1. Učební osnovy Matematika a její aplikace. ŠVP - učební osnovy - Karlínské gymnázium, Praha 8, Pernerova 25

Podobné dokumenty
1. Učební osnovy Matematika a její aplikace. ŠVP - učební osnovy - Karlínské gymnázium, Praha 8, Pernerova 25

1. Učební osnovy Matematika a její aplikace. ŠVP - učební osnovy - Karlínské gymnázium, Praha 8, Pernerova 25

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

Matematika PRŮŘEZOVÁ TÉMATA

Mgr. Ladislav Zemánek Maturitní okruhy Matematika Obor reálných čísel

Cvičení z matematiky - volitelný předmět

Předmět: Matematika. Charakteristika vyučovacího předmětu:

MATURITNÍ TÉMATA Z MATEMATIKY

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

5.2 Vzdělávací oblast - Matematika a její aplikace Matematika Cvičení z matematiky

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro nástavbové studium. varianta B 6 celkových týd.

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Matematika prostřednictvím projektově orientovaného studia pro 1. ročník gymnázia

Maturitní témata profilová část

Vyučovací hodiny mohou probíhat v multimediální učebně a odborných učebnách s využitím interaktivní tabule.

Pythagorova věta Pythagorova věta slovní úlohy. Mocniny s přirozeným mocnitelem mocniny s přirozeným mocnitelem operace s mocninami

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

Matematika prostřednictvím projektově orientovaného studia pro 3. ročník gymnázia

Maturitní témata z matematiky

Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace.

Pythagorova věta Pythagorova věta slovní úlohy

Tabulace učebního plánu

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

Maturitní okruhy z matematiky - školní rok 2007/2008

Reálné gymnázium a základní škola města Prostějova Školní vzdělávací program pro ZV Ruku v ruce

Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace.

Maturitní otázky z předmětu MATEMATIKA

Obsahové, časové a organizační vymezení vyučovacího předmětu

CZ 1.07/1.1.32/

MATEMATICKÝ SEMINÁŘ (volitelný a nepovinný předmět)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021

Matematika vyšší gymnázium

Školní vzdělávací program

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD Čj SVPHT09/03

6.06. Matematika - MAT

Matematika - 6. ročník Očekávané výstupy z RVP Učivo Přesahy a vazby desetinná čísla. - zobrazení na číselné ose

Cvičení z matematiky jednoletý volitelný předmět

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Dodatek č. 3 ke školnímu vzdělávacímu programu. Technické lyceum. (platné znění k )

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10.

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu:

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

Maturitní témata z matematiky

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011

- vyučuje se: v 6. a 8. ročníku 4 hodiny týdně v 7. a 9. ročníku 5 hodin týdně - je realizována v rámci vzdělávací oblasti Matematika a její aplikace

MOCNINY A ODMOCNINY. Standardy: M M PYTHAGOROVA VĚTA. Standardy: M M

6.06. Matematika - MAT

Reálná čísla a výrazy. Početní operace s reálnými čísly. Složitější úlohy se závorkami. Slovní úlohy. Číselné výrazy. Výrazy a mnohočleny

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

Gymnázium Jiřího Ortena, Kutná Hora

Čtyřleté gymnázium MATEMATIKA. Charakteristika vyučovacího předmětu:

6.06. Matematika - MAT

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora

Matematika. 9. ročník. Číslo a proměnná. peníze, inflace. finanční produkty, úročení. algebraické výrazy, lomené výrazy (využití LEGO EV3)

SEMINÁŘ K VÝUCE MATEMATIKA 1

Matematika. 8. ročník. Číslo a proměnná druhá mocnina a odmocnina (využití LEGO EV3) mocniny s přirozeným mocnitelem. výrazy s proměnnou

PŘEDMĚT: MATEMATIKA Školní výstupy Učivo Průřezová témata Poznámky, přesahy

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Základní škola Blansko, Erbenova 13 IČO

Matematika pro 2. stupeň

SBÍRKA ÚLOH I. Základní poznatky Teorie množin. Kniha Kapitola Podkapitola Opakování ze ZŠ Co se hodí si zapamatovat. Přírozená čísla.

Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky.

2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY

Základní škola Fr. Kupky, ul. Fr. Kupky 350, Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE MATEMATIKA A JEJÍ APLIKACE Matematika 8.

Matematika a její aplikace Cvičení z matematiky

SEMINÁŘ K VÝUCE MATEMATIKA

Gymnázium Jiřího Ortena, Kutná Hora

Matematika a její aplikace Matematika

A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 8. 4 Klíčové kompetence. Opakování 7.

1. Matematika a její aplikace

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k )

Gymnázium Jiřího Ortena, Kutná Hora

Vzdělávací obor matematika

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

3.2 MATEMATIKA A JEJÍ APLIKACE (M) Charakteristika vzdělávací oblasti

Matematika - Kvarta. řeší ekvivalentními úpravami rovnice s neznámou ve jmenovateli

pracovní listy Výrazy a mnohočleny

Maturitní témata od 2013

CHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ VOLITELNÉ PŘEDMĚTY Seminář z matematiky Mgr. Dana Rauchová

Ministerstvo školství, mládeže a tělovýchovy. Praha 21. prosince 2017 č. j.: MSMT-31863/2017-1

Předmět: MATEMATIKA Ročník: 6.

Matematika a její aplikace Matematika 1. období 3. ročník

A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 8. 4 Klíčové kompetence. Opakování 7.

Základní škola Fr. Kupky, ul. Fr. Kupky 350, Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE MATEMATIKA A JEJÍ APLIKACE Matematika 7.

Vzdělávací obsah vyučovacího předmětu

Vzdělávací oblast: Matematika a její aplikace Gymnázium, Praha 6, Arabská 14 Předmět: Matematika

V tomto předmětu se využívá stejných výchovných a vzdělávacích strategií jako v předmětu Matematika. Gymnázium Pierra de Coubertina, Tábor

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika, II. stupeň

6.06. Matematika - MAT

Předpokládané znalosti žáka 1. stupeň:

TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA

TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky

Ročník: I. II. III. IV. Celkem Počet hodin:

Transkript:

1. Učební osnovy 1.1. Matematika a její aplikace Charakteristika vzdělávací oblasti Výuka na gymnáziu rozvíjí a prohlubuje pochopení kvantitativních a prostorových vztahů reálného světa, utváří kvantitativní gramotnost žáků a schopnost geometrického vhledu. Ovládnutí požadovaného matematického aparátu, elementy matematického myšlení, vytváření hypotéz a deduktivní úvahy jsou prostředkem pro nové hlubší poznání a předpokladem dalšího studia. Osvojené matematické pojmy, vztahy a procesy pěstují myšlenkovou ukázněnost, napomáhají žákům k prožitku celistvosti. Matematické vzdělávání napomáhá rozvoji abstraktního a analytického myšlení, rozvíjí logické usuzování, učí srozumitelné a věcné argumentaci s cílem najít spíše objektivní pravdu než uhájit vlastní názor. Těžiště výuky spočívá v osvojení schopnosti formulace problému a strategie jeho řešení, v aktivním ovládnutí matematických nástrojů a dovedností, v pěstování schopnosti aplikace. Matematika přispívá k tomu, aby žáci byli schopni hodnotit správnost postupu při odvozování tvrzení a odhalovat klamné závěry. Během studia žáci objevují, že matematika nachází uplatnění v mnoha oborech lidské činnosti (např. v ekonomii, technice, ale i ve společenských vědách), že je ovlivňována vnějšími podněty (například z oblasti přírodních věd) a že moderní technologie jsou užitečným pomocníkem. Žáci poznávají, že matematika je součástí naší kultury a je výsledkem složitého multikulturního historického vývoje spojeného s mnoha významnými osobnostmi lidských dějin. Cílové zaměření vzdělávací oblasti Vzdělávání v dané vzdělávací oblasti směřuje k utváření a rozvíjení klíčových kompetencí tím, že vede žáka k: - osvojování základních matematických pojmů a vztahů postupnou abstrakcí a zobecňováním na základě poznávání jejich charakteristických vlastností; - určování, zařazování a využívání pojmů, k analýze a zobecňování jejich vlastností; - vytváření zásoby matematických pojmů, vztahů, algoritmů a metod řešení úloh a k využívání osvojeného matematického aparátu; - analyzování problému a vytváření plánuřešení, k volbě správného postupu přiřešení úloh a problémů, k vyhodnocování správnosti výsledku vzhledem k zadaným podmínkám; - práci s matematickými modely, k vědomí, že k výsledku lze dospět různými způsoby; - rozvoji logického myšlení a úsudku, vytváření hypotéz na základě zkušenosti nebo pokusu, k jejich ověřování nebo vyvracení pomocí protipříkladů; - pochopení vzájemných vztahů a vazeb mezi okruhy učiva a k aplikaci matematických poznatků v dalších vzdělávacích oblastech; - přesnému vyjadřování a zdokonalování grafického projevu, k porozumění matematickým termínům, symbolice a matematickému textu; - zdůvodňování matematických postupů, k obhajobě vlastního postupu; Generováno programem SMILE verze 2.0.4-0211, vlastníkem licence je Karlínské gymnázium, Praha 8, Pernerova 25, Strana 1 z 12

- rozvíjení dovednosti pracovat s různými reprezentacemi; - užívání kalkulátoru a moderních technologií k efektivnímu řešení úloh a k prezentaci výsledků; - rozvíjení zkušeností s matematickým modelováním (k činnostem, kterými se učí poznávat a nalézat situace, v nichž se může orientovat prostřednictvím matematického popisu), k vyhodnocování matematických modelů, k poznávání mezí jejich použití, k vědomí, že realita je složitější než její matematický model, že daný model může být vhodný pro více situací a jedna situace může být vyjádřena různými modely); - rozvíjení geometrického vidění a prostorové představivosti; - pochopení jako součásti kulturního dědictví a nezaměnitelného způsobu uchopování světa. 1.1.1. Matematika Obsahové vymezení Vyučovací předmět Matematika zahrnuje obsah vzdělávacího oboru Matematika a její aplikace (stanoveného RVP G). Vyučovací předmět Matematika navazuje na stanovené RPV ZV, rozšiřuje ho a prohlubuje. Předmět Matematika utváří matematickou gramotnost žáků. Seznamuje s matematickými nástroji a postupy, rozvíjí chápání kvantitativních a geometrických vztahů. Rozvíjí abstraktní a analytické myšlení a logické usuzování. Ovládnutí základů je nezbytným prostředkem hlubšího analytického poznání v oblasti přírodovědných, technických i řady humanitních oborů, a tedy i nezbytným předpokladem pro vysokoškolské studium. Matematika čerpá i z jiných předmětů, a to nejenom z přírodovědných, jedná se o volbu motivačních úloh nebo úloh zaměřených na využití matematických poznatků v praxi Časové a organizační vymezení Matematika je vyučována ve všech čtyřech ročnících (viz učební plán předmětu). Hodiny stanovené RVP G jsou navýšeny o 4 hodiny z hodin disponibilních. V jedné hodině týdně se třída dělí na skupiny. V těchto hodinách je prostor hlavně na procvičování, řešení problémových úloh, rozvoj komunikativních dovedností. Výuka není vázána na učebnu, a to jak pro celou třídu, tak pro skupinu. Probíhá v kmenové učebně. V případě potřeby v multimediální či počítačové učebně. Vyučující využívají dostupnou didaktickou techniku. Výuka předmětu Matematika využívá různých metod. Je to především výklad, dialog mezi učitelem a žákem, mezi žáky navzájem, řešení problémových úloh. Do výuky jsou zařazovány různé aktivity pro samostatnou či skupinovou práci studentů, (prezentace PC, výsledků skupinové práce, projekty). Učitel ověřuje různými metodami dovednosti a vědomosti, rozvoj klíčových kompetencí (písemné práce, domácí práce, zkoušení). Výchovné a vzdělávací strategie: V předmětu Matematika budou rozvíjeny následující klíčové kompetence Kompetence k učení Učitel : Generováno programem SMILE verze 2.0.4-0211, vlastníkem licence je Karlínské gymnázium, Praha 8, Pernerova 25, Strana 2 z 12

- motivuje vhodnou volbou příkladů - využití učiva v praxi - vede k používání správné terminologie - zadává domácí úlohy k procvičování a k samostudiu - vede žáky k vlastní organizaci studia - vede žáky ke stanovení vlastního postupu práce, její kontrole i vyhodnocení - vhodnou formulací úkolů vede žáky k využívání příruček a pomůcek - vede žáky uvědomování si chyb a k jejich vědomému opravování Kompetence k řešení problémů Učitel: - zadáváním problémových úloh podporuje samostatné myšlení žáků - klade důraz na správnou argumentaci - vede žáky k využívání znalostí v jiných předmětech - podporuje žáky při hledání různých způsobů řešení - klade žákům jasně formulované otázky, při jejich řešení žáci tvořivě využívají znalosti - zařazuje problémové úlohy Kompetence komunikativní Učitel: - vede k souvislému a dobře formulovanému projevu - využívá metody obsahující prezentaci výsledků práce jednotlivce i skupiny - zadáváním skupinových úkolů vede žáky k rozvoji verbální i neverbální komunikace - vede žáky ke srozumitelnému grafickému i slovnímu vyjadřování Kompetence sociální a personální Učitel: - vede dialog se studenty a iniciuje diskusi mezi studenty o různých možnostech řešení problémů - zadává skupinovou práci a dbá na zapojení všech žáků při skupinové práci - respektuje individualitu žáků - vede žáky k samostatnosti - zadáváním skupinových úkolů vede žáky k rozvoji verbální i neverbální komunikace Kompetence k podnikavosti Učitel: - zapojuje studenty to třídních projektů - iniciuje a umožňuje účast v soutěžích - motivuje žáky k zapojení do mimoškolních aktivit - motivuje žáky k rozhodování o výběru volitelných předmětů Učební plán předmětu Ročník I II III IV Generováno programem SMILE verze 2.0.4-0211, vlastníkem licence je Karlínské gymnázium, Praha 8, Pernerova 25, Strana 3 z 12

Dotace 4 3 3 4 Povinnost (skupina) Dotace skupiny povinný povinný povinný povinný 1 1 1 1 Vzdělávací předmět jako celek pokrývá celé PT: OSOBNOSTNÍ A SOCIÁLNÍ VÝCHOVA Průřezová témata 1. ročník - dotace: 3 + 1 rozliší definici a větu, rozliší předpoklad a závěr věty užívá správně logické spojky a kvantifikátory užívá správně logické spojky a kvantifikátory odhaduje výsledky numerických výpočtů a efektivně je provádí, účelně využívá kalkulátor užívá správně logické spojky a kvantifikátory operuje s intervaly, aplikuje geometrický význam absolutní hodnoty Základní poznatky z Číselné obory Množiny Výroková logika - logické spojky a kvantifikátory - přirozená, celá, racionální a reálná čísla - inkluze, rovnost množin, operace s množinami Generováno programem SMILE verze 2.0.4-0211, vlastníkem licence je Karlínské gymnázium, Praha 8, Pernerova 25, Strana 4 z 12

rozliší definici a větu, rozliší předpoklad a závěr věty užívá správně logické spojky a kvantifikátory - výrok, negace výroku, operace s výroky - tabulky pravdivostních hodnot - výroky s kvantifikátory užívá vlastnosti dělitelnosti přirozených čísel provádí operace s mocninami a odmocninami, upravuje číselné výrazy odhaduje výsledky numerických výpočtů a efektivně je provádí, účelně využívá kalkulátor Dělitelnost - pravidla dělitelnosti užívá vlastnosti dělitelnosti přirozených čísel provádí operace s mocninami a odmocninami, upravuje číselné výrazy upravuje efektivně výrazy s proměnnými, určuje definiční obor výrazu upravuje efektivně výrazy s proměnnými, určuje definiční obor výrazu rozkládá mnohočleny na součin vytýkáním a užitím vzorců, aplikuje tuto dovednost při řešení rovnic a nerovnic upravuje efektivně výrazy s proměnnými, určuje definiční obor výrazu Mocniny Výrazy s proměnnou Rovnice a nerovnice - mocniny s přirozeným, celým a racionálním exponentem - odmocniny - mnohočleny, lomené výrazy, výrazy s mocninami a odmocninami - rovnice a nerovnice - lineární rovnice a nerovnice a jejich soustavy - kvadratická rovnice (diskriminant, vztahy mezi kořeny) Generováno programem SMILE verze 2.0.4-0211, vlastníkem licence je Karlínské gymnázium, Praha 8, Pernerova 25, Strana 5 z 12

rozkládá mnohočleny na součin vytýkáním a užitím vzorců, aplikuje tuto dovednost při řešení rovnic a nerovnic řeší lineární a kvadratické rovnice a nerovnice, řeší soustavy rovnic, v jednodušších případech diskutuje řešitelnost nebo počet řešení rozlišuje ekvivalentní a neekvivalentní úpravy geometricky interpretuje číselné, algebraické a funkční vztahy, graficky znázorňuje řešení rovnic, nerovnic a jejich soustav analyzuje a řeší problémy, v nichž aplikuje řešení lineárních a kvadratických rovnic a jejich soustav - rovnice a nerovnice v součinovém a podílovém tvaru - rovnice s absolutní hodnotou - rovnice s neznámou ve jmenovateli - rovnice s neznámou pod odmocninou 2. ročník - dotace: 2 + 1 formuluje a zdůvodňuje vlastnosti studovaných funkcí a posloupností načrtne grafy požadovaných funkcí (zadaných jednoduchým funkčním předpisem) a určí jejich vlastnosti operuje s intervaly, aplikuje geometrický význam absolutní hodnoty formuluje a zdůvodňuje vlastnosti studovaných funkcí a posloupností načrtne grafy požadovaných funkcí (zadaných jednoduchým funkčním předpisem) a určí jejich vlastnosti využívá poznatky o funkcích při řešení rovnic a nerovnic, při určování kvantitativních vztahů aplikuje vztahy mezi hodnotami exponenciálních, logaritmických a goniometrických funkcí a vztahy mezi těmito funkcemi Obecné poznatky o funkcích Typy funkcí - pojem funkce, definiční obor fce, obor hodnot fce, graf fce, vlastnosti fcí - lineární fce - kvadratická fce - fce s absolutní hodnotou - lineární lomená fce - mocninné fce - fce druhá odmocnina - exponenciální fce a rovnice s neznámou v exponentu - logaritmická fce a logaritmické rovnice Generováno programem SMILE verze 2.0.4-0211, vlastníkem licence je Karlínské gymnázium, Praha 8, Pernerova 25, Strana 6 z 12

modeluje závislosti reálných dějů pomocí známých funkcí řeší aplikační úlohy s využitím poznatků o funkcích a posloupnostech interpretuje z funkčního hlediska složené úrokování, aplikuje exponenciální funkci a geometrickou posloupnost ve finanční matematice operuje s intervaly, aplikuje geometrický význam absolutní hodnoty provádí operace s mocninami a odmocninami, upravuje číselné výrazy upravuje efektivně výrazy s proměnnými, určuje definiční obor výrazu rozkládá mnohočleny na součin vytýkáním a užitím vzorců, aplikuje tuto dovednost při řešení rovnic a nerovnic - goniometrická fce, vztahy mezi goniometrickými funkcemi a goniometrické rovnice aplikuje vztahy mezi hodnotami exponenciálních, logaritmických a goniometrických funkcí a vztahy mezi těmito funkcemi modeluje závislosti reálných dějů pomocí známých funkcí řeší aplikační úlohy s využitím poznatků o funkcích a posloupnostech používá geometrické pojmy, zdůvodňuje a využívá vlastnosti geometrických útvarů v rovině a v prostoru, na základě vlastností třídí útvary určuje vzájemnou polohu lineárních útvarů, vzdálenosti a odchylky využívá náčrt při řešení rovinného nebo prostorového problému Trigonometrie - sinová a kosinová věta - trigonometrie pravoúhlého i obecného trojúhelníku Generováno programem SMILE verze 2.0.4-0211, vlastníkem licence je Karlínské gymnázium, Praha 8, Pernerova 25, Strana 7 z 12

v úlohách početní geometrie aplikuje funkční vztahy, trigonometrii a úpravy výrazů, pracuje s proměnnými a iracionálními čísly používá geometrické pojmy, zdůvodňuje a využívá vlastnosti geometrických útvarů v rovině a v prostoru, na základě vlastností třídí útvary určuje vzájemnou polohu lineárních útvarů, vzdálenosti a odchylky využívá náčrt při řešení rovinného nebo prostorového problému v úlohách početní geometrie aplikuje funkční vztahy, trigonometrii a úpravy výrazů, pracuje s proměnnými a iracionálními čísly operuje s intervaly, aplikuje geometrický význam absolutní hodnoty Planimetrie - rovinné útvary (klasifikace ) - obvody a obsahy - shodnost a podobnost trojúhelníků - Pythagorova věta a věty Eukleidovy - množiny bodů dané vlastnosti - úhly v kružnici - shodná zobrazení (osová a středová 3. ročník - dotace: 2 + 1 používá geometrické pojmy, zdůvodňuje a využívá vlastnosti geometrických útvarů v rovině a v prostoru, na základě vlastností třídí útvary určuje vzájemnou polohu lineárních útvarů, vzdálenosti a odchylky využívá náčrt při řešení rovinného nebo prostorového problému Planimetrie - shodná zobrazení (osová a středová souměrnost, posunutí, otočení) - stejnolehlost - konstruktivní úlohy

řeší polohové a nepolohové konstrukční úlohy užitím všech bodů dané vlastnosti, pomocí shodných zobrazení a pomocí konstrukce na základě výpočtu řeší planimetrické a stereometrické problémy motivované praxí operuje s intervaly, aplikuje geometrický význam absolutní hodnoty operuje s intervaly, aplikuje geometrický význam absolutní hodnoty provádí operace s mocninami a odmocninami, upravuje číselné výrazy řeší lineární a kvadratické rovnice a nerovnice, řeší soustavy rovnic, v jednodušších případech diskutuje řešitelnost nebo počet řešení Komplexní čísla - komplexní číslo v algebraickém tvaru - komplexní číslo v goniometrickém tvaru - řešení lineárních rovnic v C - řešení kvadratických rovnic v C - řešení binomických rovnic provádí operace s mocninami a odmocninami, upravuje číselné výrazy řeší reálné problémy s kombinatorickým podtextem (charakterizuje možné případy, vytváří model pomocí kombinatorických skupin a určuje jejich počet) upravuje efektivně výrazy s proměnnými, určuje definiční obor výrazu geometricky interpretuje číselné, algebraické a funkční vztahy, graficky znázorňuje řešení rovnic, nerovnic a jejich soustav Kombinatorika - elementární kombinatorické úlohy - variace bez opakování - permutace bez opakování - kombinace bez opakování - binomická věta - Pascalův trojúhelník Generováno programem SMILE verze 2.0.4-0211, vlastníkem licence je Karlínské gymnázium, Praha 8, Pernerova 25, Strana 8 z 12

Pravděpodobnost řeší reálné problémy s kombinatorickým podtextem (charakterizuje možné případy, vytváří model pomocí kombinatorických skupin a určuje jejich počet) využívá kombinatorické postupy při výpočtu pravděpodobnosti, upravuje výrazy s faktoriály a kombinačními čísly - náhodný jev a jeho pravděpodobnost - pravděpodobnost průniku a sjednocení jevů - nezávislost jevů rozliší definici a větu, rozliší předpoklad a závěr věty diskutuje a kriticky zhodnotí statistické informace a daná statistická sdělení volí a užívá vhodné statistické metody k analýze a zpracování dat (využívá výpočetní techniku) reprezentuje graficky soubory dat, čte a interpretuje tabulky, diagramy a grafy, rozlišuje rozdíly v zobrazení obdobných souborů vzhledem k jejich odlišným charakteristikám Statistika - analýza a zpracování dat v různých reprezentacích - statistický soubor a jeho charakteristika (vážený aritmetický průměr, medián, modus, percentil, kvartil, směrodatná odchylka, mezikvartilová odchylka) Generováno programem SMILE verze 2.0.4-0211, vlastníkem licence je Karlínské gymnázium, Praha 8, Pernerova 25, Strana 9 z 12

zobrazí ve volné rovnoběžné projekci hranol a jehlan, sestrojí a zobrazí rovinný řez těchto těles používá geometrické pojmy, zdůvodňuje a využívá vlastnosti geometrických útvarů v rovině a v prostoru, na základě vlastností třídí útvary určuje vzájemnou polohu lineárních útvarů, vzdálenosti a odchylky využívá náčrt při řešení rovinného nebo prostorového problému Stereometrie - polohové a metrické vlastnosti - základní tělesa - volné rovnoběžné promítání - řezy 4. ročník - dotace: 3 + 1 Stereometrie zobrazí ve volné rovnoběžné projekci hranol a jehlan, sestrojí a zobrazí rovinný řez těchto těles používá geometrické pojmy, zdůvodňuje a využívá vlastnosti geometrických útvarů v rovině a v prostoru, na základě vlastností třídí útvary určuje vzájemnou polohu lineárních útvarů, vzdálenosti a odchylky využívá náčrt při řešení rovinného nebo prostorového problému v úlohách početní geometrie aplikuje funkční vztahy, trigonometrii a úpravy výrazů, pracuje s proměnnými a iracionálními čísly - polohové a metrické vlastnosti - základní tělesa - povrchy a objemy Generováno programem SMILE verze 2.0.4-0211, vlastníkem licence je Karlínské gymnázium, Praha 8, Pernerova 25, Strana 10 z 12

řeší lineární a kvadratické rovnice a nerovnice, řeší soustavy rovnic, v jednodušších případech diskutuje řešitelnost nebo počet řešení geometricky interpretuje číselné, algebraické a funkční vztahy, graficky znázorňuje řešení rovnic, nerovnic a jejich soustav analyzuje a řeší problémy, v nichž aplikuje řešení lineárních a kvadratických rovnic a jejich soustav užívá různé způsoby analytického vyjádření přímky v rovině (geometrický význam koeficientů) řeší analyticky polohové a metrické úlohy o lineárních útvarech v rovině využívá charakteristické vlastnosti kuželoseček k určení analytického vyjádření z analytického vyjádření (z osové nebo vrcholové rovnice) určí základní údaje o kuželosečce řeší analyticky úlohy na vzájemnou polohu přímky a kuželosečky Analytická geometrie v rovině - vektory a operace s nimi - analytická vyjádření přímky - analytická vyjádření kuželoseček (kružnice, elipsa, parabola, hyperbola ) Generováno programem SMILE verze 2.0.4-0211, vlastníkem licence je Karlínské gymnázium, Praha 8, Pernerova 25, Strana 11 z 12

formuluje a zdůvodňuje vlastnosti studovaných funkcí a posloupností řeší aplikační úlohy s využitím poznatků o funkcích a posloupnostech interpretuje z funkčního hlediska složené úrokování, aplikuje exponenciální funkci a geometrickou posloupnost ve finanční matematice rozliší definici a větu, rozliší předpoklad a závěr věty interpretuje z funkčního hlediska složené úrokování, aplikuje exponenciální funkci a geometrickou posloupnost ve finanční matematice Posloupnosti Důkazy Finanční matematika - určení a vlastnosti posloupností - aritmetická posloupnost - geometrická posloupnost - nekonečná geometrická řada - přímý, nepřímý důkaz - důkaz pomocí matematické indukce - procenta, promile - aplikace exponenciální fce,geometrické posloupnosti Generováno programem SMILE verze 2.0.4-0211, vlastníkem licence je Karlínské gymnázium, Praha 8, Pernerova 25, Strana 12 z 12