Plazmatická membrána, buněčná stěna, kompartmentalizace. Termíny přednášek

Rozměr: px
Začít zobrazení ze stránky:

Download "Plazmatická membrána, buněčná stěna, kompartmentalizace. Termíny přednášek"

Transkript

1 Plazmatická membrána, buněčná stěna, kompartmentalizace doc. Mgr. Jiří Drábek, PhD. Laboratoř experimentální medicíny při Dětské klinice LF UP a FN Olomouc jiri_drabek@seznam.cz Termíny přednášek Transport Energie Signalizace Cytoskelet Jádro Transkripce, translace Buněčný cyklus Chromosomy, mitóza, meióza Stárnutí buněk Adaptace, závěr 1

2 Alberts Johnson Lewis Raff Roberts Walter Molecular Biology of the Cell Fifth Edition Chapter 12 Intracellular Compartments and Protein Sorting Další zdroje Knihy: Základy buněčné biologie Alberts et al. Biochemie Voet &Voetová Molecular Cell Biology Lodish Přednáška: MUDr.Petr Džubák, PhD. Copyright Garland Science

3 Dnešní přednáška Biomembrány Kompartmentalizace buněk Peroxisomy Endoplazmatické retikulum (ER) Biomembrány Strukturální základ většiny buněčných organel Podílí se na buněčných funkcích: Ohraničení Kompartmentalizace Kontakt Transport látek do buňky a zbuňky Mají tloušťku kolem 7,5 nm, jsou tvořeny dvojvrstvou fosfolipidů 5 6

4 Model biologické membrány Chemické komponenty membrán Lipidy Fosfolipidy Glycerofosfatidy (glycerol, cholin, etanolamin, serin, inositol) Sfingofosfatidy (sfingosin) Steroly Cholesterol Ergosterol Bílkoviny Přenašeče Spojníky Receptory Enzymy Cukry Glykoproteiny (proteiny s navázanými sacharidy) Proteoglykany (sacharidy jsou tvořeny glykosaminoglykany) 8

5 Fosfolipid Fyzikální vlastnosti membrán Polarita molekul hydrofilní konce (PO 4, COOH, OH, NH 3 ) hydrofobní konce (řetězce mastných kyselin) Autoorganizace Liposomy Myelinové struktury Asymetrické uspořádání Tekutý charakter, bod přechodu laterální migrace flip-flop pohyb Stabilita dvojvrstvy hydrofobní interakce mezi řetězci mastných kyselin 9 10

6 Micely vs. liposomy Liposomy Amfifilní molekuly (z části hydrofilní, představované polární skupinou, a z části hydrofobní) Micela - jednovrstevná Liposom (vezikl) - dvouvrstevná

7 Mobilita membránových složek Fluidita membrány Pohyb molekul: Rotační Laterální Flip-flop (flipasa, flopasa, skramblasa) Tekutost dvouvrstvy dána: Pohyblivostí molekul Teplotou Podílem nasycených a nenasycených mastných kyselin Podílem cholesterolu v lipidové dvojvrstvě cholesterol 13

8 Relativní propustnost lipidové dvojvrstvy Funkce proteinů plazmatické membrány Na + pumpa Integrin Receptor pro PDGF Adenylát cyklasa 16

9 Bílkoviny biomembrán Uspořádání proteinů ve fosfolipidové dvouvrstvě: Transmembránové domény proteinů jsou tvořeny hydrofobními aminokyselinami: Ala, Val, Leu, Ile, Met, Tyr, Trp a Phe Asymetrické rozdělení mb proteinů, polarizace. 17

10 Glykokalyx Glykolipidové molekuly Oligosacharidový ochranný plášť buňky NANA N-acetylneuraminic acid 20

11 Krevní skupiny ABO systému Mezibuněčné spoje

12 Těsné spoje (tight junctions) Komplexy proteinů těsného spoje okludin klaudin-1 E-kadherin katenin aktin Funkce neprodyšnost epithelů polarita epitheliálních buněk. Mechanické spoje - kadheriny

13 Adhezní pásy pásové desmosomy Desmosomy-bodové spoje pevnost v tahu, exponovaná místa schopnost měnit tvar, embryonální vývoj

14 Hemidesmosom Integriny Někdy ani hemidesmosomy nestačí! Funkce vazba buněk na extracelulární matrix signalizace migrace buněk

15 Mezerové spoje Plasmodesmata Mezerový spoj u rostlin. Úzké průchody pro malé molekuly umožňují přímý přestup z cytoplasmy jedné buňky do druhé elektrické a metabolické propojení buněk.

16 Pojivová tkáň Proteoglykanový agregát v chrupavce

17 Kyselina hyaluronová Kolagen tuhá trojřetězcová helikální struktura superhelix pevnost v tahu

18 Uspořádání kolagenových fibril Elastin

19 Hlavní intracelulární kompartmenty živočišné buňky Jaterní buňka v elektronovém mikroskopu Figure 12-1 Molecular Biology of the Cell ( Garland Science 2008) Figure 12-2 Molecular Biology of the Cell ( Garland Science 2008) Kompartmenty organely (enzymy, specializované mlk, distribuční systém) Proteiny strukturální a funkční vlastnosti, druhů, 10na10 mlk Biochemické procesy na mb (lipidovvý metabolismus, oxidativní fosforylace, fotosyntéza Přes lipidovou dvouvrstvu neprojdou hydrofilní Cytoplazma cytosol + organely Lokalizace ER a Golgi závisí na neporušených mikrotubulích 37 38

20 Na topologické vztahy membránových organel můžeme pohlížet z evolučního hlediska Vývoj thylakoidu Figure 12-3a Molecular Biology of the Cell ( Garland Science 2008) Figure 12-3b Molecular Biology of the Cell ( Garland Science 2008) Eukaryotická buňka a podíl povrch/objem (1000 krát větší než E.coli) Specializace mb funkce Vnitřní mb mt a plastidů odpovídá původní plazmatické mb bct Proplastidy se dědí spolu s cytoplazmou rostlinného vajíčka Brambora, tuková semínka, okvětní lístek Invaginace, thylakoidy rostou a dělí se autonomně 39 40

21 Evoluce jádra a endoplazmatického retikula (ER) Evoluce mitochondrií (mt) a plastidů Figure 12-4a Molecular Biology of the Cell ( Garland Science 2008) Figure 12-4b Molecular Biology of the Cell ( Garland Science 2008) Připojení, invaginace, obálka, komunikační kanály nuclear pore complex Jaderný kompartment je ekvivalentní cytosolu 4 intracelulární kompartmenty: - jádro a cytosol - Sekretorní a endocytické (ER, Golgi, lyzo) -Mt - plastidy Pohlcení bct, autonomie 41 42

22 Jaderná membrána (schránka, obálka) Póry v jaderné membráně Figure 12-8 Molecular Biology of the Cell ( Garland Science 2008) Figure 12-9 Molecular Biology of the Cell ( Garland Science 2008) Jaderná mb (obálka) 2 koncentrické mb penetrované póry Vnitřní mb vazba k chromatinu Vnější propojená s ER Perinukleární prostor mezi nimi (propojený s lumenem ER) Histony, polymerázy, gene regulační proteiny, proteiny RNA sestřihu - do jádra z cytosolu trna a mrna ven Ribozomální proteiny z cytosolu do jádra a zpět Jaderné pórové komplexy (125 mil Da, 50 různých proteinů nukleoporinů, oktagonální symetrie) Průměr 4000 pórů na jaderné mb, při aktivní transkripci více Každý pór přenese 100 histonů a 6 ribozomálních podjednotek za minutu Annular - prstencový 43 44

23 Jaderná lamina oocytu Xenopus Jaderná mb za mitózy Figure Molecular Biology of the Cell ( Garland Science 2008) Figure Molecular Biology of the Cell ( Garland Science 2008) Jaderná lamina je tvořena proteinovými podjednotkami, intermediárními filamenty, které dávají jaderné mb tvar a interagují s chromatinem Depolymerizace pomocí fosforylace cyklindependentními kinázami Prolomení bariéry mezi cytosolem a jádrem Anafáze jaderná obálka se znovu vytváří na povrchu chromozomů, ER mb zabalí část, fúzuje s další částí, jaderné póry začínají přenášet dovnitř specifické proteiny Jaderné lokalizační signály nejsou odštěpeny protože jsou potřebné při každém dělení buňky 45 46

24 Sub-kompartmenty mt a ct Page 713 Molecular Biology of the Cell ( Garland Science 2008) Figure Molecular Biology of the Cell ( Garland Science 2008) Dvojitá mb Většina proteinů je jaderných Mt matrix a mezimb prostor, vnitřní mb tvoříkristy Ct navíc mají thylakoidní prostor jako další kompartment (není spojený s vnitřní mb) 47 48

25 Tři peroxisomy v krysím hepatocytu Page 721 Molecular Biology of the Cell ( Garland Science 2008) Figure Molecular Biology of the Cell ( Garland Science 2008) Peroxisomy mají jen 1 mb, nemají DNA ani ribosomy Obsahují katalázu a urát oxidázu (inkluze) Využití kyslíku Evoluční příchod mt snížil důležitost některých fcí peroxisomů, protože mt dělají totéž a ještě produkují E 49 50

26 Reakce v peroxisomech Peroxisom v mezofylu tabákového listu RH 2 + O 2 R + H 2 O 2 (oxidativní reakce) H 2 O 2 + R H 2 R + 2H 2 O(katalasa, peroxidativní reakce, játra a ledviny) 2H 2 O 2 2H 2 O + O 2 (katalasa při nadbytku peroxidu) Beta oxidace tuků Tvorba plasmalogenů (v myelinových pochvách neuronů, izolují axony) Fotorespirace v rostlinách Glyoxalátový cyklus v semíncích rostlin Figure 12-32a Molecular Biology of the Cell ( Garland Science 2008) Peroxidativní reakce: např. 25% ethanolu na acetaldehyd Beta oxidace zkracování alkylových řetězců až na acetylcoa (ten do cytosolu, kde použit) Adaptace peroxisomů za změněných podmínek Fotorespirace fixace CO2 na polysacharid (spotřeba O2) Glyoxalátový cyklus přeměna tuků na cukry 3 ak na C konci peroxizomový signál Asociace s chloroplastem Peroxiny za účasti ATP se podílejí na transportu foldovaných (poskládaných do konečné konformace) proteinů do peroxisomu Dědičný Zellwegerův syndrom defekt importu do peroxisomů (prázdné peroxisomy) smrt po narození 51 52

27 Peroxisom v kotyledonové buňce čtyřdenního rajčatového semínka Vznik nových peroxisomů Figure 12-32b Molecular Biology of the Cell ( Garland Science 2008) Figure Molecular Biology of the Cell ( Garland Science 2008) Peroxisom glyoxysom glukoneogeneze Růst a dělení, peroxisom z peroxisomu 53 54

28 Endoplasmatické retikulum (ER) v savčí a rostlinné buňce Page 723 Molecular Biology of the Cell ( Garland Science 2008) Figure 12-34b Molecular Biology of the Cell ( Garland Science 2008) Figure 12-34a Molecular Biology of the Cell ( Garland Science 2008) Zabarvení pomocí protilátky 55 56

29 Transport Drsné ER Figure Molecular Biology of the Cell ( Garland Science 2008) Figure 12-36a Molecular Biology of the Cell ( Garland Science 2008) Rozdíl mezi kotranslační a posttranslační translokací U ER je posttranslační transport výjimečný Pankreatická exokrinní buňka 57 58

30 Hladké ER v Leydigových buňkách testes Hladké a drsné ER v jaterní buňce Figure 12-36b Molecular Biology of the Cell ( Garland Science 2008) Figure 12-36c Molecular Biology of the Cell ( Garland Science 2008) Hladké ER je ve specializovaných buňkách, zvláště lipidového metabolismu Např.: -Leydigovy bb (sekrece testosteronu) -Hepatocyty (tvorba lipoproteinů, detoxifikace převodem na vodu rozpustnou formu pomocí enzymového systému cytochromu P450, ER indukováno podle potřeby a pak autofagocytováno) -Sarkoplastické retikulum ER ve svalech, kde pomocí Ca2+ zabezpečuje signalizaci relaxace a kontrakce; sekvestrace Ca2+ je důležitou fcí ER 3D rekonstrukce 59 60

31 Signální hypotéza Směrování ribozomů do ER pomocí signální sekvence a SRP Figure Molecular Biology of the Cell ( Garland Science 2008) Figure Molecular Biology of the Cell ( Garland Science 2008) Vedoucí sekvence proteinu (sled prvních ak proteinu) nese signál pro ER SRP a jeho receptor jsou synchronizováni: SRP se váže k ER signální sekvenci a k ribosomu a tím zastaví translaci Pak se váže SRP receptor a směruje protein k translokátoru Spotřeba GTP 61 62

32 Cyklus volného a vázaného ribosomu Polyribosom v mikroskopu Figure 12-41a Molecular Biology of the Cell ( Garland Science 2008) Figure 12-41b Molecular Biology of the Cell ( Garland Science 2008) Robozomální podjednotky v cytosolu slouží pro vázaný i volný ribosom 63 64

33 Šev a zátka Strukturálně podobné translokátory Figure Molecular Biology of the Cell ( Garland Science 2008) Figure Molecular Biology of the Cell ( Garland Science 2008) Protein se nedostane do styku s cytosolem uzavření švem a zátkou Uzavření nutné, aby neunikal Ca2+ do cytosolu A) kotranslační, Sec61, není potřeba E, jediná cesta pro rostoucí řetězec je skrz mb B) posttranslační, Sec61 a další, E ATP, BiP binding protein vazba a uvolnění (podobnost s hsp70 u mt) C) posttranslační, SecA, ATP, jako pístem po 20 ak (podobnost s thylakoidem ct) 65 66

34 Přenos rozpustného proteinu přes mb ER Inzerce rhodopsinu do ER Figure Molecular Biology of the Cell ( Garland Science 2008) Figure Molecular Biology of the Cell ( Garland Science 2008) Ribosomy nejsou zobrazeny pro zjednodušení ER signální sekvence znamená začni transport Po vazbě ER signální sekvence se otevře pór translokátoru, přenos Po přenosu uzavření póru, signální sekvence difunduje do mb a degraduje se Proteiny, které zůstávají v mb (jednoprůchodové single pass, dvouprůchodové double pass nebo multipass) využívají navíc k ER signální sekvenci také stop transfer sekvence Příklad multipass proteinu Rhodopsin je světločivný protein v fotoreceptorových čípcích v savčí sítnici Vlevo diagram hydrofobicity, který rozpozná 7 hydrofobních úseků Modře vyznačeny oligosacharidy Šipky zobrazují části, vcházející do translokátoru 67 68

35 Proteinová glykosylace v drsném ER Připojení prekurzorového oligosacharidu na asparagin proteinu vdrsném ER Figure Molecular Biology of the Cell ( Garland Science 2008) Figure Molecular Biology of the Cell ( Garland Science 2008) Většina proteinů v drsném ER je glykosylována připojením prekurzorového N- linked oligosacharidu Prekurzorový oligosacharid je - za pomoci enzymu oligosacharyltransferázy připojován vcelku; sestává z Nacetylglukosaminu, manózy a glukózy - vytvářen připojováním cukr po cukru a zaparkován v tukové mlk dolicholu (polyisoprenoid) a přenesen na cílový asparagin Jakmile polypeptid vstoupí do lumenu ER je gylkosylován na cílových Asn Ribosomy nejsou zobrazeny pro zjednodušení 69 70

36 Role glykosylace ve skládání proteinů v ER Export a degradace špatně složených proteinů v ER Figure Molecular Biology of the Cell ( Garland Science 2008) Figure Molecular Biology of the Cell ( Garland Science 2008) Glykosylace je značkou pro nesložený protein Kalnexin se váže k nesprávně složenému proteinu, označenému terminální glukózou a N-linked oligosacharidem Pokud glukosyltransferáza odstraní koncovou glukózu, tak se kalnexin uvolní Návrat špatně složeného proteinu do cytosolu - retrotranslokace, dyslokace Až 80% proteinů je špatně složených Využití Sec61 Deglykosylace, ubikvinace, degradace v proteasomu 71 72

37 Připojení glykosylfosfatidylinositolové (GPI) kotvy k proteinu v ER Děkuji vám za pozornost! Figure Molecular Biology of the Cell ( Garland Science 2008) Některé mb proteiny kovalentně připojují glykosylfosfatidylinositolovou kotvu, která upevňuje protein v mb a může být rychle uvolněna v odpovědi na stimul (Trypanosoma změní kabát při rerakci s imunitním systémem) 73

Molecular Biology of the Cell Fifth Edition

Molecular Biology of the Cell Fifth Edition Membránový princip organizace buňky (kompartmenty). Třídění proteinů. doc. Mgr. Jiří Drábek, PhD. Laboratoř experimentální medicíny při Dětské klinice LF UP a FN Olomouc jiri_drabek@seznam.cz Alberts Johnson

Více

Nejmenší jednotka živého organismu schopná samostatné existence. Výměnu látek Růst Pohyb Rozmnožování Dědičnost

Nejmenší jednotka živého organismu schopná samostatné existence. Výměnu látek Růst Pohyb Rozmnožování Dědičnost BUŇKA Nejmenší jednotka živého organismu schopná samostatné existence Buňka je schopna uskutečňovat základní funkce organismu: obrázky použity z Nečas: BIOLOGIE LIDSKÉ TĚLO Alberts: ZÁKLADY BUNĚČNÉ BIOLOGIE

Více

MEMBRÁNOVÉ STRUKTURY EUKARYONTNÍCH BUNĚK

MEMBRÁNOVÉ STRUKTURY EUKARYONTNÍCH BUNĚK MEMBRÁNOVÉ STRUKTURY EUKARYONTNÍCH BUNĚK PLASMATICKÁ MEMBRÁNA EUKARYOTICKÝCH BUNĚK Všechny buňky (prokaryotické a eukaryotické) jsou ohraničeny membránami zajišťujícími integritu a funkci buněk Ochrana

Více

Univerzita Karlova v Praze - 1. lékařská fakulta. Buňka. Ústav pro histologii a embryologii

Univerzita Karlova v Praze - 1. lékařská fakulta. Buňka. Ústav pro histologii a embryologii Univerzita Karlova v Praze - 1. lékařská fakulta Buňka. Stavba a funkce buněčné membrány. Transmembránový transport. Membránové organely, buněčné kompartmenty. Ústav pro histologii a embryologii Doc. MUDr.

Více

Interakce buněk s mezibuněčnou hmotou. B. Dvořánková

Interakce buněk s mezibuněčnou hmotou. B. Dvořánková Interakce buněk s mezibuněčnou hmotou B. Dvořánková Obsah přednášky Buňka a její organely Extracelulární matrix Interakce buněk s ECM i navzájem Kultivace buněk in vitro Buněčné jádro Alberts: Molecular

Více

Buňky, tkáně, orgány, soustavy

Buňky, tkáně, orgány, soustavy Lidská buňka buněčné organely a struktury: Jádro Endoplazmatické retikulum Goldiho aparát Mitochondrie Lysozomy Centrioly Cytoskelet Cytoplazma Cytoplazmatická membrána Buněčné jádro Jadérko Karyoplazma

Více

Biologie I. Buňka II. Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings

Biologie I. Buňka II. Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings Biologie I Buňka II Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings BUŇKA II centrioly, ribosomy, jádro endomembránový systém semiautonomní organely peroxisomy

Více

Bílkoviny a rostlinná buňka

Bílkoviny a rostlinná buňka Bílkoviny a rostlinná buňka Bílkoviny Rostliny --- kontinuální diferenciace vytváření orgánů: - mitotická dělení -zvětšování buněk a tvorba buněčné stěny syntéza bílkovin --- fotosyntéza syntéza bílkovin

Více

pátek, 24. července 15 BUŇKA

pátek, 24. července 15 BUŇKA BUŇKA ŽIVOČIŠNÁ BUŇKA mitochondrie ribozom hrubé endoplazmatické retikulum cytoplazma plazmatická membrána mikrotubule lyzozom hladké endoplazmatické retikulum Golgiho aparát jádro jadérko chromatin volné

Více

Buněčné membránové struktury. Buněčná (cytoplazmatická) membrána. Jádro; Drsné endoplazmatické retikulum. Katedra zoologie PřF UP Olomouc

Buněčné membránové struktury. Buněčná (cytoplazmatická) membrána. Jádro; Drsné endoplazmatické retikulum. Katedra zoologie PřF UP Olomouc Buněčné membránové struktury Katedra zoologie PřF UP Olomouc Většina buněčných membránových struktur jsou vzájemně propojeny (neustálá komunikace, transport materiálu) Zásobní Zásobní Endocytóza Endocytóza

Více

Regulace translace REGULACE TRANSLACE LOKALIZACE BÍLKOVIN V BUŇCE. 4. Lokalizace bílkovin v buňce. 1. Translační aparát. 2.

Regulace translace REGULACE TRANSLACE LOKALIZACE BÍLKOVIN V BUŇCE. 4. Lokalizace bílkovin v buňce. 1. Translační aparát. 2. Regulace translace 1. Translační aparát 2. Translace 3. Bílkoviny a jejich posttranslační modifikace a jejich degradace 5. Translace v mitochondriích a chloroplastech REGULACE TRANSLACE LOKALIZACE BÍLKOVIN

Více

STRUKTURA EUKARYONTNÍCH BUNĚK

STRUKTURA EUKARYONTNÍCH BUNĚK STRUKTURA EUKARYONTNÍCH BUNĚK EUKARYOTICKÉ ORGANELY Jádro Ribozomy Endoplazmatické retikulum Golgiho aparát Lysozomy Endozomy Mitochondrie Plastidy Vakuola Cytoskelet Vznik eukaryotického jádra Jaderný

Více

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ SPOLEČNÉ ZNAKY ŽIVÉHO - schopnost získávat energii z živin pro své životní potřeby - síla aktivně odpovídat na změny prostředí - možnost růstu, diferenciace a reprodukce

Více

STRUKTURA EUKARYONTNÍCH BUNĚK

STRUKTURA EUKARYONTNÍCH BUNĚK STRUKTURA EUKARYONTNÍCH BUNĚK EUKARYOTICKÉ ORGANELY Jádro Ribozomy Endoplazmatické retikulum Golgiho aparát Lysozomy Endozomy Mitochondrie Plastidy Vakuola Cytoskelet Vznik eukaryotického jádra Jaderný

Více

BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA:

BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA: BUNĚČ ĚČNÁ STAVBA ŽIVÝCH ORGANISMŮ KLÍČOVÁ SLOVA: Prokaryota, eukaryota, viry, bakterie, živočišná buňka, rostlinná buňka, organely buněčné jádro, cytoplazma, plazmatická membrána, buněčná stěna, ribozom,

Více

Struktura a funkce biomakromolekul KBC/BPOL

Struktura a funkce biomakromolekul KBC/BPOL Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je

Více

BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ

BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ BIOMEMRÁNA BIOLOGICKÁ MEMBRÁNA - všechny buňky na povrchu plazmatickou membránu - Prokaryontní buňky (viry, bakterie, sinice) - Eukaryontní buňky vnitřní členění do soustavy membrán KOMPARTMENTŮ - za

Více

Struktura a funkce biomakromolekul KBC/BPOL

Struktura a funkce biomakromolekul KBC/BPOL Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je

Více

Úvod do biologie rostlin Buňka ROSTLINNÁ BUŇKA

Úvod do biologie rostlin Buňka ROSTLINNÁ BUŇKA Slide 1a ROSTLINNÁ BUŇKA Slide 1b Specifické součásti ROSTLINNÁ BUŇKA Slide 1c Specifické součásti ROSTLINNÁ BUŇKA buněčná stěna Slide 1d Specifické součásti ROSTLINNÁ BUŇKA buněčná stěna plasmodesmy Slide

Více

8. Polysacharidy, glykoproteiny a proteoglykany

8. Polysacharidy, glykoproteiny a proteoglykany Struktura a funkce biomakromolekul KBC/BPOL 8. Polysacharidy, glykoproteiny a proteoglykany Ivo Frébort Polysacharidy Funkce: uchovávání energie, struktura, rozpoznání a signalizace Homopolysacharidy a

Více

Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza

Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových

Více

Schéma rostlinné buňky

Schéma rostlinné buňky Rostlinná buňka 1 2 3 5 vakuola 4 5 6 Rostlinná buňka je eukaryotní buňkou se základními charakteristikami tohoto typu buňky. Krom toho má některé charakteristiky typické pro rostlinné buňky, jako je předevšímř

Více

BIOLOGIE BUŇKY. Aplikace nanotechnologií v medicíně zimní semestr 2016/2017. Mgr. Jana Rotková, Ph.D.

BIOLOGIE BUŇKY. Aplikace nanotechnologií v medicíně zimní semestr 2016/2017. Mgr. Jana Rotková, Ph.D. BIOLOGIE BUŇKY Aplikace nanotechnologií v medicíně zimní semestr 2016/2017 Mgr. Jana Rotková, Ph.D. OBSAH zařazení v systému organismů charakterizace buňky buněčné organely specializace buněk užitečné

Více

Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách

Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách Buňka Historie 1655 - Robert Hooke (1635 1703) - použil jednoduchý mikroskop k popisu pórů v řezu korku. Nazval je, podle podoby k buňkám včelích plástů, buňky. 18. - 19. St. - vznik buněčné biologie jako

Více

Cytologie. Přednáška 2010

Cytologie. Přednáška 2010 Cytologie Přednáška 2010 Buňka 1.Velikost 6 200 µm, průměrná velikost 20um 2. JÁDRO a CYTOPLAZMA 3. ORGANELY (membránové) 4. CYTOPLAZMATICKÉ INKLUZE 5. CYTOSKELET 6. Funkční systémy eukaryotické buňky:

Více

VAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost

VAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost VAKUOLA membránou ohraničený váček membrána se nazývá tonoplast běžná u rostlin, zvířata specializované funkce či její nepřítomnost VAKUOLA Funkce: uložiště odpadů a uskladnění chemických látek (fenolické

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání

Více

Základy buněčné biologie

Základy buněčné biologie Maturitní otázka č. 8 Základy buněčné biologie vypracovalo přírodozpytné sympózium LP, AM & DK na konferenci v Praze, 1. Máje 2014 Buňka (cellula) je nejmenší známý útvar, který je schopný všech životních

Více

Stavba dřeva. Základy cytologie. přednáška

Stavba dřeva. Základy cytologie. přednáška Základy cytologie přednáška Buňka definice, charakteristika strana 2 2 Buňky základní strukturální a funkční jednotky živých organismů Základní charakteristiky buněk rozmanitost (diverzita) - např. rostlinná

Více

Současná formulace: Buňka je minimální jednotka, která vykazuje všechny znaky živých soustav

Současná formulace: Buňka je minimální jednotka, která vykazuje všechny znaky živých soustav Buněčná teorie: Počátky formování: 1840 a dále, Jan E. Purkyně myšlenka o analogie rostlinného a živočišného těla (buňky zrníčka) Schwann T. Virchow R. nové buňky vznikají pouze dělením buněk již existujících

Více

DUM č. 11 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika

DUM č. 11 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika projekt GML Brno Docens DUM č. 11 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 30.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Princip genové exprese, intenzita překladu

Více

Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D.

Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D. Proteiny Genová exprese 2013 Doc. MVDr. Eva Bártová, Ph.D. Bílkoviny (proteiny), 15% 1g = 17 kj Monomer = aminokyseliny aminová skupina karboxylová skupina α -uhlík postranní řetězec Znát obecný vzorec

Více

9. Lipidy a biologické membrány

9. Lipidy a biologické membrány Struktura a funkce biomakromolekul KBC/BPOL 9. Lipidy a biologické membrány Ivo Frébort Buněčné membrány Jádro buňky Golgiho aparát Funkce buněčných membrán Bariéry vůči toxickým látkám Pomáhají akumulovat

Více

FYZIOLOGIE ROSTLIN. Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz

FYZIOLOGIE ROSTLIN. Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz FYZIOLOGIE ROSTLIN Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz Studijní literatura: Hejnák,V., Zámečníková,B., Zámečník, J., Hnilička, F.: Fyziologie rostlin.

Více

- pro učitele - na procvičení a upevnění probírané látky - prezentace

- pro učitele - na procvičení a upevnění probírané látky - prezentace Číslo projektu Název školy Autor Tematická oblast CZ.1.07/1.5.00/34.0743 Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková Biologie 10 obecná biologie Organely eukaryotní buňky Ročník 1. Datum tvorby

Více

VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ

VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ FUNKCE PROTEINŮ 1 VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ Příklad: protein: dystrofin onemocnění: Duchenneova svalová dystrofie 2 3 4 FUNKCE PROTEINŮ: 1. Vztah struktury a funkce proteinů 2. Rodiny proteinů

Více

Biologie buňky. systém schopný udržovat se a rozmnožovat

Biologie buňky. systém schopný udržovat se a rozmnožovat Biologie buňky 1665 - Robert Hook (korek, cellulae = buňka) Cytologie - věda zabývající se studiem buňek Buňka ozákladní funkční a stavební jednotka živých organismů onejmenší známý uspořádaný dynamický

Více

BUNĚČNÉ JÁDRO FYZIOLOGIE BUŇKY JADÉRKO ENDOPLASMATICKÉ RETIKULUM (ER)

BUNĚČNÉ JÁDRO FYZIOLOGIE BUŇKY JADÉRKO ENDOPLASMATICKÉ RETIKULUM (ER) BUNĚČNÉ JÁDRO FYZIOLOGIE BUŇKY Buněčné jádro- v něm genetická informace Úkoly jádra-1) regulace dělení, zrání a funkce buňky; -2) přenos genetické informace do nové buňky; -3) syntéza informační RNA (messenger

Více

Prokaryota x Eukaryota. Vibrio cholerae

Prokaryota x Eukaryota. Vibrio cholerae Živočišná buňka Prokaryota x Eukaryota Vibrio cholerae Dělení živočišných buněk: buňky jednobuněčných organismů (volně žijící samostatné jednotky) buňky mnohobuněčných větší morfologické i funkční celky

Více

PŘEHLED OBECNÉ HISTOLOGIE

PŘEHLED OBECNÉ HISTOLOGIE PŘEDMLUVA 8 1. ZÁKLADY HISTOLOGICKÉ TECHNIKY 9 1.1 Světelný mikroskop a příprava vzorků pro vyšetření (D. Horký) 9 1.1.1 Světelný mikroskop 9 1.1.2 Zásady správného mikroskopování 10 1.1.3 Nejčastější

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání

Více

Metabolismus bílkovin. Václav Pelouch

Metabolismus bílkovin. Václav Pelouch ZÁKLADY OBECNÉ A KLINICKÉ BIOCHEMIE 2004 Metabolismus bílkovin Václav Pelouch kapitola ve skriptech - 3.2 Výživa Vyvážená strava člověka musí obsahovat: cukry (50 55 %) tuky (30 %) bílkoviny (15 20 %)

Více

Buňka cytologie. Buňka. Autor: Katka www.nasprtej.cz Téma: buňka stavba Ročník: 1.

Buňka cytologie. Buňka. Autor: Katka www.nasprtej.cz Téma: buňka stavba Ročník: 1. Buňka cytologie Buňka - Základní, stavební a funkční jednotka organismu - Je univerzální - Všechny organismy jsou tvořeny z buněk - Nejmenší životaschopná existence - Objev v 17. stol. R. Hooke Tvar: rozmanitý,

Více

Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).

Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA). Typy nukleových kyselin Existují dva typy nukleových kyselin (NA, z anglických slov nucleic acid): deoxyribonukleová (DNA); ribonukleová (RNA). DNA je lokalizována v buněčném jádře, RNA v cytoplasmě a

Více

Aplikované vědy. Hraniční obory o ţivotě

Aplikované vědy. Hraniční obory o ţivotě BIOLOGICKÉ VĚDY Podle zkoumaného organismu Mikrobiologie (viry, bakterie) Mykologie (houby) Botanika (rostliny) Zoologie (zvířata) Antropologie (člověk) Hydrobiologie (vodní organismy) Pedologie (půda)

Více

DUM č. 3 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika

DUM č. 3 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika projekt GML Brno Docens DUM č. 3 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 02.06.2014 Ročník: 6AF, 6BF Anotace DUMu: chromatin - stavba, organizace a struktura

Více

Lipidy a biologické membrány

Lipidy a biologické membrány Lipidy a biologické membrány Rozdělení a struktura lipidů Biologické membrány - lipidové složení Membránové proteiny Transport látek přes membrány Přenos informace přes membrány Lipidy Nesourodá skupina

Více

Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA

Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA

Více

Rostlinná cytologie. Přednášející: RNDr. Jindřiška Fišerová, Ph.D. Rostlinná cytologie, Katedra experimentální biologie rostlin PřF UK

Rostlinná cytologie. Přednášející: RNDr. Jindřiška Fišerová, Ph.D. Rostlinná cytologie, Katedra experimentální biologie rostlin PřF UK Rostlinná cytologie MB130P30 Přednášející: RNDr. Kateřina Schwarzerová,PhD. RNDr. Jindřiška Fišerová, Ph.D. Přijďte na katedru experimentální biologie rostlin vypracovat svou bakalářskou nebo diplomovou

Více

Předmět: KBB/BB1P; KBB/BUBIO

Předmět: KBB/BB1P; KBB/BUBIO Předmět: KBB/BB1P; KBB/BUBIO Chemické složení buňky Cíl přednášky: seznámit posluchače se složením buňky po chemické stránce Klíčová slova: biogenní prvky, chemické vazby a interakce, uhlíkaté sloučeniny,

Více

Předmět: KBB/BB1P; KBB/BUBIO

Předmět: KBB/BB1P; KBB/BUBIO Předmět: KBB/BB1P; KBB/BUBIO Energie z mitochondrií a chloroplastů Cíl přednášky: seznámit posluchače se základními principy získávání energie v mitochondriích a chloroplastech Klíčová slova: mitochondrie,

Více

STRUKTURA A FUNKCE MIKROBIÁLNÍ BUŇKY

STRUKTURA A FUNKCE MIKROBIÁLNÍ BUŇKY Morfologie (tvar) bakterií STRUKTURA A FUNKCE MIKROBIÁLNÍ BUŇKY Tři základní tvary Koky(průměr 0,5-1,0 µm) Tyčinky bacily (šířka 0,5-1,0 µm, délka 1,0-4,0 µm) Spirály (délka 1 µm až100 µm) Tvorba skupin

Více

Prokaryotická X eukaryotická buňka. Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen)

Prokaryotická X eukaryotická buňka. Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Cytoplazmatická membrána osemipermeabilní ofosfolipidy, bílkoviny otransport látek, receptory,

Více

Struktura buňky - maturitní otázka z biologie

Struktura buňky - maturitní otázka z biologie Otázka: Struktura buňky Předmět: Biologie Přidal(a): Zuzlanka95 STAVBA EUKARYOTICKÉ BUŇKY Biomembrány Ohraničují a rozdělují buňku Podílí se na přenosu látek a probíhají na nich biochemické reakce Na povrchu

Více

- v interfázi dále viditelné - jadérko, jaderný skelet, jaderný obal

- v interfázi dále viditelné - jadérko, jaderný skelet, jaderný obal Buňka buňka : 10-30 mikrometrů největší buňka : vajíčko životnost : hodiny: leukocyty, erytrocyty: 110 130 dní, hepatocyty: 1 2 roky, celý život organismu: neuron počet bb v těle: 30 biliónů pojem buňka

Více

MEMBRÁNOVÝ PRINCIP BUŇKY

MEMBRÁNOVÝ PRINCIP BUŇKY MEMBRÁNOVÝ PRINCIP BUŇKY Gorila východní horská Gorilla beringei beringei Uganda, 2018 jen cca 880 ex. Biologie 9, 2018/2019, Ivan Literák MEMBRÁNOVÝ PRINCIP BUŇKY MEMBRÁNOVÝ PRINCIP BUŇKY živá buňka =

Více

Přípravný kurz z biologie MUDr. Jana Kolářová, CSc. témata 1 Mgr. Kateřina Caltová témata 3-5 doc. PharmDr. Emil Rudolf, Ph.D. 2 + 6-10 materiály k

Přípravný kurz z biologie MUDr. Jana Kolářová, CSc. témata 1 Mgr. Kateřina Caltová témata 3-5 doc. PharmDr. Emil Rudolf, Ph.D. 2 + 6-10 materiály k Přípravný kurz z biologie MUDr. Jana Kolářová, CSc. témata 1 Mgr. Kateřina Caltová témata 3-5 doc. PharmDr. Emil Rudolf, Ph.D. 2 + 6-10 materiály k přípravnému kurzu: stránka Ústavu lékařské biologie a

Více

- význam: ochranná funkce, dodává buňce tvar. jádro = karyon, je vyplněné karyoplazmou ( polotekutá tekutina )

- význam: ochranná funkce, dodává buňce tvar. jádro = karyon, je vyplněné karyoplazmou ( polotekutá tekutina ) Otázka: Buňka a dělení buněk Předmět: Biologie Přidal(a): Štěpán Buňka - cytologie = nauka o buňce - rostlinná a živočišná buňka jsou eukaryotické buňky Stavba rostlinné (eukaryotické) buňky: buněčná stěna

Více

od eukaryotické se liší svou výrazně jednodušší stavbou a velikostí Dosahuje velikosti 1-10 µm. Prokaryotní buňku mají bakterie a sinice skládá se z :

od eukaryotické se liší svou výrazně jednodušší stavbou a velikostí Dosahuje velikosti 1-10 µm. Prokaryotní buňku mají bakterie a sinice skládá se z : Otázka: Buňka Předmět: Biologie Přidal(a): konca88 MO BI 01 Buňka je základní stavební jednotka živých organismů. Je to nejmenší živý útvar schopný samostatné existence a rozmnožování. Každá buňka má svůj

Více

ANATOMIE A FYZIOLOGIE ÈLOVÌKA Pro humanitní obory. doc. MUDr. Alena Merkunová, CSc. MUDr. PhDr. Miroslav Orel

ANATOMIE A FYZIOLOGIE ÈLOVÌKA Pro humanitní obory. doc. MUDr. Alena Merkunová, CSc. MUDr. PhDr. Miroslav Orel doc. MUDr. Alena Merkunová, CSc. MUDr. PhDr. Miroslav Orel ANATOMIE A FYZIOLOGIE ÈLOVÌKA Pro humanitní obory Vydala Grada Publishing, a.s. U Prùhonu 22, 170 00 Praha 7 tel.: +420 220 386401, fax: +420

Více

Publikováno z 2. lékařská fakulta Univerzity Karlovy v Praze (http://www.lf2.cuni.cz)

Publikováno z 2. lékařská fakulta Univerzity Karlovy v Praze (http://www.lf2.cuni.cz) Publikováno z 2. lékařská fakulta Univerzity Karlovy v Praze (http://www.lf2.cuni.cz) Biochemie Napsal uživatel Marie Havlová dne 8. Únor 2012-0:00. Sylabus předmětu Biochemie, Všeobecné lékařství, 2.

Více

5. Lipidy a biomembrány

5. Lipidy a biomembrány 5. Lipidy a biomembrány Obtížnost A Co je chybného na často slýchaném konstatování: Biologická membrána je tvořena dvojvrstvou fosfolipidů.? Jmenujte alespoň tři skupiny látek, které se podílejí na výstavbě

Více

Nukleové kyseliny Replikace Transkripce, RNA processing Translace

Nukleové kyseliny Replikace Transkripce, RNA processing Translace ukleové kyseliny Replikace Transkripce, RA processing Translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti

Více

NEMEMBRÁNOVÉ ORGANELY. Ribosomy Centrioly (jadérko) Cytoskelet: aktinová filamenta (mikrofilamenta) intermediární filamenta mikrotubuly

NEMEMBRÁNOVÉ ORGANELY. Ribosomy Centrioly (jadérko) Cytoskelet: aktinová filamenta (mikrofilamenta) intermediární filamenta mikrotubuly NEMEMBRÁNOVÉ ORGANELY Ribosomy Centrioly (jadérko) Cytoskelet: aktinová filamenta (mikrofilamenta) intermediární filamenta mikrotubuly RIBOSOMY Částice složené z rrna a proteinů, skládají se z velké kulovité

Více

Univerzita Karlova v Praze, 1. lékařská fakulta

Univerzita Karlova v Praze, 1. lékařská fakulta Univerzita Karlova v Praze, 1. lékařská fakulta Tkáň svalová. Obecná charakteristika hladké a příčně pruhované svaloviny (kosterní a srdeční). Funkční morfologie myofibrily. Mechanismus kontrakce. Stavba

Více

Cytologie I, stavba buňky

Cytologie I, stavba buňky Cytologie I, stavba buňky Ústav pro histologii a embryologii Předmět: Histologie a embryologie 1, B01131, obor Zubní lékařství Datum přednášky: 1.10.2013 Buňka je základní strukturální a funkční jednotka

Více

Buňka. Autor: Mgr. Jitka Mašková Datum: Gymnázium, Třeboň, Na Sadech 308

Buňka. Autor: Mgr. Jitka Mašková Datum: Gymnázium, Třeboň, Na Sadech 308 Buňka Autor: Mgr. Jitka Mašková Datum: 27. 10. 2012 Gymnázium, Třeboň, Na Sadech 308 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0702 VY_32_INOVACE_BIO.prima.02_buňka Škola Gymnázium, Třeboň, Na Sadech

Více

Bunka a bunecné interakce v patogeneze tkánového poškození

Bunka a bunecné interakce v patogeneze tkánového poškození Bunka a bunecné interakce v patogeneze tkánového poškození bunka - stejná genetická výbava - funkce (proliferace, produkce látek atd.) závisí na diferenciaci diferenciace tkán - specializovaná produkce

Více

BIOLOGIE BUŇKY II Struktura buňky Buněčný cyklus

BIOLOGIE BUŇKY II Struktura buňky Buněčný cyklus BIOLOGIE BUŇKY II Struktura buňky Buněčný cyklus 10.10.2016 Nejjednodušší forma života (viry neschopnost samostatné reprodukce) Základní stavební a funkční jednotka organismů schopná se dělit Spojeno s

Více

Energetický metabolizmus buňky

Energetický metabolizmus buňky Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie

Více

Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

TUKY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 15. 3. 2013. Ročník: devátý

TUKY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 15. 3. 2013. Ročník: devátý TUKY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 15. 3. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí s lipidy. V rámci tohoto

Více

Exprese genetické informace

Exprese genetické informace Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu

Více

2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:

2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné: Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících

Více

A. chromozómy jsou rozděleny na 2 chromatidy spojené jen v místě centromery. B. vlákna dělícího vřeténka jsou připojena k chromozómům

A. chromozómy jsou rozděleny na 2 chromatidy spojené jen v místě centromery. B. vlákna dělícího vřeténka jsou připojena k chromozómům Karlova univerzita, Lékařská fakulta Hradec Králové Obor: všeobecné lékařství - test z biologie Vyberte tu z nabídnutých odpovědí (1-5), která je nejúplnější. Otázka Odpověď 1. Mezi organely membránového

Více

9. Lipidy a biologické membrány

9. Lipidy a biologické membrány Struktura a funkce biomakromolekul KBC/BPOL 9. Lipidy a biologické membrány Ivo Frébort Buněčné membrány Jádro buňky Golgiho aparát Funkce buněčných membrán Bariéry vůči toxickým látkám Pomáhají akumulovat

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován

Více

Inovace profesní přípravy budoucích učitelů chemie

Inovace profesní přípravy budoucích učitelů chemie Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

LRR/BUBCV CVIČENÍ Z BUNĚČNÉ BIOLOGIE 2. PLASMATICKÁ MEMBRÁNA

LRR/BUBCV CVIČENÍ Z BUNĚČNÉ BIOLOGIE 2. PLASMATICKÁ MEMBRÁNA LRR/BUBCV CVIČENÍ Z BUNĚČNÉ BIOLOGIE 2. PLASMATICKÁ MEMBRÁNA TEORETICKÝ ÚVOD: Cytoplasmatická membrána je lipidová dvouvrstva o tloušťce asi 5 nm oddělující buňku od okolního prostředí. Nejvíce jsou v

Více

Nukleové kyseliny Replikace Transkripce translace

Nukleové kyseliny Replikace Transkripce translace Nukleové kyseliny Replikace Transkripce translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti buněk skladovat,

Více

BIOMEMBRÁNY. Sára Jechová, leden 2014

BIOMEMBRÁNY. Sára Jechová, leden 2014 BIOMEMBRÁNY Sára Jechová, leden 2014 zajišťují ohraničení buněk- plasmatické membrány- okolo buněčné protoplazmy, bariéra v udržování rozdílů mezi prostředím uvnitř buňky a okolím a organel= intercelulární

Více

Přehled energetického metabolismu

Přehled energetického metabolismu Přehled energetického metabolismu Josef Fontana EB 40 Obsah přednášky Důležité termíny energetického metabolismu Základní schéma energetického metabolismu Hlavní metabolické dráhy energetického metabolismu

Více

Molekulárn. rní. biologie Struktura DNA a RNA

Molekulárn. rní. biologie Struktura DNA a RNA Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace

Více

Přírodní polymery proteiny

Přírodní polymery proteiny Přírodní polymery proteiny Funkční úloha bílkovin 1. Funkce dynamická transport kontrola metabolismu interakce (komunikace, kontrakce) katalýza chemických přeměn 2. Funkce strukturální architektura orgánů

Více

1/II. Cvičení 2: ŽIVOČIŠNÁ BUŇKA, PROTOZOA Jméno: TVAR BUNĚK NERVOVÁ BUŇKA

1/II. Cvičení 2: ŽIVOČIŠNÁ BUŇKA, PROTOZOA Jméno: TVAR BUNĚK NERVOVÁ BUŇKA Cvičení 2: ŽIVOČIŠNÁ BUŇKA, PROTOZOA Jméno: Skupina: TVAR BUNĚK NERVOVÁ BUŇKA Trvalý preparát: mícha Vyhledejte nervové buňky (neurony) ve ventrálních rozích šedé hmoty míšní. Pozorujte při zvětšení, zakreslete

Více

V ŽIVOČIŠNÝCH BUŇKÁCH. *Ivana FELLNEROVÁ, PřF UP Olomouc*

V ŽIVOČIŠNÝCH BUŇKÁCH. *Ivana FELLNEROVÁ, PřF UP Olomouc* V ŽIVOČIŠNÝCH BUŇKÁCH LIPIDY a STEROIDY Heterogenní skupina látek rostlinného a živočišného původu Co mají společné? Nerozpustnost ve vodě a ostatních polárních rozpouštědlech Rozpustnost v organických

Více

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu Test pro přijímací řízení magisterské studium Biochemie 2019 1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná

Více

Epitely a jejich variace

Epitely a jejich variace Epitely a jejich variace 141 Definice Avaskulární tkáň Buňky jsou k sobě těsně připojeny pomocí mezibuněčných spojení Jsou funkčně a morfologicky polarizovány Jsou připojeny k bazální lamině Rozdělení

Více

- je nejmenší jednotkou živého organismu schopnou nezávislé existence (metabolismus, pohyb,růst, rozmnožování, dědičnost = schopnost buněčného dělení)

- je nejmenší jednotkou živého organismu schopnou nezávislé existence (metabolismus, pohyb,růst, rozmnožování, dědičnost = schopnost buněčného dělení) FYZIOLOGIE BUŇKY Buňka -základní stavební a funkční jednotka těla - je nejmenší jednotkou živého organismu schopnou nezávislé existence (metabolismus, pohyb,růst, rozmnožování, dědičnost = schopnost buněčného

Více

FYZIOLOGIE BUŇKY BUŇKA 5.3.2015. Základní funkce buněk: PROKARYOTICKÁ BUŇKA. Funkce zajišťují základní životní projevy buněk: EUKARYOTICKÁ BUŇKA

FYZIOLOGIE BUŇKY BUŇKA 5.3.2015. Základní funkce buněk: PROKARYOTICKÁ BUŇKA. Funkce zajišťují základní životní projevy buněk: EUKARYOTICKÁ BUŇKA FYZIOLOGIE BUŇKY BUŇKA - nejmenší samostatná morfologická a funkční jednotka živého organismu, schopná nezávislé existence buňky tkáně orgány organismus - fyziologie orgánů a systémů založena na komplexní

Více

Struktura a funkce biomakromolekul

Struktura a funkce biomakromolekul Struktura a funkce biomakromolekul KBC/BPOL 10. Struktury signálních komplexů Ivo Frébort Typy hormonů Steroidní hormony deriváty cholesterolu, regulují metabolismus, osmotickou rovnováhu, sexuální funkce

Více

Respirace. (buněčné dýchání) O 2. Fotosyntéza Dýchání. Energie záření teplo BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3

Respirace. (buněčné dýchání) O 2. Fotosyntéza Dýchání. Energie záření teplo BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3 Respirace (buněčné dýchání) Fotosyntéza Dýchání Energie záření teplo chem. energie CO 2 (ATP, NAD(P)H) O 2 Redukce za spotřeby NADPH BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3 oxidace produkující

Více

Milada Roštejnská. Helena Klímová. Buňka. Pankreas. Ledviny. Mozek. Kost. Srdce. Sval. Krev. Vajíčko. Spermie. Obr. 1.

Milada Roštejnská. Helena Klímová. Buňka. Pankreas. Ledviny. Mozek. Kost. Srdce. Sval. Krev. Vajíčko. Spermie. Obr. 1. Milada Roštejnská Buňka Helena Klímová Ledviny Pankreas Mozek Kost Srdce Sval Krev Spermie Vajíčko Obr. 1. Různé typy buněk (1. část) Typy buněk Prokaryotní buňka Eukaryotní buňka Jádro, jadérko a jaderná

Více

PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY

PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY 1 VÝZNAM MEMBRÁNOVÝCH RECEPTORŮ V MEDICÍNĚ Příklad: Membránové receptory: adrenergní receptory (receptory pro adrenalin a noradrenalin) Funkce: zprostředkování

Více

d) Kanály e) Přenašeče a co-transportéry, mediátory difúze a sekundární aktivní transport f) Intracelulární transport proteinů

d) Kanály e) Přenašeče a co-transportéry, mediátory difúze a sekundární aktivní transport f) Intracelulární transport proteinů MBR2 2016 2) Membránový transport 1 d) Kanály e) Přenašeče a co-transportéry, mediátory difúze a sekundární aktivní transport f) Intracelulární transport proteinů d) Kanály Rostliny: iontové kanály a akvaporiny

Více

Oligobiogenní prvky bývají běžnou součástí organismů, ale v těle jich již podstatně méně (do 1%) než prvků makrobiogenních.

Oligobiogenní prvky bývají běžnou součástí organismů, ale v těle jich již podstatně méně (do 1%) než prvků makrobiogenních. 1 (3) CHEMICKÉ SLOŢENÍ ORGANISMŮ Prvky Stejné prvky a sloučeniny se opakují ve všech formách života, protože mají shodné principy stavby těla i metabolismu. Např. chemické děje při dýchání jsou stejné

Více

Antigeny. Hlavní histokompatibilitní komplex a prezentace antigenu

Antigeny. Hlavní histokompatibilitní komplex a prezentace antigenu Antigeny Hlavní histokompatibilitní komplex a prezentace antigenu Antigeny Antigeny: kompletní (imunogen) - imunogennost - specificita nekompletní (hapten) - specificita antigenní determinanty (epitopy)

Více

1 (2) CYTOLOGIE stavba buňky

1 (2) CYTOLOGIE stavba buňky 1 (2) CYTOLOGIE stavba buňky Buňka základní stavební a funkční jednotka všech živých organismů. (neexistuje život mimo buňku!) buňky se liší tvarem i velikostí - záleží při tom hlavně na jejich funkci.

Více

Buněčné jádro a viry

Buněčné jádro a viry Buněčné jádro a viry Struktura virionu Obal kapsida strukturni proteiny povrchove glykoproteiny interakce s receptorem na povrchu buňky uvnitř nukleocore (ribo )nukleova kyselina, virove proteiny Lokalizace

Více