Nanočástice - úvod. obvyklé velikosti nm

Rozměr: px
Začít zobrazení ze stránky:

Download "Nanočástice - úvod. obvyklé velikosti nm"

Transkript

1 VSCHT, 2012 Dr. M. Kotrlý

2 Nanočástice - úvod Nano (=> řečtina: trpaslík ) fullereny nm: 10-9 m velikost atomů: ~ 0,1 nm nanovlákna uhlíkové nanotrubice obvyklé velikosti nm nanočástice Nanokompozity: nanovrstvy

3 Nanočástice-aplikace ochranné filmy/fólie (povrchy yp plastů) redukce odrazivosti/antireflexní úpravy (sklo) tepelná a mechanická ochrana povrchů (laky) kosmetika (UV filtry) automobilové laky vodivé a fotocitlivé vrstvy katalyzátory antibakterialní a mikroby ničící látky senzory kontrastní a magnetické látky (medicína) textilní průmysl nanovlákna farmacie dentální materiály

4

5 Nanočástice - použití Částice hliníku, zlata, stříbra, mědi a niklu: antimikrobiální a antibakteriální materiály biologické a chemické senzory digitální zobrazovací jednotky vysoce vodivé vrstvy, pasty a inkousty digitální archivační média optické filtry (polarizační a spektrální) fotonika aditiva pro slínování teplotně vodivé materiály speciální maziva (měď) hydrolytické elektrody vysoce kapacitní akumulátory Oxidy hliníku a céru: katalyzátory y chemicko-mechanické úpravy povrchů optické absorpce IR a UV leštění optických ploch oxidační činidla nanocompozity polymerů termálně vodivé látky Uhlík (grafit) nanokompozity pro elektroniku maziva a nanokompozity pro mechaniku Kobalt zobrazování v medicíně magnetické barvy a tonery magnetické ferrofluidy elektronická datová úložiště separace plynů speciální baterie a akumulátory speciální těsnění Oxidy erbia teplotní rezistory teplotně odolné vrstvy MOSFET elektronické prvky zušleťování optických vláken zušlechťování laserových tyčí Karbid křemíku katalyzátory vysocekapacitní polovodiče odrazové vrstvy pro extrémní UV Oxidy křemíku absorpční látka pro UV (mj.kosmetika) antibakteriální materiál biosenzory katalyzátory dentální materiály nosič API ve farmacii polovodiče IR reflexní materiály optické prvky kovové a keramické nanokompozity mechanicky odolné nanokompozity tepelně odolné nanokompozity fotické materiály optické leštění substrát pro tenké vrstvy Oxidy titanu absorpce UV katalyzátor absorbent biologických materiálů tonery anorganické membrány virocidní a antimikrobiální materiály piezoelektrické prvky pigmenty optické leštění polovodičové prvky sterilizační náplně a filtry

6 Nanočástice - vlastnosti ti poměr povrch/objem - f(velikosti částic) hrana: 1 cm hrana: 1 µm hrana: 1 nm počet krychlí: 1 počet krychlí: počet krychlí: povrch: 6 cm 2 povrch: 6 m 2 povrch: 6000 m 2

7 dostupnost

8 výroba metody mechanické přípravy nanočástic - mechanochemické syntézy, mlecí techniky, řízené skládání nanočástic - shlukování, aglomerace. z plynného a kapalného prostředí - kondenzací z aerosolu, přímou reakcí plynných látek, srážením, hydrotermickou syntézou, hydrolýzou, v prostředí superkritické kapaliny, v roztoku s použitím mikrovlnného záření a ultrazvuku. příprava nanočástic z kapalného prostředí - koloidní chemie, sol-gel technologie bionanotechnologie biomineralizace a biomimetika, pomocí biomas žití bakterií mikroskopických h b sinic šších rostlin pomocí biomasy - využití bakterií, mikroskopických hub, sinic, vyšších rostlin apod

9

10 Transmisní elektronová mikroskopie - TEM

11 JEOL JEM 3010 s urychlovacím napětím 300 kv (LaB 6 katoda, bodové rozlišení 1.7Å). Obrazová dokumentace byla pořízena na CCD kameře s rozlišením 1024x1024 bodů se programovým vybavením Digital Micrograph koloid nanočástic Pd (HRTEM, 300kV)

12 nanočástice BaCO 3 (HRTEM) nanočástice SiC (HRTEM) nanočástice Bi 2 O 3 (HRTEM)

13 Detektor transmisních elektronů TE/STEM

14 Pro ověření možností STEM módu byly provedeny série experimentů na autoemisním elektronovém mikroskopu MIRA II XMU se Schottkyho katodou, urychlovací napětí 10 kv, SE TF detektor (STEM mód), na stejných vzorcích jako předchozí experimenty nanočástice BaCO 3 (STEM)

15 Metody obrazové analýzy pro měření morfologických parametrů Pro objektivní měření distribuce a morfologických parametrů částic pigmentů, resp. komponent barevných vrstev, byl zvolen systém obrazové analýzy NIS- Elements verze 2.3 a 3.0, který vychází ze systému obrazové analýzy Lucia

16

17 Dynamický světelný rozptyl Metoda je založena na měření fluktuací intenzity světla, které rozptylují molekuly vzorku v suspenzi. Tato fluktuace je důsledkem Brownova pohybu. Molekuly kapaliny ve které jsou měřené částice rozptýleny se pohybují Brownovým pohybem definovanou rychlostí, která je funkcí teploty a viskozity kapaliny. Kolizí molekuly kapaliny s částicí vzorku dochází k pružné srážce, jejímž důsledkem je změna směru a rychlosti pohybu částice. Rychlost jakou se částice po srážce pohybuje závisí na její velikosti. Malé částice se pohybují rychleji, pohyb větších částic je pomalejší díky jejich většímu objemu. U větších částic je také statisticky vyšší pravděpodobnost srážky s více než jednou molekulou ve stejném čase. Po kolizi částice s molekulou kapaliny dochází ke změně intenzity rozptýleného světla, v závislosti na interferenci světelných vln. Změna intenzity světla přímo souvisí s difůzí částic a frekvence fluktuací závisí přímo na velikosti částic. Distribuce velikosti nanočástic byla měřena přístrojem NANOPHOX fy Sympatec GmbH, software Windox5, který je přímo určen pro měření nanočástic. Práškové vzorky byly rozdispergovány ve vodě a ethanolu pomocí ultrazvuku a měřeny při 25 C.

18

19 Zařízení NANOPHOX je vhodné v podstatě pro relativní porovnávání velikosti nanočástic mezi jednotlivými vzorky. Pro získání absolutních hodnot u anorganických částic, které lze přesněji charakterizovat jinými technikami, vhodné není. Zařízení je používáno zejména pro organické látky, jejichž charakter neumožňuje provedení analýz jinou instrumentací.

20 Mikroskopie atomárních sil (AFM) Představuje velkou skupinu metod a modifikací pro studium řady vlastností látek na úrovni, jdoucí až na velikost atomů. Jsou proto také jednou ze základních metod pro studium nanomateriálů. velmi dobrá rozlišovací schopnost, rychlost měření a relativní cenová dostupnost zařízení. Zcela klíčovou otázkou je ovšem příprava vzorků, která může být v některých případech obtížně realizovatelná, zejména s ohledem na současnou potřebu dobré dispergace částic a pevné fixace částic na podložku, aby měřící hrot částice neposouval. Testovací měření byla provedena ve Fyzikálním ústavu AVČR na zařízení Veeco Testovací měření byla provedena ve Fyzikálním ústavu AVČR, na zařízení Veeco Dimension 3100 a NT MDT Ntegra, raménko HA_NC NT-MDT

21

22 experimenty pro ověření limitů detekce - metody prvkové analýzy V experimentech prvních sérií se provádělo testování limit detekce. Získané poznatky byly využity při přípravě druhých sérií, které se zaměřily na detailní ověření detekčních limitů itů jednotlivých metod, mimo jiné i v závislosti na možných vzájemných koincidencích. id Jako příklad prvých sérií experimentů lze uvést 3 modelové typy látek: a) Směs dobře difraktujících nanokompozitů v difraktujícím plnivu byl zvolen nano-kompozit na bázi slídové destičky s nanesenou nanovrstvou rutilu. Byly připraveny směsi ě s 20, 10, 5, 3 hmot. procenty nanokompozitu v plnivu. b) Směs nanokompozitu na bázi Al destičky tloušťky cca 500 nm pokryté nanovrstvou hematitu tloušťky cca 50 nm. Opět byly yypřipraveny p směsi s 20, 10, 5 a 3 hmot. % těchto částic v difraktujícím plnivu. c) Směs nanočástic Strontium Lanthanum Manganese Oxide s převládající velikosti nm v difraktujícím plnivu. Směs obsahovala 5, 3 a 1 hmot.% nanočástic v plnivu. Jako základ dalších sérií experimentů byly zvoleny níže uvedené nanočástice: Al2O3 (30nm), Co3O4 (40nm), Bi2O3 (150nm), BaCO3 (50nm), SiC (30nm), SnO2 (50nm), TiO2 (10nm) S těmito částicemi byly připraveny modelové směsi v různých plnivech, pro většinu experimentů byly použity koncentrační řady 10; 5; 3; 1; 0.5 a 0.1 hmot. %.

23 experimenty pro ověření limitů detekce - metody prvkové analýzy - II Pro závěrečné ověření postupů analýzy byly pořízeny vzorky komerčních produktů s potencionálním obsahem anorganických nanočástic, pro tento experiment byly zvoleny relativně obtížnější směsi. Z kosmetických přípravků byly zvoleny opalovací krémy, pro srovnání se podařilo zajistit i vzorky krémů starých cca let, při výrobě kterých ještě nanočástice nebyly používány. Z potravinářských výrobků byly zvoleny kečupy (opět se podařilo sehnat i straší vzorek), z textilních materiálů výrobky s vlákny Coolmax FreshFX a X-Static, z nanokompozitů vzorky pigmentů s proměnlivou barevností Jako zajímavost byly analyzovány tkaniny a voda z máchacího cyklu, které prošly procesem Silver Wash (Silver Nano ), který je implementován u některých nových typů praček Samsung (při posledním máchacím cyklu proudí voda přes stříbrné destičky, ze kterých se elektrolyticky uvolňují ionty Ag)

24 Energiově disperzní mikroanalýza - EDS EDS analýza (Link ISIS Series 300 a INCAEnergy, rozsah 0-20 kev, citlivost 10eV/kanál, 1024 kanálů) byla schopná i při celkové plošné analýze vzorku (běžný, rychlý screening) zachytit prvky skládající nanokompozity a nanočástice z prvé série vzorků, přičemž je samozřejmě možné následné detailní ověření složení jednotlivých částic bodovou mikroanalýzou. Proto byla připravena druhá série vzorků, které byly koncipovány jako analyticky obtížnější s možnými koincidencemi linií a končícími na mezi detekce EDS systémů. Práškové vzorky byly naneseny na uhlíkovou fólii a přímo bez dalších úprav analyzovány. y. Nebyly y zjištěny ě rozdíly při analýze ploch velikostí 8x8 mm, postupně snižované až na 50x50

25

26 Energiově disperzní rentgenfluorescenční analýza - EDXRF pomocí EDXRF byly analyzovány vzorky, u kterých byl výsledek EDS mikroanalýzy negativní, nebo nedostatečně t č ě průkazný bylo použito zařízení XEPOS (fa Spectro) s Pd katodou a podmínkami měření: targets: compton/secondary molybdenum, barkla scatter aluminium oxide, secondary target (K) cobalt, bragg crystal HOPG, atmosféra prostoru kyvet - helium, napětí zdroje 40; 50; 35; 17 kv, proud 0.9; 0.7; 1; 0.5 ma, čas měření 300s/target. vzorky byly připraveny standardním d postupem do kyvet s polyprophylenovou l fólií. pro každý vzorek byl změřen i blank u práškových vzorků prázdná identická kyveta s fólií, u vzorku tkanin po procesu Silver Wash (Silver Nano ) vzorky stejné tkaniny, která tímto procesem neprošla

27

28 Strukturní rentgenografie ve forenzní oblasti se stále více prosazuje trend určení fáze minimálně dvěma nezávislými metodami (závěry expertiz jsou podklady d pro rozhodování orgánů ů činných ý hv trestním t řízení, í tj. rozhodování o vinně a trestu, a výsledky proto musí mít co nejvyšší stupeň hodnověrnosti) tomto kontextu jsou velmi významné i možnosti rentgenovým metod (ať již se jedná o strukturní a fázovou analýzu, tak i prosvětlovací a defektoskopické metody) ani XRD metody nejsou samospasitelné a jsou obvykle používány v kombinacích s dalšími metodami (zejména SEM- EDS/WDS, optickou mikroskopií, XRF, FTIR apod.)

29 pro difrakční experimenty byly použity monokrystalové křemíkové podložky byly vyrobeny z monokrystalického křemíku, který byl vytažen ve směru {100} ingot byl posléze rozřezán ánnadestičkna destičky s tloušťce šťce2a03milimetr 0.3 milimetru, řez byl veden pod úhlem cca 6 stupňů k rovině kolmé na směr růstu (100) tím je dosaženo, že v materiálu podložky nedochází k difrakčnímu jevu podložka se s výhodou používá pro velmi malá množství práškového materiálu či velmi malé fragmenty

30 Pro porovnání možností mikrodifrakce s dalšími postupy, umožňujícími analýzu velmi malých ploch byla využita sestava s kolimátorem byly testovány 3 druhy sestav štěrbin 1 x 1 mm, 1 x 0.5 mm a 1 x 0.25 mm kolimátor je zařízení, které kombinuje divergenční clonu a masku šíře svazku v jednom optickém modulu obvykle se používá se v kombinaci s bodovým ohniskem rentgenové lampy v rámci testování byl za stejných podmínek použit i na čárovém ohnisku lampy pro srovnání byl dále na čárovém ohnisku použit modul automatických divergenčních clon s nastavenou velikostí štěrbiny 0.5 mm

31

32 zjištěny větší pološířky (FWHM) u instrumentací s bodovým ohniskem - cca 0,3 2Theta u čárového ohniska se pohybují okolo 0,1 2Theta mírně asymetrický profil lze korigovat profilovým fitováním

33 sestava s automatickými divergenčními clonami s velikostí štěrbiny05mmdává 0,5 pro identický vzorek horší intenzity, než sestavy s kolimátorem - intenzity jsou cca 20% pološířky (FWHM) jsou prakticky identické (okolo 0,1 2Theta) mikrodifrakce dosahuje obdobných intenzit za cenu výrazně delší expozice, hodnoty pološířek (FWHM) jsou okolo 0,36 2Theta vyšší hodnoty FWHM v mikrodifrakčním záznamu lze vysvětlit podstatně horší fokusací primárního paprsku (respektive se jedná přímo o nefokusující difrakční geometrii), je použito paralelního svazku

34 Celkový přehled hodnoty pološířek difrakcí (FWHM) pro experimenty s bodovým a čárovým ohniskem pro sestavy s kolimátorem a mikrodifrakční kapiláru (pouze bodové ohnisko) hodnoty pološířek výrazně nevybočují pro testované instrumentace z hodnot dosahovaných ve standardním uspořádání pro práškovou analýzu

35 Dále byly u sérií experimentů s nanomateriály sledovány hodnoty pološířek (FWHM) odděleně pro difraktující plniva použitá ve směsích (velikost zrna 10 30µm) a pro vlastní nanočástice s cílem zjištění rozdílů (očekávané rozšíření difrakcí vzhledem ke zmenšující se velikosti monokrystalových domén)

36 u mikrodifrakce se detekční limity pohybovaly mezi 1 5 hmot.% nanofáze přidané do plniva, v závislosti na symetrii fáze, množství koincidujících id í linií, ií atd. usměsí s 3 a 5 hmot.% nabízel modul s vyhledávacím Search-Match algoritmem obvykle použité nanofáze na předních místech, po identifikaci dominujících plniv a zapnuté funkci Auto Residue

37 sestava s kolimátorem, nebo automatickými divergečními clonami, byly detekční limity od 0.1 hmot.% (pro případy p velmi dobře difraktujících fází a nekoincidujících linií s difrakčními liniemi plniv) nicméně pro tyto případy podle očekávání již selhává modul s vyhledávacím algoritmem Search-Match - je nutné použít v zadávacích kritériích restrikce od obsahů cca 1 3 hmot.% (závisí opět na výše uvedených kritériích) již modul Search-Match obvykle uvádí použité nanofáze na předních místech (po identifikaci dominujících plniv a zapnuté funkci Auto Residue). U směsí, kde není možné pro identifikaci využít nejintenzivnějších difrakčních linií sledované komponenty (vzhledem ke koincidencím s dalšími látkami ve směsi), se mez detekce posunuje směrem k vyšším obsahům jako příklad lze uvést testovací směsi s Al2O3, kde je možné podle linií s intenzitami it i 92, 35 a 53 % identifikovat t až obsahy od 1 hmot.% výše

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá

Více

Metody charakterizace

Metody charakterizace Metody y strukturní analýzy Metody charakterizace nanomateriálů I Význam strukturní analýzy pro studium vlastností materiálů Experimentáln lní metody využívan vané v materiálov lovém m inženýrstv enýrství:

Více

Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce

Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce Metody využívající rentgenové záření Rentgenografie, RTG prášková difrakce 1 Rentgenovo záření 2 Rentgenovo záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá se v lékařství a krystalografii.

Více

V obecném případě se ve forenzní laboratoři lze setkat s materiály

V obecném případě se ve forenzní laboratoři lze setkat s materiály VŠCHT - Forenzní analýza, 2012 RNDr. M. Kotrlý, KUP Většina analýz prováděných v kriminalistice se zabývá určováním, popisem a komparacemi prakticky libovolných látek, které mohou přijít do styku s osobami

Více

Elektronová mikroskopie SEM, TEM, AFM

Elektronová mikroskopie SEM, TEM, AFM Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první

Více

Rentgenová difrakce a spektrometrie

Rentgenová difrakce a spektrometrie Rentgenová difrakce a spektrometrie RNDr.Jaroslav Maixner, CSc. VŠCHT v Praze Laboratoř rentgenové difraktometrie a spektrometrie Technická 5, 166 28 Praha 6 224354201, 24355023 Jaroslav.Maixner@vscht.cz

Více

Proč elektronový mikroskop?

Proč elektronový mikroskop? Elektronová mikroskopie Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop,, 1 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první komerční

Více

Techniky mikroskopie povrchů

Techniky mikroskopie povrchů Techniky mikroskopie povrchů Elektronové mikroskopie Urychlené elektrony - šíření ve vakuu, ovlivnění dráhy elektrostatickým nebo elektromagnetickým polem Nepřímé pozorování elektronového paprsku TEM transmisní

Více

Elektronová mikroskopie II

Elektronová mikroskopie II Elektronová mikroskopie II Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Transmisní elektronová mikroskopie TEM Informace zprostředkována prošlými e - (TE, DE) Umožň žňuje studium vnitřní

Více

Glass temperature history

Glass temperature history Glass Glass temperature history Crystallization and nucleation Nucleation on temperature Crystallization on temperature New Applications of Glass Anorganické nanomateriály se skelnou matricí Martin Míka

Více

RTG difraktometrie 1.

RTG difraktometrie 1. RTG difraktometrie 1. Difrakce a struktura látek K difrakci dochází interferencí mřížkou vychylovaných vln Když dochází k rozptylu vlnění na různých atomech molekuly či krystalu, tyto vlny mohou interferovat

Více

C Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289

C Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289 OBSAH Předmluva 5 1 Popis mikroskopu 13 1.1 Transmisní elektronový mikroskop 13 1.2 Rastrovací transmisní elektronový mikroskop 14 1.3 Vakuový systém 15 1.3.1 Rotační vývěvy 16 1.3.2 Difúzni vývěva 17

Více

Nano a mikrotechnologie v chemickém inženýrství. Hi-tech VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMICKÉHO INŽENÝRSTVÍ

Nano a mikrotechnologie v chemickém inženýrství. Hi-tech VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMICKÉHO INŽENÝRSTVÍ Nano a mikrotechnologie v chemickém inženýrství Hi-tech VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMICKÉHO INŽENÝRSTVÍ Hi-tech Nano a mikro technologie v chemickém inženýrství umožňují: Samočisticí

Více

Úvod do spektrálních metod pro analýzu léčiv

Úvod do spektrálních metod pro analýzu léčiv Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz

Více

13. Spektroskopie základní pojmy

13. Spektroskopie základní pojmy základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok

Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok 2014-15 Stavba hmoty Elementární částice; Kvantové jevy, vlnové vlastnosti částic; Ionizace, excitace; Struktura el. obalu atomu; Spektrum

Více

Katedra chemie FP TUL Chemické metody přípravy vrstev

Katedra chemie FP TUL   Chemické metody přípravy vrstev Chemické metody přípravy vrstev Metoda sol-gel Historie nejstarší příprava silikagelu 1939 patent na výrobu antireflexních vrstev na fotografické čočky 60. léta studium vrstev SiO 2 a TiO 2 70. léta výroba

Více

STANOVENÍ TVARU A DISTRIBUCE VELIKOSTI ČÁSTIC MODELOVÝCH TYPŮ NANOMATERIÁLŮ. Edita BRETŠNAJDROVÁ a, Ladislav SVOBODA a Jiří ZELENKA b

STANOVENÍ TVARU A DISTRIBUCE VELIKOSTI ČÁSTIC MODELOVÝCH TYPŮ NANOMATERIÁLŮ. Edita BRETŠNAJDROVÁ a, Ladislav SVOBODA a Jiří ZELENKA b STANOVENÍ TVARU A DISTRIBUCE VELIKOSTI ČÁSTIC MODELOVÝCH TYPŮ NANOMATERIÁLŮ Edita BRETŠNAJDROVÁ a, Ladislav SVOBODA a Jiří ZELENKA b a UNIVERZITA PARDUBICE, Fakulta chemicko-technologická, Katedra anorganické

Více

VIBRAČNÍ SPEKTROMETRIE

VIBRAČNÍ SPEKTROMETRIE VIBRAČNÍ SPEKTROMETRIE (c) -2012 RAMANOVA SPEKTROMETRIE 1 PRINCIP METODY Měří se rozptýlené záření, které vzniká interakcí monochromatického záření z viditelné oblasti s molekulami vzorku za současné změny

Více

Nanotechnologie a Nanomateriály na PřF UJEP Pavla Čapková

Nanotechnologie a Nanomateriály na PřF UJEP Pavla Čapková Přírodovědecká fakulta UJEP Ústí n.l. a Ústecké materiálové centrum na PřF UJEP http://sci.ujep.cz/faculty-of-science.html Nanotechnologie a Nanomateriály na PřF UJEP Pavla Čapková Kontakt: Doc. RNDr.

Více

INTERAKCE IONTŮ S POVRCHY II.

INTERAKCE IONTŮ S POVRCHY II. Úvod do fyziky tenkých vrstev a povrchů INTERAKCE IONTŮ S POVRCHY II. Metody IBA (Ion Beam Analysis): pružný rozptyl nabitých částic (RBS), detekce odražených atomů (ERDA), metoda PIXE, Spektroskopie rozptýlených

Více

Mikroskopie rastrující sondy

Mikroskopie rastrující sondy Mikroskopie rastrující sondy Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Metody mikroskopie rastrující sondy SPM (scanning( probe Microscopy) Metody mikroskopie rastrující sondy soubor

Více

Chemické metody přípravy tenkých vrstev

Chemické metody přípravy tenkých vrstev Chemické metody přípravy tenkých vrstev verze 2013 Povrchové filmy monomolekulární Langmuirovy filmy PAL (povrchově aktivní látky) na polární kapalině (vodě), 0,205 nm 2 na 1 molekulu, tloušťka dána délkou

Více

Materiálový výzkum. Výzkumný program

Materiálový výzkum. Výzkumný program Výzkumný program Materiálový výzkum V programu MATERIÁLOVÝ VÝZKUM jsou výzkumné a vývojové aktivity zaměřené na zpracování a využití nových progresivních materiálů, zejména nanomateriálů. Vedoucím výzkumného

Více

Uhlíkové struktury vázající ionty těžkých kovů

Uhlíkové struktury vázající ionty těžkých kovů Uhlíkové struktury vázající ionty těžkých kovů 7. června/june 2013 9:30 h 17:30 h Laboratoř metalomiky a nanotechnologií, Mendelova univerzita v Brně a Středoevropský technologický institut Budova D, Zemědělská

Více

Plazmová depozice tenkých vrstev oxidu zinečnatého

Plazmová depozice tenkých vrstev oxidu zinečnatého Plazmová depozice tenkých vrstev oxidu zinečnatého Bariérový pochodňový výboj za atmosférického tlaku Štěpán Kment Doc. Dr. Ing. Petr Klusoň Mgr. Zdeněk Hubička Ph.D. Obsah prezentace Úvod do problematiky

Více

Difrakce elektronů v krystalech a zobrazení atomů

Difrakce elektronů v krystalech a zobrazení atomů Difrakce elektronů v krystalech a zobrazení atomů Ondřej Ticháček, PORG, ondrejtichacek@gmail.com Eva Korytiaková, Gymnázium Nové Zámky, korpal@pobox.sk Abstrakt: Jak vypadá vnitřek hmoty? Lze spatřit

Více

Oblasti průzkumu kovů

Oblasti průzkumu kovů Průzkum kovů Oblasti průzkumu kovů Identifikace kovů, složení slitin. Studium struktury kovu-technologie výroby, defektoskopie. Průzkum aktuálního stavu kovu, typu a stupně koroze. Průzkumy předchozích

Více

VAKUOVÁ TECHNIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Semestrální projekt FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VAKUOVÁ TECHNIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Semestrální projekt FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VAKUOVÁ TECHNIKA Semestrální projekt Téma: Aplikace vakuového napařovaní v optice Vypracoval:

Více

Vlnová délka světla je cca 0,4 µm => rozlišovací schopnost cca. 0,2 µm 1000 x víc než oko

Vlnová délka světla je cca 0,4 µm => rozlišovací schopnost cca. 0,2 µm 1000 x víc než oko VŠCHT - Forenzní analýza, 2012 RNDr. M. Kotrlý, KUP Mikroskopie Rozlišovací schopnost lidského oka cca 025 0,25mm Vlnová délka světla je cca 0,4 µm => rozlišovací schopnost cca. 0,2 µm 1000 x víc než oko

Více

Základy NIR spektrometrie a její praktické využití

Základy NIR spektrometrie a její praktické využití Nicolet CZ s.r.o. The world leader in serving science Základy NIR spektrometrie a její praktické využití NIR praktická metoda molekulové spektroskopie, nahrazující pracnější, časově náročnější a dražší

Více

V001 Dokončení a kalibrace experimentálních zařízení v laboratoři urychlovače Tandetron

V001 Dokončení a kalibrace experimentálních zařízení v laboratoři urychlovače Tandetron V001 Dokončení a kalibrace experimentálních zařízení v laboratoři urychlovače Tandetron Údaje o provozu urychlovačů v ÚJF AV ČR ( hodiny 2009/hodiny 2008) Urychlovač Celkový počet hodin Analýzy Implantace

Více

Refraktometrie, interferometrie, polarimetrie, nefelometrie, turbidimetrie

Refraktometrie, interferometrie, polarimetrie, nefelometrie, turbidimetrie Refraktometrie, interferometrie, polarimetrie, nefelometrie, turbidimetrie Refraktometrie Metoda založená na měření indexu lomu Při dopadu paprsku světla na fázové rozhraní mohou nastat dva jevy: Reflexe

Více

Techniky prvkové povrchové analýzy elemental analysis

Techniky prvkové povrchové analýzy elemental analysis Techniky prvkové povrchové analýzy elemental analysis (Foto)elektronová spektroskopie (pro chemickou analýzu) ESCA, XPS X-ray photoelectron spectroscopy (XPS) Any technique in which the sample is bombarded

Více

Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm

Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.

Více

Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie

Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. rentgenová spektroskopická metoda k určen

Více

3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické).

3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické). PŘEDMĚTY KE STÁTNÍM ZÁVĚREČNÝM ZKOUŠKÁM V BAKALÁŘSKÉM STUDIU SP: CHEMIE A TECHNOLOGIE MATERIÁLŮ SO: MATERIÁLOVÉ INŽENÝRSTVÍ POVINNÝ PŘEDMĚT: NAUKA O MATERIÁLECH Ing. Alena Macháčková, CSc. 1. Souvislost

Více

Difrakce elektronů v krystalech, zobrazení atomů

Difrakce elektronů v krystalech, zobrazení atomů Difrakce elektronů v krystalech, zobrazení atomů T. Sýkora 1, M. Lanč 2, J. Krist 3 1 Gymnázium Českolipská, Českolipská 373, 190 00 Praha 9, tomas.sykora@email.cz 2 Gymnázium Otokara Březiny a SOŠ Telč,

Více

Nanotechnologie. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 29. 5. 2013. Ročník: devátý

Nanotechnologie. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 29. 5. 2013. Ročník: devátý Nanotechnologie Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 29. 5. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Chemie a společnost 1 Anotace: Žáci se seznámí s nanotechnologiemi.

Více

Krystalografie a strukturní analýza

Krystalografie a strukturní analýza Krystalografie a strukturní analýza O čem to dneska bude (a nebo také nebude): trocha historie aneb jak to všechno začalo... jak a čím pozorovat strukturu látek difrakce - tak trochu jiný mikroskop rozptyl

Více

Chemie a fyzika pevných látek p2

Chemie a fyzika pevných látek p2 Chemie a fyzika pevných látek p2 difrakce rtg. záření na pevných látkch, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie Kratochvíl

Více

Tomáš Grygar: Metody analýza pevných látek L4-difrakce.doc

Tomáš Grygar: Metody analýza pevných látek L4-difrakce.doc 4. Rtg prášková difrakce (XRD, p-xrd) Tomáš Grygar: Metody analýza pevných látek Termíny Angstrom Å - 10-10 m = 0.1 nm. Tuhle jednotku hned tak něco nevymýtí. Důvodem je, jak pěkně se s ní popisují velikosti

Více

Nanotechnologie a jejich aplikace. doc. RNDr. Roman Kubínek, CSc.

Nanotechnologie a jejich aplikace. doc. RNDr. Roman Kubínek, CSc. Nanotechnologie a jejich aplikace doc. RNDr. Roman Kubínek, CSc. Předpona pochází z řeckého νανος což znamená trpaslík 10-9 m 380-780 nm rozsah λ viditelného světla Srovnání známých malých útvarů SPM Vyjasnění

Více

Metody analýzy povrchu

Metody analýzy povrchu Metody analýzy povrchu Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Povrch pevné látky: Poslední monoatomární vrstva + absorbovaná monovrstva Ovlivňuje fyzikální vlastnosti (ukončení

Více

DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ

DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ T. Jeřábková Gymnázium, Brno, Vídeňská 47 ter.jer@seznam.cz V. Košař Gymnázium, Brno, Vídeňská 47 vlastik9a@atlas.cz G. Malenová Gymnázium Třebíč malena.vy@quick.cz

Více

Vybrané spektroskopické metody

Vybrané spektroskopické metody Vybrané spektroskopické metody a jejich porovnání s Ramanovou spektroskopií Předmět: Kapitoly o nanostrukturách (2012/2013) Autor: Bc. Michal Martinek Školitel: Ing. Ivan Gregora, CSc. Obsah přednášky

Více

METODY ANALÝZY POVRCHŮ

METODY ANALÝZY POVRCHŮ METODY ANALÝZY POVRCHŮ (c) - 2017 Povrch vzorku 3 definice IUPAC: Povrch: vnější část vzorku o nedefinované hloubce (Užívaný při diskuzích o vnějších oblastech vzorku). Fyzikální povrch: nejsvrchnější

Více

METALOGRAFIE I. 1. Úvod

METALOGRAFIE I. 1. Úvod METALOGRAFIE I 1. Úvod Metalografie je nauka, která pojednává o vnitřní stavbě kovů a slitin. Jejím cílem je zviditelnění struktury materiálu a následné studium pomocí světelného či elektronového mikroskopu.

Více

Metody charakterizace nanomaterálů I

Metody charakterizace nanomaterálů I Vybrané metody spektráln lní analýzy Metody charakterizace nanomaterálů I RNDr. Věra Vodičková, PhD. Molekulová spektroskopie atomy a molekuly mohou měnit svůj energetický stav přijetím nebo vyzářením

Více

Studium vybraných buněčných linií pomocí mikroskopie atomárních sil s možným využitím v praxi

Studium vybraných buněčných linií pomocí mikroskopie atomárních sil s možným využitím v praxi Studium vybraných buněčných linií pomocí mikroskopie atomárních sil s možným využitím v praxi Petr Kolář, Kateřina Tománková, Jakub Malohlava, Hana Kolářová, ÚLB Olomouc 2013 atomic force microscopy mikroskopie

Více

Spektroskopické é techniky a mikroskopie. Spektroskopie. Typy spektroskopických metod. Cirkulární dichroismus. Fluorescence UV-VIS

Spektroskopické é techniky a mikroskopie. Spektroskopie. Typy spektroskopických metod. Cirkulární dichroismus. Fluorescence UV-VIS Spektroskopické é techniky a mikroskopie Spektroskopie metody zahrnující interakce mezi světlem (fotony) a hmotou (elektrony a protony v atomech a molekulách Typy spektroskopických metod IR NMR Elektron-spinová

Více

ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY

ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +

Více

Spektroskopie Augerových elektronů AES. KINETICKÁ ENERGIE AUGEROVÝCH e - NEZÁVISÍ NA ENERGII PRIMÁRNÍHO ZDROJE

Spektroskopie Augerových elektronů AES. KINETICKÁ ENERGIE AUGEROVÝCH e - NEZÁVISÍ NA ENERGII PRIMÁRNÍHO ZDROJE Spektroskopie Augerových elektronů AES KINETICKÁ ENERGIE AUGEROVÝCH e - NEZÁVISÍ NA ENERGII PRIMÁRNÍHO ZDROJE Spektroskopie Augerových elektronů AES Jev Augerových elektronů objeven 1923 - Lise Meitner

Více

Materiálový výzkum na ústavu anorganické chemie. Ondřej Jankovský

Materiálový výzkum na ústavu anorganické chemie. Ondřej Jankovský Materiálový výzkum na ústavu anorganické chemie Ondřej Jankovský ÚSTAV ANORGANICKÉ CHEMIE Koordinační chemie Materiály pro fotoniku Oxidové materiály Polovodiče a nanomateriály Teoretická chemie Vedoucí

Více

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části

Více

Analýza magnetických mikročástic mikroskopií atomárních sil

Analýza magnetických mikročástic mikroskopií atomárních sil Analýza magnetických mikročástic mikroskopií atomárních sil Zapletalová 1 H., Tvrdíková 2 J., Kolářová 1 H. 1 Ústav lékařské biofyziky, LF UP Olomouc 2 Ústav chemie potravin a biotechnologií, CHF VUT Brno

Více

Příprava vrstev metodou sol - gel

Příprava vrstev metodou sol - gel VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ Ústav skla a keramiky Příprava vrstev metodou sol - gel Základní pojmy Sol - koloidní suspenze, ve které jsou homogenně dispergované pevné částice s koloidními rozměry

Více

Metody analýzy povrchu

Metody analýzy povrchu Metody analýzy povrchu Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. 2 Povrch pevné látky: Poslední monoatomární vrstva + absorbovaná monovrstva Ovlivňuje fyzikální vlastnosti (ukončení

Více

Hmotnostní spektrometrie

Hmotnostní spektrometrie Hmotnostní spektrometrie Princip: 1. Ze vzorku jsou tvořeny ionty na úrovni molekul, nebo jejich zlomků (fragmentů), nebo až volných atomů dodáváním energie, např. uvolnění atomů ze vzorku nebo přímo rozštěpení

Více

Spektrometrické metody. Reflexní a fotoakustická spektroskopie

Spektrometrické metody. Reflexní a fotoakustická spektroskopie Spektrometrické metody Reflexní a fotoakustická spektroskopie odraz elektromagnetického záření - souvislost absorpce a reflexe Kubelka-Munk funkce fotoakustická spektroskopie Měření odrazivosti elmg záření

Více

Některé základní pojmy

Některé základní pojmy Klasifikace látek Některé základní pojmy látka látka čistá chemické individuum fáze směs prvek sloučenina homogenní směs heterogenní směs plynná směs kapalný roztok tuhý roztok Homogenní a heterogenní

Více

Mikroskop atomárních sil: základní popis instrumentace

Mikroskop atomárních sil: základní popis instrumentace Mikroskop atomárních sil: základní popis instrumentace Jednotlivé komponenty mikroskopu AFM Funkce, obecné nastavení parametrů a jejich vztah ke konkrétním funkcím software Nova Verze 20110706 Jan Přibyl,

Více

Třídění látek. Chemie 1.KŠPA

Třídění látek. Chemie 1.KŠPA Třídění látek Chemie 1.KŠPA Systém (soustava) Vymezím si kus prostoru, látky v něm obsažené nazýváme systém soustava okolí svět Stěny soustavy Soustava může být: Izolovaná = stěny nedovolí výměnu částic

Více

4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY

4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY 4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY 4.1 Mikrostruktura stavebních hmot 4.1.1 Úvod Vlastnosti pevných látek, tak jak se jeví při makroskopickém zkoumání, jsou obrazem vnitřní struktury materiálu. Vnitřní

Více

Mikro a nanotribologie materiály, výroba a pohon MEMS

Mikro a nanotribologie materiály, výroba a pohon MEMS Tribologie Mikro a nanotribologie materiály, výroba a pohon MEMS vypracoval: Tomáš Píza Obsah - Co je to MEMS - Materiály pro MEMS - Výroba MEMS - Pohon MEMS Co to je MEMS - zkratka z anglických slov Micro-Electro-Mechanical-Systems

Více

Co je litografie? - technologický proces sloužící pro vytváření jemných struktur (obzvláště mikrostruktur a nanostruktur)

Co je litografie? - technologický proces sloužící pro vytváření jemných struktur (obzvláště mikrostruktur a nanostruktur) Co je litografie? - technologický proces sloužící pro vytváření jemných struktur (obzvláště mikrostruktur a nanostruktur) -přenesení dané struktury na povrch strukturovaného substrátu Princip - interakce

Více

Kvantitativní fázová analýza

Kvantitativní fázová analýza Kvantitativní fázová analýza Kvantitativní rentgenová (fázová) analýza Založena na měření intenzity charakteristických linií. Intenzita je ovlivněna: strukturou minerálu a interferencemi uspořádáním aparatury

Více

Optická mikroskopie a spektroskopie nanoobjektů. Nanoindentace. Pavel Matějka

Optická mikroskopie a spektroskopie nanoobjektů. Nanoindentace. Pavel Matějka Optická mikroskopie a spektroskopie nanoobjektů Nanoindentace Pavel Matějka Optická mikroskopie a spektroskopie nanoobjektů 1. Optická mikroskopie blízkého pole 1. Princip metody 2. Instrumentace 2. Optická

Více

FOTOAKUSTIKA. Vítězslav Otruba

FOTOAKUSTIKA. Vítězslav Otruba FOTOAKUSTIKA Vítězslav Otruba 2010 prof. Otruba 2 The spectrophone 1881 A.G. Bell návrh a Spektrofonu (spectrophone) pro účely posouzení absorpčního spektra subjektů v těch částech, které jsou neviditelné.

Více

Některé poznatky z charakterizace nano železa. Marek Šváb Tereza Nováková Martina Müllerová Jan Šubrt Karel Závěta Eva Gregorová

Některé poznatky z charakterizace nano železa. Marek Šváb Tereza Nováková Martina Müllerová Jan Šubrt Karel Závěta Eva Gregorová Některé poznatky z charakterizace nano železa Marek Šváb Tereza Nováková Martina Müllerová Jan Šubrt Karel Závěta Eva Gregorová Nanotechnologie 60. a 70. léta 20. st.: období miniaturizace 90. léta 20.

Více

Světlo x elmag. záření. základní principy

Světlo x elmag. záření. základní principy Světlo x elmag. záření základní principy Jak vzniká a co je to duha? Spektrum elmag. záření Viditelné 380 760 nm, UV 100 380 nm, IR 760 nm 1mm Spektrum elmag. záření Harmonická vlna Harmonická vlna E =

Více

Zpráva o materiálovém průzkumu. Hlavní oltář v kapli Sv. Bartoloměje, zámek Žampach. RNDr. Janka Hradilová Dr. David Hradil

Zpráva o materiálovém průzkumu. Hlavní oltář v kapli Sv. Bartoloměje, zámek Žampach. RNDr. Janka Hradilová Dr. David Hradil Zpráva o materiálovém průzkumu Hlavní oltář v kapli Sv. Bartoloměje, zámek Žampach RNDr. Janka Hradilová Dr. David Hradil Akademická laboratoř materiálového průzkumu malířských děl - společné pracoviště

Více

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm

Více

Chemie a fyzika pevných látek l

Chemie a fyzika pevných látek l Chemie a fyzika pevných látek l p2 difrakce rtg.. zářenz ení na pevných látkch,, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie

Více

Studium tenkých mazacích filmů spektroskopickou reflektometrií

Studium tenkých mazacích filmů spektroskopickou reflektometrií Studium tenkých mazacích filmů spektroskopickou reflektometrií Ing. Vladimír Čudek Ústav konstruování Odbor metodiky konstruování Fakulta strojního inženýrství Vysoké učení technické v Brně OBSAH EHD mazání

Více

Využití technologie Ink-jet printing pro přípravu mikro a nanostruktur II.

Využití technologie Ink-jet printing pro přípravu mikro a nanostruktur II. Ústav fyziky a měřicí techniky Vysoká škola chemicko-technologická v Praze Využití technologie Ink-jet printing pro přípravu mikro a nanostruktur II. Výrobci, specializované technologie a aplikace Obsah

Více

Nabídkový list spolupráce 2014

Nabídkový list spolupráce 2014 Nabídkový list spolupráce 2014 Fyzikální ústav AV ČR v Praze Centrum pro inovace a transfer technologií www.citt.cz 2014 Kontaktní osoba prof. Jan Řídký, DrSc. e-mail: ridky@fzu.cz citt@fzu.cz tel: 266

Více

Mikroskopie se vzorkovací sondou. Pavel Matějka

Mikroskopie se vzorkovací sondou. Pavel Matějka Mikroskopie se vzorkovací sondou Pavel Matějka Mikroskopie se vzorkovací sondou 1. STM 1. Princip metody 2. Instrumentace a příklady využití 2. AFM 1. Princip metody 2. Instrumentace a příklady využití

Více

Věra Mansfeldová. vera.mansfeldova@jh-inst.cas.cz Ústav fyzikální chemie Jaroslava Heyrovského AV ČR, v. v. i.

Věra Mansfeldová. vera.mansfeldova@jh-inst.cas.cz Ústav fyzikální chemie Jaroslava Heyrovského AV ČR, v. v. i. Mikroskopie, která umožnila vidět Feynmanův svět Věra Mansfeldová vera.mansfeldova@jh-inst.cas.cz Ústav fyzikální chemie Jaroslava Heyrovského AV ČR, v. v. i. Richard P. Feynman 1918-1988 1965 - Nobelova

Více

Fyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od 1. 9. 2009 do 31. 8. 2013

Fyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od 1. 9. 2009 do 31. 8. 2013 Učební osnova předmětu Fyzikální chemie Studijní obor: Aplikovaná chemie Zaměření: Forma vzdělávání: Celkový počet vyučovacích hodin za studium: Analytická chemie Chemická technologie Ochrana životního

Více

Principy chemických snímačů

Principy chemických snímačů Principy chemických snímačů Název školy: SPŠ Ústí nad Labem, středisko Resslova Autor: Ing. Pavel Votrubec Název: VY_32_INOVACE_05_AUT_99_principy_chemickych_snimacu.pptx Téma: Principy chemických snímačů

Více

Nanosvět očima mikroskopů

Nanosvět očima mikroskopů Nanosvět očima mikroskopů Několik vědců z Ústavu fyzikální chemie J. Heyrovského AV ČR, v.v.i. se prostřednictvím komorní výstavy rozhodlo představit veřejnosti svět, který viděný pouhým okem diváka nikterak

Více

10/21/2013. K. Záruba. Chování a vlastnosti nanočástic ovlivňuje. velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita

10/21/2013. K. Záruba. Chování a vlastnosti nanočástic ovlivňuje. velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita Chování a vlastnosti nanočástic ovlivňuje velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita K. Záruba Optická mikroskopie Elektronová mikroskopie (SEM, TEM) Fotoelektronová

Více

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL Inovace a rozvoj studia nanomateriálů na TUL nano.tul.cz Tyto materiály byly vytvořeny v rámci projektu ESF OP VK: Inovace a rozvoj studia nanomateriálů na Technické univerzitě v Liberci Experimentální

Více

ELEKTRONICKÉ PRVKY TECHNOLOGIE VÝROBY POLOVODIČOVÝCH PRVKŮ

ELEKTRONICKÉ PRVKY TECHNOLOGIE VÝROBY POLOVODIČOVÝCH PRVKŮ ELEKTRONICKÉ PRVKY TECHNOLOGIE VÝROBY POLOVODIČOVÝCH PRVKŮ Polovodič - prvek IV. skupiny, v elektronice nejčastěji křemík Si, vykazuje vysokou čistotu (10-10 ) a bezchybnou strukturu atomové mřížky v monokrystalu.

Více

Elektronová mikroanalýz Instrumentace. Metody charakterizace nanomateriálů II

Elektronová mikroanalýz Instrumentace. Metody charakterizace nanomateriálů II Elektronová mikroanalýz ýza 1 Instrumentace Metody charakterizace nanomateriálů II RNDr. Věra V Vodičkov ková,, PhD. Elektronová mikroanalýza relativně nedestruktivní rentgenová spektroskopická metoda

Více

Testování nanovlákenných materiálů

Testování nanovlákenných materiálů Testování nanovlákenných materiálů Eva Košťáková KNT, FT, TUL Obsah přednášky Testování nanovlákenných materiálů -Vizualizace (zobrazování nanovlákenných materiálů) -Chemické složení nanovlákenných materiálů

Více

Elektronová Mikroskopie SEM

Elektronová Mikroskopie SEM Elektronová Mikroskopie SEM 26. listopadu 2012 Historie elektronové mikroskopie První TEM Ernst Ruska (1931) Nobelova cena za fyziku 1986 Historie elektronové mikroskopie První SEM Manfred von Ardenne

Více

Zdroje optického záření

Zdroje optického záření Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon

Více

10. Tandemová hmotnostní spektrometrie. Princip tandemové hmotnostní spektrometrie

10. Tandemová hmotnostní spektrometrie. Princip tandemové hmotnostní spektrometrie 10. Tandemová hmotnostní spektrometrie Princip tandemové hmotnostní spektrometrie Informace získávané při tandemové hmotnostní spektrometrii Možné způsoby uspořádání tandemové HS a/ scan fragmentů vzniklých

Více

SPEKTROMETRIE. aneb co jsem se dozvěděla. autor: Zdeňka Baxová

SPEKTROMETRIE. aneb co jsem se dozvěděla. autor: Zdeňka Baxová SPEKTROMETRIE aneb co jsem se dozvěděla autor: Zdeňka Baxová FTIR spektrometrie analytická metoda identifikace látek (organických i anorganických) všech skupenství měříme pohlcení IČ záření (o různé vlnové

Více

Elektronová mikroskopie a RTG spektroskopie. Pavel Matějka

Elektronová mikroskopie a RTG spektroskopie. Pavel Matějka Elektronová mikroskopie a RTG spektroskopie Pavel Matějka Elektronová mikroskopie a RTG spektroskopie 1. Elektronová mikroskopie 1. TEM transmisní elektronová mikroskopie 2. STEM řádkovací transmisní elektronová

Více

Viková, M. : MIKROSKOPIE V Mikroskopie V M. Viková

Viková, M. : MIKROSKOPIE V Mikroskopie V M. Viková Mikroskopie V M. Viková LCAM DTM FT TU Liberec, martina.vikova@tul.cz Hloubka ostrosti problém m velkých zvětšen ení tloušťka T vrstvy vzorku kolmé k optické ose, kterou vidíme ostře zobrazenou Objektiv

Více

Koloidní zlato: tradiční rekvizita alchymistů v minulosti - sofistikovaný (nano)nástroj budoucnosti?

Koloidní zlato: tradiční rekvizita alchymistů v minulosti - sofistikovaný (nano)nástroj budoucnosti? Koloidní zlato: tradiční rekvizita alchymistů v minulosti - sofistikovaný (nano)nástroj budoucnosti? Vedoucí projektu: Ing. Filip Novotný, Ing. Filip Havel K. Hes - Gymnázium, Praha 6, Nad Alejí 1952 K.

Více

Infračervená spektrometrie

Infračervená spektrometrie Podstata infračervené absorpce jednofotonový přechod mezi dvěma vibračními (vibračně-rotačními) rotačními) stavy molekuly, jejichž energie jsou E 1 a E 2, vyvolaný interakcí s fotonem dopadajícího záření

Více

Chemické senzory Principy senzorů Elektrochemické senzory Gravimetrické senzory Teplotní senzory Optické senzory Fluorescenční senzory Gravimetrické chemické senzory senzory - ovlivňov ování tuhosti pevného

Více

Potravinářské aplikace

Potravinářské aplikace Potravinářské aplikace Nanodisperze a nanokapsle Funkční složky (např. léky, vitaminy, antimikrobiální prostředky, antioxidanty, aromatizující látky, barviva a konzervační prostředky) jsou základními složkami

Více

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY DROBNÝCH KOVOVÝCH OZDOB Z HROBU KULTURY SE ZVONCOVÝMI POHÁRY Z HODONIC METODOU SEM-EDX

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY DROBNÝCH KOVOVÝCH OZDOB Z HROBU KULTURY SE ZVONCOVÝMI POHÁRY Z HODONIC METODOU SEM-EDX / 1 ZPRACOVAL Mgr. Martin Hložek TMB MCK, 2011 ZADAVATEL David Humpola Ústav archeologické památkové péče v Brně Pobočka Znojmo Vídeňská 23 669 02 Znojmo OBSAH Úvod Skanovací elektronová mikroskopie (SEM)

Více

METODY BEZ VÝMĚNY ENERGIE MEZI ZÁŘENÍM A VZORKEM

METODY BEZ VÝMĚNY ENERGIE MEZI ZÁŘENÍM A VZORKEM METODY BEZ VÝMĚNY ENERGIE MEZI ZÁŘENÍM A VZORKEM REFRAKTOMETRIE POLARIMETRIE SPEKTROMETRIE VYUŽÍVAJÍCÍ ROZPTYL MĚŘENÍ VELIKOSTI ČÁSTIC (c) -2012 REFRAKTOMETRIE Metoda založená na měření indexu lomu látek

Více