nucleus 4. regulators genes replitase 5. hnrna 13. S G mrna proteins (enzymes) 17. M 8. amino acids 18. cytokinesis
22 Spolupůsobení regulátorů růstu rozdílné chemické povahy a regulace PROLIFERACE (příklady)
23 The four important families of small organic molecules in cells
24 Cytokiny
25 SPOLEČNÉ CHARAKTERISTIKY CYTOKINŮ Přestoţe cytokiny představují velmi heterogenní skupinu proteinů, lze uvést některé jejich společné charakteristiky: 1) Nízká MW (< 80 kda), často bývají glykosylovány (glykoproteiny) 2) účastní se imunity a zánětu, kde regulují intenzitu a délku trvání odpovědi 3) jsou produkovány - lokálně, po přechodnou dobu 4) působí spíše autokrinně a parakrinně 5) jsou vysoce účinné (pm) 6) interagují vysoce specificky s povrchovými receptory 7) po vazbě na receptory indukují syntézu mrna a receptorových proteinů 8) působí v síti, kde - svoje efekty vzájemně ovlivňují (zejm. svoji produkci) - indukují transmodulaci povrchových receptorů - mohou působit na buněčné funkce aditivně, synergicky anebo antagonisticky
26 PŘEHLED NEJDŮLEŢITĚJŠÍCH CYTOKINŮ - 2. cytokin zdroj působení IFN a 1 IFN a 2 dvojitě negativní lymfocyty, monocyty, makrofágy zvyšuje rezistenci proti virům; inhibuje proliferaci normálních i nádorových buněk; indukuje syntézu MHC I, receptoru pro Ig; aktivuje NK-buňky stejně jako u IFN a stejně jako u IFN a IFN b 1 fibroblasty, buňky epitelu IFN b 2 fibroblasty, monocyty IFN g T buňky, NK-buňky podobná jako u IFN a a b, navíc má větší schopnost aktivovat makrofágy, zvyšovat odolnost vůči parazitům; indukuje syntézu MHCI i MHCII;stimuluje syntézu IgG2 a inhibuje syntézu IgG2 a IgE B-buňkami TNF a makrofágy, T-buňky, thymocyty, B-buňky, NK-buňky působí nekrózu různých typů buněk, převáţně nádorových; pleiotropní účinky na široké spektrum buněk, např. reguluje proliferační a funkční odpověď B- a T-buněk; stimuluje diferenciaci prekurzorů myeloidní řady; stimuluje expresi cytokin, MHC a prostaglandinů TNF b T buňky má stejné účinky jako TNF a G-CSF monocyty, makrofágy, T-buňky, fibroblasty, buňky endotelu stimuluje proliferaci kolonií granulocytů; aktivuje granulocyty GM-CSF T-buňky, monocyty, makrofágy, fibroblasty, stimuluje proliferaci prekurzorů granulocytů, makrofágů; aktivuje makrofágy, neutrofly, eozinofiy buňky endotelu M-CSF monocyty, makrofágy, stimuluje růst kolonií monocytů a makrofágů; aktivuje monocyty fibroblasty EPO ledviny stimuluje růst kolonií erytrocytů a megakaryocytů TGF b krevní destičky, kosti - matrix, placenta, ledviny, některé nádory reguluje růst buněk (většinou inhibuje proliferaci vyvolanou působením hematopoietických cytokinů)
27 PŘEHLED NEJDŮLEŢITĚJŠÍCH CYTOKINŮ - 1. cytokin zdroj působení IL - 1 monocyty (+ téměř všechny buňky s jádrem) pyrogen, komitogenní faktor T-buněk; stimuluje uvolnění lymfokinů T-buňkami; aktivuje NK-buňky;stimuluje diferenciaci B-buněk IL 2 T buňky růstový faktor T-buněk a thymocytů, zvyšuje cytotoxicitu, aktivuje NK-buňky, stimuluje diferenciaci B-buněk IL - 3 T-buňky (+ ţírné buňky) stimuluje proliferaci prekurzorů granulocytů, erytrocytů, megakaryocytů, makrofágů; aktivuje monocyty a makrofágy IL - 4 T buňky stimuluje syntézu IgG1 a IgE B-buňkami, proliferaci makrofágů, NK-buněk, T-buněk IL - 5 T buňky stimuluje diferenciaci a růst eozinofilů, proliferaci T- a B-buněk IL - 6 T buňky, makrofágy, monocyty, fibroblasty, buňky endotelu stimuluje syntézu Ig B-buňkami; stimuluje proliferaci thymocytů, prekurzorů neutrofilů, makrofágů, megakaryocytů, myelomu, plazmacytomu, B-lymfomu IL - 7 buňky kostní dřeně stimuluje proliferaci prekurzorů B- a T-buněk a T-buněk IL - 8 monocyty, makrofágy, stimuluje chemotaxi neutrofilů a dalších leukocytů lymfocyty, fibroblasty, buňky endotelu IL - 9 T-buňky stimuluje proliferaci T-buněk bez přítomnosti antigenu a APC IL - 10 T-buňky (+ ţírné buňky) Inhibuje syntézu některých cytokinů (IFN g) IL - 11 buňky kostní dřeně stimuluje proliferaci multipotentních prekurzorů leukocytů (synergie s IFN g) a prekurzorů megakaryocytů (synergie s IL 3) IL - 12 B-buňky stimulace NK-buněk, cytolyticých T-buněk, T-buněk aktivovaných lymfokiny
28 cytokiny jsou polyfunkční (a) (b) (c) (d) G-CSF G-CSF G-CSF G-CSF multi-csf GM-CSF M-CSF SCF GM progenitor cell IL-6 GM progenitor cell myeloblast mature granulocyte superoxide ++ + phagocytosis (d) stimulation of functional activity mature granulocytes mature granulocytes mature macrophages mature granulocyte (c) initiation of maturation (a) cell production is dependent on regulator stimulation (b) induction of commitment to form cells in a restricted lineage
29 Úloha IL 1 v hematopoéze 1. monocyte production and activation 2. proliferation of committed progenitor cells (BFU-E, CFU-GM) 1. neutrophil activation 2. neutrophil production 3. stem cell activation IL-1 clonal expansion of differentiated B - cells GM - CSF IL - 6 T-cells endothelial cells fibroblasts epithelial cells IL T - cell growth 2. Ig secretion G - CSF ELAM - 1 ICAM - 1 adhesion of leukocytes to other cells ELAM - endothelial leukocyte adhesive molecule ICAM - intercellular adhesive molecule
30 Network interakcí cytokinů IL - 4 IL - 2 T cell B cell Antibody IFN - g IL - 1 IL - 1 GM - CSF IL - 3 macrophage LPS TNF (-)TNF G - CSF Bone marrow
31 Autoregulace uvnitř systému granulocytů - makrofágů CFU - C (GM - CFC) CFU - C CFU - C CFU - C CSF CSF PGE 2 CSF - + CSF G M G M G inhi- bitor M A různé koncentrace CSF B zpětnovazebná stimulace a inhibice PGE C produkce inhibitoru tvorby CSF G - granulocyty M - makrofágy
32 Oncogenes Tyrosine kinase abl met erb ret B2/neu sea fes/fps src fgr trk fyn yes kit lck Nuclear fos jun myb myc ski Growth factor fgf-5 sis hst int-2 Receptor bek erb B fkg fms mas ros G protein rab ras ral Serine kinase mil/raf pks mos raf pim-1 rel Growth factor Receptor Transducer Effector 2nd messenger Target Regulatory proteins RNA/protein synthesis DNA synthesis Receptor Receptor Receptor Receptor Receptor tyrosine kinase G protein PLCg DG IP 3 G protein PLA 2 Na + /H - antiport Arachidonate [Ca 2+ ] i PKC PK (?) PG TX Calmodulin [ph] i? G protein Adenylylcyclase camp PKA MEMBRANE CYTOSOL NUCLEUS According to: G.Powis: TiPS; 12: , 1991
33 Mitogens Growth Factors Hormones Serum Cytokines SPL GPL Caspases Apoptosis Nutrient/GF Deprivation? Heat PKC ras ROS Raf-1 NFkB bax MEK1 ERK1/2 c-myc Bcl-2 MEKK1 SEK1 JNK/SAPK c-jun, ATF2 NFkB c-jun, c-fos antioxidants HSP GADD45 RbE2F G1 Arrest DNA damage p21 AT p53 Rb-Pi c-abl ROS Environmental Stress UV light Ionizing Radiation Chemotherapy Xenobiotics O2, TM, Heat DNA-PK c-abl PCNA replication E2F Ku MDM2 S phase Replication Cytokines Fas-ligand TNF-alpha? Ceramide Apoptosis According to: Rizzieri: Drug Resistance Updates; 1: , 1998
34 An example of interactions of two factors (data from Eur. J. Pharmacol. 316, , 1996, see Publications.)
35 Ovlivnění metabolismu eikosanoidů I. dodáním exogenní kyselimy arachidonové (AA) II. ovlivněním produkce eikosanoidů s vyuţitím inhibitorů: LPO nebo CO nebo P450 TGF- b 1 TGF- b 1 TNFa TGF-b 1 / TNFa TNFa TGF-b 1 / TNFa diferenciace (+) po indukci do: granulocytů nebo monocytů - makrofágů + - Vytvoření souboru dat detekcí proliferace, diferenciace a apoptózy u buněk v definovaných časových intervalech Zhodnocení dat: vymezení významných interakcí pomocí matematické analýzy dat upřesnění modelových exp. podmínek pro detailnější studium mechanismů
36 STRUKTURNÍ ÚLOHA FOSFOLIPIDŮ V BUŇKÁCH MEMBRÁNOVÉ SYSTÉMY a buněčné kompartmenty protientropické důsledky NEODDĚLITELNÁ OD BUNĚČNÝCH FUNKCÍ
37 Kompartmenty funk čně nebo prostorově oddělené soubory prvků (složek). D ůsledek kompartmentace : (existence jednotlivých kompartment ů) prvky (např. látky nebo bu ňky) jsou nerovnoměrně rozděleny. P říklady: všechny membránami ohrani čené struktury mají (z hlediska rozdělení látek) své vnitřní prost ředí a selektivn ě akumulují nebo zadržují určité látky proti koncentra čnímu spádu. U ž tímto prostým faktem jsou některé reakce umožněny, jiným může být zabráněno. Tato protientropická distribuce molekul v bu ňce směřující proti neuspořádanosti má velký význam pro bun ěčný metabolismus a regulace. Umo žňuje ji právě existence bun ěčných membrán jeden ze základ ů biologických systémů Bude rozvedeno později
38 Přirozené funkce membránových lipidů STRUKTURNÍ FUNKČNÍ (REGULAČNÍ)
39 růstové signály receptory cykliny CDKs regulátory transkripce molekuly signálové transdukce p27 p21 p16 p15 molekuly zesilovací kaskády
40 SIGNAL (e.g. cytokines) signal cascade intracellular functions secretion membrane fluidity proteins membrane phospholipids nuclear receptors transcription factors (NFkB, PPAR, AP-1...) RE mrna insertion PUFAs ROS gene expression DNA eicosanoids lipid peroxidation LOXs P450s COXs inhibition (NSAIDs) n-3 PUFAs dietary n-6 PUFAs (AA, LA) membrane phospholipids arachidonic acid extracellular stimuli (cytokines, hormones, pollutants, irradiation)
41 MEMBRANE PHOSPHOLIPIDS PLA 2 COOH CYCLOOXYGENASE S PGG 2 EPOXYGENASES (P450) LIPOXYGENASE S LTA 4 PGH 2 EPOXYACIDS, DIOLS, etc. OH LTB 4 LTC 4 TXA 2 PGI 2 PGD 2 PGE 2 TXB 2 O PGE 2 : COOH C 5 H 11 LTC 4 : S COOH CH 2 CH CO NH CH 2 COOH NH COCH 2 CH 2 CHCOOH NH 2 LTD 4 LTE 4 LTF 4 OH OH
42 Signal transmission systems R R G G AC PLC PKC PLA2 ATP camp PI IP3 DAG arachidonic acid (AA) R receptor prostaglandins (PG) G G-protein leukotrienes
43 positive effect on cell proliferation an example Ca 2+ Ca 2+ EGF Ca 2+ EGF AA 5HETE LTA4 LTC4 DAG PIP2 Tyr-K PLA2 5-LOX Ca 2+ PKC PLC Tyr-K + Nuclear responses
44 Negative effect on cell proliferation an example Phorbol esters CSF-1 GM - CSF IL- 3 PGE 2 PKC GM - CSF R adenylyl cyclase PKC CSF-1R (c- fms) IL- 3R camp tyr-p EFFECTOR e.g. G protein, kinase RESPONSE +? - PKA DNA synthesis cell cycle phases G0 G1 S
45 SIGNAL Ca 2+ Protein kinázy a fosphatázy PtdIns(4,5)P 2 PC Phospholipase C Phospholipase A 2 Phospholipase D Ins(1,4,5)P 3 DAG FFA LysoPC DAG Ca 2+ Transient PKC activation Sustained PKC activation Early responses e.g. Secretion Release reaction Late responses e.g. Proliferation Differentiation
46 Arachidonic acid: metabolic pathways and its possible modulations INDOMETHACIN DICLOPHENAC MEMBRANE PHOSPHOLIPIDS ARACHIDONIC ACID ETYA abbreviations: ETYA = 5,8,11,14 -eicosatetraynoic acid ESC = esculetin NDGA = nordihydroguaiaretic acid FLAP = 5-lipoxygenase activating protein 9-HE = 9-hydroxyellipticin HETEs = hydroxyeicosatetraenoic acids HPETEs = hydroperoxyeicosatetraenoic acids EETs = epoxyeicosatrienoic acids SKF525A = proadifen CYCLOOXYGENASES SKF525A, 9-HE NDGA ESC 12-LIPOXYGENASE 12-HETEs 12-HPETEs PROSTAGLANDINS THROMBOXANE S PROSTACYCLIN S 5-LIPOXYGENASE P450-MONOOXYGENASES FLAP EETs HETEs DIOLS MK (15-LIPOXYGENASE) LEUKOTRIENES Figure 1
47 % kontroly % kontroly % kontroly % kontroly PRODUKTY LIPOXYGENÁZ A CYKLOOXYGENÁZ VORE et al., J. Immunol. : 11, , 1989 Esculetin Indomethacin , koncentrace (mm) koncentrace (mm) Ibuprofen NDGA , koncentrace (mm) koncentrace (mm)
48 TGF-b1 TGF-b1 receptor serin - threonin kinase P450 + effect lipoxygenase inhibitors (MK886, esculetin) arachidonic acid cyclooxygenases lipoxygenases + differentiation agents (TPA, RA, DMSO) cell membrane cytosol some interactions of TGF-b1 and AA metabolism with other regulatory molecules which should be studied (unknown effects) nucleus (G1 cyclins) G1 p27 p27 EETs HETEs diols? cyclin E? cdk2 DNA synthesis cell cycle turnover p21 Rb unknown prostaglandins thromboxanes? c-myc?? cyclin E Rb P S c-fos cdk2? P leukotrienes induction of differentiation inhibition of proliferation well documented
49 MEMBRANE PHOSPHOLIPIDS? ARACHIDONIC ACID? CYCLOOXYGENASES P LIPOXYGENASE 12 HPETs 12 HETEs? ESC PROSTAGLANDINS THROMBOXANES PROSTACYCLINS EETs HETEs diols 5 - LIPOXYGENASE LEUKOTRIENES FLAP MK-886 (15 - LIPOXYGENASE)
50 growth factors hormones receptor PLA 2 + PLA 2 P AA According to: A. Sellmayer et al.: Prostaglandins, Leukotrienes and Essential Fatty Acids ; 57: , cyclooxygenases lipoxygenases CP450 monooxygenases eicosanoids -ion channel activity - guanylate cyclase - adenylate cyclase - protein kinase C - protein kinase A - tyrosine kinase - MAP kinase - G-proteins transcription factors gene expression cell growth
fyziologie buněčných systémů
fyziologie buněčných systémů A. Kozubík Biofyzikální ústav AVČR, v.v.i., (Oddělení cytokinetiky) Ústav experimentální biologie, PřF MU (Oddělení fyziologie a imunologie živočichů) Brno Zpětné vazby Zpětné
Zdravotní rizika (význam rovnováh) A. Kozubík
Zdravotní rizika (význam rovnováh) A. Kozubík Biofyzikální ústav AVČR, v.v.i., (Oddělení cytokinetiky) Ústav experimentální biologie, PřF MU (Oddělení fyziologie a imunologie živočichů) Brno Zpětné vazby
Fyziologie buněčných systémů. A. Kozubík J. Hofmanová
Fyziologie buněčných systémů A. Kozubík J. Hofmanová 2 Organismus jako komplexní hierarchický systém organismální, tkáňová buněčná molekulová Nelze oddělovat (naopak nutno usilovat) studium na jednotlivých
Výzkumný ústav veterinárního lékařství v Brně
LIPIDY: FUNKCE, IZOLACE, SEPARACE, DETEKCE FOSFOLIPIDY chemické složení a funkce v buněčných membránách; metody stanovení fosfolipidů fosfolipázy - produkty reakcí (ceramid, DAG = 2nd messengers) a stanovení
FYZIOLOGIE BUNĚČ ĚČNÝCH SYSTÉMŮ
FYZIOLOGIE BUNĚČ ĚČNÝCH SYSTÉMŮ Doc. RNDr. Kozubík Alois, CSc. - Doc. RNDr. Hofmanová Jiřina, ina, CSc. SYLABUS pro studenty 4. ročníku fyziologie živočichů a obecné zoologie,, mol. biologie, chemie životního
SKANÁ imunita. VROZENÁ imunita. kladní znalosti z biochemie, stavby membrán n a fyziologie krve. Prezentace navazuje na základnz
RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, PřF UP Olomouc Prezentace navazuje na základnz kladní znalosti z biochemie, stavby membrán n a fyziologie krve Rozšiřuje témata: Proteiny přehled pro fyziologii
Fyziologie buněčných systémů (praktické aplikace)
Fyziologie buněčných systémů (praktické aplikace) A. Kozubík Biofyzikální ústav AVČR, v.v.i., (Oddělení cytokinetiky) Ústav experimentální biologie, PřF MU (Oddělení fyziologie a imunologie živočichů)
INTRACELULÁRNÍ SIGNALIZACE II
INTRACELULÁRNÍ SIGNALIZACE II 1 VÝZNAM INTRACELULÁRNÍ SIGNALIZACE V MEDICÍNĚ Příklad: Intracelulární signalizace: aktivace Ras proteinu (aktivace receptorové kinázy aktivace Ras aktivace kinázové kaskády
Dr. Kissová Jarmila Oddělení klinické hematologie FN Brno
Dr. Kissová Jarmila Oddělení klinické hematologie FN Brno Krvetvorba představuje proces tvorby krvinek v krvetvorných orgánech Krvetvorba je nesmírně komplikovaný, komplexně řízený a dodnes ne zcela dobře
STRUKTURNÍ SKUPINY ADHEZIVNÍCH MOLEKUL
STRUKTURNÍ SKUPINY ADHEZIVNÍCH MOLEKUL - INTEGRINY LIGANDY) - SELEKTINY (SACHARIDOVÉ LIGANDY) - ADHEZIVNÍ MOLEKULY IMUNOGLOBULINOVÉ SKUPINY - MUCINY (LIGANDY SELEKTIN - (CD5, CD44, SKUPINA TNF-R AJ.) AKTIVACE
MUDr. Kissová Jarmila, Ph.D. Oddělení klinické hematologie FN Brno
MUDr. Kissová Jarmila, Ph.D. Oddělení klinické hematologie FN Brno Krvetvorba představuje proces tvorby krvinek v krvetvorných orgánech Krvetvorba je nesmírně komplikovaný, komplexně řízený a dodnes ne
RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, PřF UP Olomouc
RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, PřF UP Olomouc Výukové materiály: http://www.zoologie.upol.cz/osoby/fellnerova.htm Prezentace navazuje na základní znalosti Biochemie a cytologie. Bezprostředně
VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ
REGULACE APOPTÓZY 1 VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ Příklad: Regulace apoptózy: protein p53 je klíčová molekula regulace buněčného cyklu a regulace apoptózy Onemocnění: více než polovina (70-75%) nádorů
EXTRACELULÁRNÍ SIGNÁLNÍ MOLEKULY
EXTRACELULÁRNÍ SIGNÁLNÍ MOLEKULY 1 VÝZNAM EXTRACELULÁRNÍCH SIGNÁLNÍCH MOLEKUL V MEDICÍNĚ Příklad: Extracelulární signální molekula: NO Funkce: regulace vazodilatace (nitroglycerin, viagra) 2 3 EXTRACELULÁRNÍ
RECEPTORY CYTOKINŮ A PŘENOS SIGNÁLU. Jana Novotná
RECEPTORY CYTOKINŮ A PŘENOS SIGNÁLU Jana Novotná Co jsou to cytokiny? Skupina proteinů a peptidů (glykopeptidů( glykopeptidů), vylučovaných živočišnými buňkami a ovlivňujících buněčný růst (též růstové
rní tekutinu (ECF), tj. cca 1/3 celkového množstv
Představují tzv. extracelulárn rní tekutinu (ECF), tj. cca 1/3 celkového množstv ství vody v tělet (voda tvoří 65-75% váhy v těla; t z toho 2/3 vody jsou vázanv zané intracelulárn rně) Lymfa (míza) Tkáňový
CYTOKINY, ADHESIVNÍ MOLEKULY - klíčové molekuly pro mezibuněčnou komunikaci, buněčná migrace a mezibuněčná signalizace. Ústav imunologie LF UP
CYTOKINY, ADHESIVNÍ MOLEKULY - klíčové molekuly pro mezibuněčnou komunikaci, buněčná migrace a mezibuněčná signalizace Ústav imunologie LF UP Mezibuněčná komunikace základ fungování organizmů K zajištění
HEMOPOESA. Periody krvetvorby, kmenové a progenitorové buňky; regulace hemopoesy. Ústav histologie a embryologie
HEMOPOESA Periody krvetvorby, kmenové a progenitorové buňky; regulace hemopoesy Ústav histologie a embryologie MUDr. Radomíra Vagnerová, CSc. Předmět: Obecná histologie a obecná embryologie B02241 Přednášky
Protinádorová imunita. Jiří Jelínek
Protinádorová imunita Jiří Jelínek Imunitní systém vs. nádor l imunitní systém je poslední přirozený nástroj organismu jak eliminovat vlastní buňky které se vymkly kontrole l do boje proti nádorovým buňkám
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 10. Struktury signálních komplexů Ivo Frébort Typy hormonů Steroidní hormony deriváty cholesterolu, regulují metabolismus, osmotickou rovnováhu, sexuální funkce
Imunitní systém.
Imunitní systém Karel.Holada@LF1.cuni.cz Klíčová slova Imunitní systém Antigen, epitop Nespecifická, vrozená Specifická, adaptivní Buněčná a humorální Primární a sekundární lymfatické orgány Myeloidní
růstu a buněčného dělění
Buněčný cyklus - principy regulace buněčného Buněčný cyklus - principy regulace buněčného růstu a buněčného dělění Mitóza Průběh mitózy v buněčné kultuře fibroblastů Buněčný cyklus Kinázy závislé na cyklinech
Deregulace cytokinetiky (možnosti ovlivnění II) (homeostáza, zdraví a regenerace organismu)
Deregulace cytokinetiky (možnosti ovlivnění II) (homeostáza, zdraví a regenerace organismu) A. Kozubík Biofyzikální ústav AVČR, v.v.i., (Oddělení cytokinetiky) Ústav experimentální biologie, PřF MU (Oddělení
Imunitní odpověd - morfologie a funkce, nespecifická odpověd, zánět. Veřejné zdravotnictví
Imunitní odpověd - morfologie a funkce, nespecifická odpověd, zánět Veřejné zdravotnictví Doporučená literatura Jílek : Základy imunologie, Anyway s.r.o., 2002 Stites : Základní a klinická imunologie,
RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, PřF UP Olomouc
RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, PřF UP Olomouc Výukové materiály: http://www.zoologie.upol.cz/osoby/fellnerova.htm Obsah přednášky IF Definice základních imunologických pojmů imunologie,
Apoptóza Onkogeny. Srbová Martina
Apoptóza Onkogeny Srbová Martina Buněčný cyklus Regulace buněčného cyklu 1. Cyklin-dependentní kináza (Cdk) cyclin Regulace buněčného cyklu 2. Retinoblastomový protein (prb) E2F Regulace buněčného cyklu
Specifická imunitní odpověd. Veřejné zdravotnictví
Specifická imunitní odpověd Veřejné zdravotnictví MHC molekuly glykoproteiny exprimovány na všech jaderných buňkách (MHC I) nebo jenom na antigen prezentujících buňkách (MHC II) u lidí označovány jako
Vývoj krvetvorby. lení klinické hematologie FN Brno
Vývoj krvetvorby Dr. Kissová Jarmila Oddělen lení klinické hematologie FN Brno Krvetvorba představuje p proces tvorby krvinek v krvetvorných orgánech. Krvetvorba je nesmírn rně komplikovaný, komplexně
IMUNOGENETIKA I. Imunologie. nauka o obraných schopnostech organismu. imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány
IMUNOGENETIKA I Imunologie nauka o obraných schopnostech organismu imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány lymfatická tkáň thymus Imunita reakce organismu proti cizorodým
Imunitní systém jako informační soustava. Cytokiny M.Průcha
Imunitní systém jako informační soustava Cytokiny M.Průcha Imunitní systém - úkoly Zachování homeostázy Zachování integrity makroorganismu Rozpoznání cizího a vlastního Imunitní systém - signální systém
Imunitní systém člověka. Historie oboru Terminologie Členění IS
Imunitní systém člověka Historie oboru Terminologie Členění IS Principy fungování imunitního systému Orchestrace, tj. kooperace buněk imunitního systému (IS) Tolerance Redundance, tj. nadbytečnost, nahraditelnost
Jan Krejsek. Funkčně polarizované T lymfocyty regulují obranný i poškozující zánět
Funkčně polarizované T lymfocyty regulují obranný i poškozující zánět Jan Krejsek Ústav klinické imunologie a alergologie, FN a LF UK v Hradci Králové ochrana zánět poškození exogenní signály nebezpečí
PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY
PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY 1 VÝZNAM MEMBRÁNOVÝCH RECEPTORŮ V MEDICÍNĚ Příklad: Membránové receptory: adrenergní receptory (receptory pro adrenalin a noradrenalin) Funkce: zprostředkování
Buněčný cyklus - principy regulace buněčného růstu a buněčného dělění
Buněčný cyklus - principy regulace buněčného růstu a buněčného dělění Mitóza Dr. B. Duronio, The University of North Carolina at Chapel Hill Buněčný cyklus Kinázy závislé na cyklinech kontrolují buněčný
Lymfatický systém. Karel Smetana
Lymfatický systém Karel Smetana Otcové zakladatelé Pasteur http://diogenesii.files.wordpress.com Metchnikoff http://www.iemrams.spb.ru Koch http://www.wired.com Ehrlich http://media-2.web.britannica.com
Výskyt MHC molekul. RNDr. Ivana Fellnerová, Ph.D. ajor istocompatibility omplex. Funkce MHC glykoproteinů
RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, PřF UP Olomouc = ajor istocompatibility omplex Skupina genů na 6. chromozomu (u člověka) Kódují membránové glykoproteiny, tzv. MHC molekuly, MHC molekuly
Funkce imunitního systému
Téma: 22.11.2010 Imunita specifická nespecifická,, humoráln lní a buněč ěčná Mgr. Michaela Karafiátová IMUNITA je soubor vrozených a získaných mechanismů, které zajišťují obranyschopnost (rezistenci) jedince
Bunka a bunecné interakce v patogeneze tkánového poškození
Bunka a bunecné interakce v patogeneze tkánového poškození bunka - stejná genetická výbava - funkce (proliferace, produkce látek atd.) závisí na diferenciaci diferenciace tkán - specializovaná produkce
Nespecifické složky buněčné imunity. M.Průcha
Nespecifické složky buněčné imunity M.Průcha Nespecifická imunita Vzájemná provázanost nespecifické přirozené a adaptivní specifické imunity Lymfatické orgány a tkáně Imunokompetentní buňky Nespecifická
Úvod do studia biologie kmenových buněk. Jiří Pacherník tel:
Úvod do studia biologie kmenových buněk Jiří Pacherník e-mail: jipa@sci.muni.cz tel: 532 146 223 Co jsou kmenové buňky? - buňky schopné vlastní obnovy (sebeobnova) - buňky schopné dávat vznik jiným typům
Biochemie imunitního systému. Jana Novotná
Biochemie imunitního systému Jana Novotná Imunita Imunitní systém integrovaný systém v těle, systém využívající integraci mezi orgány, tkáněmi, buňkami a jejich produkty v boji proti různým patogenům.
VÝZNAM FYZIOLOGICKÉ OBNOVY BUNĚK V MEDICÍNĚ
OBNOVA A REPARACE 1 VÝZNAM FYZIOLOGICKÉ OBNOVY BUNĚK V MEDICÍNĚ Příklad: Fyziologická obnova buněk: obnova erytrocytů Rychlost obnovy: 2 miliony nových erytrocytů/s (při průměrné době života erytrocytu
IMUNITNÍ SYSTÉM OBRATLOVCŮ - MATKA PLOD / MLÁDĚ VÝVOJ IMUNITNÍHO SYSTÉMU OBRATLOVCŮ CHARAKTERISTUIKA IMUNITNÍHO SYSTÉMU OBRATLOVCU
IMUNITNÍ SYSTÉM OBRATLOVCŮ - SROVNÁVACÍ IMUNOLOGIE IMUNOLOGICKÉ VZTAHY MATKA PLOD / MLÁDĚ (FYLOGENEZE A ONTOGENEZE IMUNITNÍHO SYSTÉMU) CHARAKTERISTUIKA IMUNITNÍHO SYSTÉMU OBRATLOVCU Imunitní systém obratlovců
Intracelulární detekce Foxp3
Intracelulární detekce Foxp3 Ústav imunologie 2.LFUK a FN Motol Daniela Rožková, Jan Laštovička T regulační lymfocyty (Treg) Jsou definovány funkčně svou schopností potlačovat aktivaci a proliferaci CD4+
Játra a imunitní systém
Ústav klinické imunologie a alergologie LF MU, RECETOX, PřF Masarykovy univerzity, FN u sv. Anny v Brně, Pekařská 53, 656 91 Brno Játra a imunitní systém Vojtěch Thon vojtech.thon@fnusa.cz Výběr 5. Fórum
PREZENTACE ANTIGENU A REGULACE NA ÚROVNI Th (A DALŠÍCH) LYMFOCYTŮ PREZENTACE ANTIGENU
PREZENTACE ANTIGENU A REGULACE NA ÚROVNI Th (A DALŠÍCH) LYMFOCYTŮ PREZENTACE ANTIGENU Podstata prezentace antigenu (MHC restrikce) byla objevena v roce 1974 V současnosti je zřejmé, že to je jeden z klíčových
PŘENOS SIGNÁLU V BUŇCE. Nela Pavlíková
PŘENOS SIGNÁLU V BUŇCE Nela Pavlíková nela.pavlikova@lf3.cuni.cz Odpovědi na otázky Co za ligand aktivuje receptor spřažený s G-proteinem obsahující podjednotku α T? Opsin. Co prochází otevřenými CNGC
Nelineární systémy a teorie chaosu
Martin Duspiva KOIF2-2007/2008 Definice Lineární systém splňuje podmínky linearita: f (x + y) = f (x) + f (y) aditivita: f (αx) = αf (x) Každý systém, který nesplňuje jednu z předchozích podmínek nazveme
PROLIFERACE VIABILITA DIFERENCIACE (APOPTÓZA) Změna cytokinetických parametrů odráží efekt použitých modulátorů signálních drah
CYTOKINETICKÉ PARAMETRY PROLIFERACE VIABILITA DIFERENCIACE (APOPTÓZA) Změna cytokinetických parametrů odráží efekt použitých modulátorů signálních drah PROLIFERACE Množení buněk mitózou Dostatek živin,
ZÁNĚT A TĚLNÍCH TEKUTIN. se nacházejí v různých částech organismu: v tělních tekutinách (včetně krve) v granulích buněk
HUMORÁLNÍ LÁTKY NESPECIFICKÉ IMUNITY, ZÁNĚT HUMORÁLNÍ FAKTORY SÉRA A TĚLNÍCH TEKUTIN Mikrobicidní látky a mediátory imunitních reakcí se nacházejí v různých částech organismu: na barierách v tělních tekutinách
Komplementový systém a nespecifická imunita. Jana Novotná Ústav lékařské chemie a biochemie 2 LF UK
Komplementový systém a nespecifická imunita Jana Novotná Ústav lékařské chemie a biochemie 2 LF UK IMUNITA = OBRANA 1. Rozpoznání vlastní a cizí 2. Specifičnost imunitní odpovědi 3. Paměť zachování specifických
Progrese HIV infekce z pohledu laboratorní imunologie
Progrese HIV infekce z pohledu laboratorní imunologie 1 Lochmanová A., 2 Olbrechtová L., 2 Kolčáková J., 2 Zjevíková A. 1 OIA ZÚ Ostrava 2 klinika infekčních nemocí, FN Ostrava HIV infekce onemocnění s
2) Vztah mezi člověkem a bakteriemi
INFEKCE A IMUNITA 2) Vztah mezi člověkem a bakteriemi 3) Normální rezistence k infekci Infekční onemocnění je nejčastější příčina smrti na světě 4) Faktory ovlivňující vážnost infekce 1. Patogenní faktory
OBRANNÝ IMUNITNÍ SYSTÉM
Mgr. Šárka Vopěnková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_02_3_04_BI2 OBRANNÝ IMUNITNÍ SYSTÉM Základní znaky: není vrozená specificky rozpoznává cizorodé látky ( antigeny) vyznačuje se
III/2- Inovace a zkvalitnění výuky prostřednictvím IVT
GYMNÁZIUM TÝN NAD VLTAVOU, HAVLÍČKOVA 13 Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0437 III/2- Inovace a zkvalitnění výuky prostřednictvím IVT Člověk a příroda
T lymfocyty. RNDr. Jan Lašťovička, CSc. Ústav imunologie 2.LF UK, FN Motol
T lymfocyty RNDr. Jan Lašťovička, CSc. Ústav imunologie 2.LF UK, FN Motol Klasifikace T lymfocytů Lymfocyty exprimující TCR nebo Lymfocyty exprimující koreceptory CD4 a CD8 Regulační T lymfocyty Intraepiteliální
Ivana FELLNEROVÁ Katedra zoologie PřF UP v Olomouci
Ivana FELLNEROVÁ Katedra zoologie PřF UP v Olomouci Druhy imunitních reakcí NESPECIFICKÁ (vrozená) imunitní reakce SPECIFICKÁ (adaptivní, získaná) imunitní reakce infekce hodiny 0 6 12 1 3 dny 5 7 Prvotní
Struktura a funkce imunitního systému. Igor Hochel
Struktura a funkce imunitního systému Igor Hochel Imunitní systém a jeho funkce Imunitní systém je adaptační a regulační soustava vzájemně kooperujících molekul, buněk a tkání, která se spolu s endokrinní
Regulace enzymových aktivit
Regulace enzymových aktivit Regulace enzymových aktivit: Změny množství enzymu v kompartmentu, buňce, orgánu: - změna exprese, degradace atd. - změna lokalizace Skutečné regulace: - aktivace/inhibice nízkomolekulárními
Václav Hořejší Ústav molekulární genetiky AV ČR. IMUNITNÍ SYSTÉM vs. NÁDORY
Václav Hořejší Ústav molekulární genetiky AV ČR IMUNITNÍ SYSTÉM vs. NÁDORY PROTINÁDOROVÁ IMUNITA - HISTORIE 1891 W. Coley - otec imunoterapie 1957 F.M. Burnet hypotéza imunitního dozoru 1976 A.W. Bruce
Dětská klinika FN a LF UP Olomouc. hráč imunitního systému. Žírná buňka významný F. KOPŘIVA
Žírná buňka významný hráč imunitního systému F. KOPŘIVA Dětská klinika FN a LF UP Olomouc Řečník má vyčerpat téma, ne posluchače. Paul Ehrlich Histamin 1907 histos 1927 Lewis Histamin 1:10 000 i.d. vyvolá
Zhoubné nádory druhá nejčastější příčina úmrtí v rozvinutých zemích. Imunologické a genetické metody: Zlepšování dg. Zlepšování prognostiky
NÁDOROVÁ IMUNOLOGIE Zhoubné nádory druhá nejčastější příčina úmrtí v rozvinutých zemích. Imunologické a genetické metody: Zlepšování dg. Zlepšování prognostiky NÁDOROVÁ IMUNOLOGIE Vztahy mezi imunitním
M.Teřl, Klinika TRN FN a LF UK v Plzni
Mastocyt: druhé housle nebo dirigent? aneb Tři sestry M.Teřl, Klinika TRN FN a LF UK v Plzni Tři sestry M.Teřl, Klinika TRN FN a LF UK v Plzni A.P. Čechov, statek u Moskvy Mastocyt Tři sestry Matka: Nar.
Hematologie. Nauka o krvi Klinická hematologie Laboratorní hematologie. -Transfuzní lékařství - imunohematologie. Vladimír Divoký
Hematologie Nauka o krvi Klinická hematologie Laboratorní hematologie -Transfuzní lékařství - imunohematologie Vladimír Divoký Fyzikální vlastnosti krve 3-4 X více viskózní než voda ph : 7.35 7.45 4-6
Marcela Vlková Jana Nechvátalová. FN u sv. Anny v Brně LF MU Brno
Marcela Vlková Jana Nechvátalová FN u sv. Anny v Brně LF MU Brno Leukocytární subpopulace CD45 CD45 Lymfocytární subpopulace Fenotypizace základní subpopulace T a B lymfocytů a NK buněk subpopulace základních
Úloha mastných kyselin a. v modulaci smrti nádorových. Přednáška RNDr. Alena Vaculová, Ph.D.
Úloha mastných kyselin a endogenních regulátor torů apoptózy v modulaci smrti nádorových n buněk k tlustého střeva Přednáška 29.11.2005 RNDr. Alena Vaculová, Ph.D. APOPTÓZA programovaná buněčná smrt: -
ÚVOD DO TRANSPLANTAČNÍ IMUNOLOGIE
ÚVOD DO TRANSPLANTAČNÍ IMUNOLOGIE Základní funkce imunitního systému Chrání integritu organizmu proti škodlivinám zevního a vnitřního původu: chrání organizmus proti patogenním mikroorganizmům a jejich
Buněčný cyklus a molekulární mechanismy onkogeneze
Buněčný cyklus a molekulární mechanismy onkogeneze Imunofluorescence DAPI Přehled regulace buněčného cyklu Základní terminologie: Cycliny evolučně konzervované proteiny s homologními oblastmi; jejich
Výukové materiály:
RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, PřF UP Olomouc Výukové materiály: http://www.zoologie.upol.cz/zam.htm Prezentace navazuje na základní znalosti z biochemie, stavby a funkce membrán. Rozšiřuje
Obsah. Seznam zkratek... 15. Předmluva k 5. vydání... 21
Obsah Seznam zkratek... 15 Předmluva k 5. vydání... 21 1 Základní pojmy, funkce a složky imunitního systému... 23 1.1 Hlavní funkce imunitního systému... 23 1.2 Antigeny... 23 1.3 Druhy imunitních mechanismů...
Variabilita takto vytvořených molekul se odhaduje na , což je více než skutečný počet sloučenin v přírodě GENETICKÝ ZÁKLAD TĚŽKÉHO ŘETĚZCE
PROTILÁTKY Specifické rozpoznání v imunitním systému zprostředkují speciální proteinové molekuly jediné, které nejsou vytvářeny podle genetické matrice, ale nahodilým přeskupováním genových segmentů GENETICKÝ
Buněčný cyklus. Replikace DNA a dělení buňky
Buněčný cyklus Replikace DNA a dělení buňky 2 Regulace buněčného dělení buněčný cyklus: buněčné dělení buněčný růst kontrola kvality potomstva (dceřinných buněk) bránípřenosu nekompletně zreplikovaných
Humorální imunita. Nespecifické složky M. Průcha
Humorální imunita Nespecifické složky M. Průcha Humorální imunita Výkonné složky součásti séra Komplement Proteiny akutní fáze (RAF) Vztah k zánětu rozdílná funkce zánětu Zánět jako fyziologický kompenzační
Lekce z analýz genových expresních profilů u MM a návrh panelu genů pro ČR. Mgr. Silvie Dudová
Lekce z analýz genových expresních profilů u MM a návrh panelu genů pro ČR Mgr. Silvie Dudová Centrum základního výzkumu pro monoklonální gamapatie a mnohočetný myelom, ILBIT LF MU Brno Laboratoř experimentální
VZTAH DÁRCE A PŘÍJEMCE
TRANSPLANTAČNÍ IMUNITA Transplantace je přenos buněk, tkáně nebo orgánu z jedné části těla na jinou nebo z jednoho jedince na jiného. Transplantační reakce je dána genetickými rozdíly mezi dárcem a příjemcem.
ONKOGENETIKA. Spojuje: - lékařskou genetiku. - buněčnou biologii. - molekulární biologii. - cytogenetiku. - virologii
ONKOGENETIKA Spojuje: - lékařskou genetiku - buněčnou biologii - molekulární biologii - cytogenetiku - virologii Důležitost spolupráce různých specialistů při detekci hereditárních forem nádorů - (onkologů,internistů,chirurgů,kožních
Imunitní systém. Přesnější definice: Tkáně a buňky lidského těla schopné protektivně reagovat na vlivy působící proti udržení homeostázy.
Imunitní systém Systém tkání buněk a molekul zajišťujících odolnost organismu vůči infekčním chorobám Přesnější definice: Tkáně a buňky lidského těla schopné protektivně reagovat na vlivy působící proti
(Vývojová biologie) Embryologie. Jiří Pacherník
(Vývojová biologie) Embryologie Jiří Pacherník jipa@sci.muni.cz Podpořeno projektem FRVŠ 524/2011 buňka -> tkáně -> orgány -> organismus / jedinec Základní procesy na buněčné úrovni dělení buněk proliferace
BUNĚČNÁ TRANSFORMACE A NÁDOROVÉ BUŇKY
BUNĚČNÁ TRANSFORMACE A NÁDOROVÉ BUŇKY 1 VÝZNAM BUNĚČNÉ TRANSFORMACE V MEDICÍNĚ Příklad: Buněčná transformace: postupná kumulace genetických změn Nádorové onemocnění: kolorektální karcinom 2 3 BUNĚČNÁ TRANSFORMACE
Kosterní svalstvo tlustých a tenkých filament
Kosterní svalstvo Základní pojmy: Sarkoplazmatické retikulum zásobárna iontů vápníku - depolarizace membrány uvolnění vápníku v blízkosti kontraktilního aparátu vazba na proteiny zajišťující kontrakci
Mechanismy hormonální regulace metabolismu. Vladimíra Kvasnicová
Mechanismy hormonální regulace metabolismu Vladimíra Kvasnicová Osnova semináře 1. Obecný mechanismus působení hormonů (opakování) 2. Příklady mechanismů účinku vybraných hormonů na energetický metabolismus
BIOCHEMIE IMUNITNÍHO SYSTÉMU
BIOCHEMIE IMUNITNÍHO SYSTÉMU Ústav lékařské chemie a klinické biochemie 2.LF UK a FN Motol MUDr. Bc. Matej Kohutiar, Ph.D. akad. rok 2018/2019 ORGANIZACE PŘEDNÁŠKY 1. Biochemie imunitního systému 2. Metabolismus
Stanovení cytokinového profilu u infertilních žen. Štěpánka Luxová 2. ročník semináře reprodukční medicíny
Stanovení cytokinového profilu u infertilních žen Štěpánka Luxová 2. ročník semináře reprodukční medicíny 26.2.2018 Obsah Tolerance plodu Th lymfocyty, cytokiny Stanovení intracelulárních cytokinů v IML
Univerzita Karlova v Praze - 1. lékařská fakulta. Buňka. Ústav pro histologii a embryologii
Univerzita Karlova v Praze - 1. lékařská fakulta Buňka. Stavba a funkce buněčné membrány. Transmembránový transport. Membránové organely, buněčné kompartmenty. Ústav pro histologii a embryologii Doc. MUDr.
LYMFOCYTY A SPECIFICKÁ IMUNITA
LYMFOCYTY A SPECIFICKÁ IMUNITA SPECIFICKÁ IMUNITA = ZÍSKANÁ IMUNITA = ADAPTIVNÍ IMUNITA ZÁKLADNÍ IMUNOLOGICKÁ TERMINOLOGIE SPECIFICKÁ IMUNITA humorální - zprostředkovaná protilátkami buněčná - zprostředkovaná
Obsah. Seznam zkratek Předmluva k 6. vydání... 23
Obsah Seznam zkratek... 17 Předmluva k 6. vydání... 23 1 Základní pojmy, funkce a složky imunitního systému... 25 1.1 Hlavní funkce imunitního systému... 25 1.2 Antigeny... 25 1.3 Druhy imunitních mechanismů...
mechanická bariéra kůže a slizničních epitelů anaerobní prostředí v lumen střeva přirozená mikroflóra slzy
BARIÉRY MECHANICKÉ A FYZIOLOGICKÉ BARIÉRY mechanická bariéra kůže a slizničních epitelů hlenová vrstva, deskvamace epitelu baktericidní látky a ph tekutin anaerobní prostředí v lumen střeva peristaltika
Urychlení úpravy krvetvorby poškozené cytostatickou terapií (5-fluorouracil a cisplatina) p.o. aplikací IMUNORu
Urychlení úpravy krvetvorby poškozené cytostatickou terapií (5-fluorouracil a cisplatina) p.o. aplikací IMUNORu Úvod Myelosuprese (poškození krvetvorby) patří mezi nejčastější vedlejší účinky chemoterapie.
Antigeny. Hlavní histokompatibilitní komplex a prezentace antigenu
Antigeny Hlavní histokompatibilitní komplex a prezentace antigenu Antigeny Antigeny: kompletní (imunogen) - imunogennost - specificita nekompletní (hapten) - specificita antigenní determinanty (epitopy)
Variabilita v pigmentaci
Variabilita v pigmentaci Proč zkoumat pigmentaci Spojitost s rakovinou kůže reakcí na UV záření výživou geografickým původem metabolismem vitamínu D. Oči Pigmentace Pokožka Vlasy Měření pigmentace Neinvazivní
ANÉMIE CHRONICKÝCH CHOROB
ANÉMIE CHRONICKÝCH CHOROB (ACD anemia of chronic disease) seminář Martin Vokurka 2007 neoficiální verze pro studenty 2007 1 Proč se jí zabýváme? VELMI ČASTÁ!!! U hospitalizovaných pacientů je po sideropenii
Mechanismy a působení alergenové imunoterapie
Mechanismy a působení alergenové imunoterapie Petr Panzner Ústav imunologie a alergologie LF UK a FN Plzeň Zavedení termínu alergie - rozlišení imunity a přecitlivělosti Pasivní přenos alergenspecifické
Obecný metabolismus.
mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 Obecný metabolismus. Regulace glykolýzy a glukoneogeneze (5). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie,
OBRANA ORGANISMU základní mechanismy LYMFATICKÉ ORGÁNY stavba a funkce
OBRANA ORGANISMU základní mechanismy LYMFATICKÉ ORGÁNY stavba a funkce ÚHIEM 1. LF UK v PRAZE Předmět: Obecná histologie a obecná embryologie B01307 Akademický rok 2013 14 POUZE PRO OSOBNÍ PŘÍPRAVU STUDENTŮ
Cytomegalovirus. RNDr K.Roubalová CSc. NRL pro herpetické viry
Cytomegalovirus RNDr K.Roubalová CSc. NRL pro herpetické viry Lidský cytomegalovirus Β-herpesviridae, největší HV, cca 200 genů Příbuzné viry: myší, krysí, opičí, morčecí Kosmopolitní rozšíření, vysoká
Souhrn údajů o přípravku
Příloha č. 3 ke sdělení sp.zn. sukls93024/2010 Souhrn údajů o přípravku 1. NÁZEV PŘÍPRAVKU Isoprinosine tablety 2. KVALITATIVNÍ A KVANTITATIVNÍ SLOŽENÍ Léčivá látka: inosinum pranobexum 500 mg v 1 tabletě
Molekulární mechanismy diferenciace a programované buněčné smrti - vztah k patologickým procesům buněk. Aleš Hampl
Molekulární mechanismy diferenciace a programované buněčné smrti - vztah k patologickým procesům buněk Aleš Hampl Tkáně Orgány Živé buňky, které plní různé funkce (podpora struktury, přijímání živin, lokomoce,
BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ
BIOMEMRÁNA BIOLOGICKÁ MEMBRÁNA - všechny buňky na povrchu plazmatickou membránu - Prokaryontní buňky (viry, bakterie, sinice) - Eukaryontní buňky vnitřní členění do soustavy membrán KOMPARTMENTŮ - za
Autophagie a imunitní odpověd. Miroslav Průcha Klinická imunologie Nemocnice Na Homolce, Praha
Autophagie a imunitní odpověd Miroslav Průcha Klinická imunologie Nemocnice Na Homolce, Praha Ostrava, 29. ledna 2019 Historie Nobel Prize 2016 Yoshinori Ōsumi https:p//nobeltpizrog/utplodss/2l018//06/ohsuiillchtul