PŘEDMĚT: MATEMATIKA Školní výstupy Učivo Průřezová témata Poznámky, přesahy
|
|
- Ondřej Pešan
- před 9 lety
- Počet zobrazení:
Transkript
1 PŘEDMĚT: MATEMATIKA ROČNÍK: PRVNÍ/KVINTA Školní výstupy Učivo Průřezová témata Poznámky, přesahy Žák určuje číselný obor daného čísla (N, Z, Q, R) a rozlišuje základní vlastnosti číselných oborů pracuje s racionálními čísly ve tvaru zlomku i ve tvaru desetinných čísel, znázorní je na číselné ose znázorní absolutní hodnotu reálného čísla na číselné ose a chápe její geometrický význam ovládá výpočty s mocninami s přirozeným i celočíselným exponentem zapisuje čísla ve formě a.10 k určí číselně 2. a 3. odmocninu rozliší mezi prvočíslem a číslem složeným, mezi číslem a cifrou zapisuje čísla v desítkové soustavě, užívá znaky dělitelnosti 2,4,3,6,8,9,, ovládá mechanismus určení nejmenšího společného násobku a největšího společného dělitele rozloží čísla na prvočísla aplikuje poznatky o dělitelnosti při úpravách zlomků a ve slovních úlohách Základní poznatky z matematiky (45) číselné obory, jejich vlastnosti pojem absolutní hodnoty reálného čísla mocniny s přirozeným a celým mocnitelem druhá a třetí odmocnina Dělitelnost přirozených čísel Osobnostní a sociální výchova Seberegulace, organizační dovednosti a efektivní řešení problémů reflexe sebeovládání, strategie zvládání stresových situací, organizace času, systematičnost snah a činností, organizační schopnosti a dovednosti, myšlenkové postupy pro řešení problémů, ovládání sociálních dovedností potřebných při řešení problémů v interakci s druhými lidmi. Sociální komunikace přesná komunikace (srozumitelnost, jasnost, přesnost sdělení, přesvědčování a argumentace), pozitivní komunikace (vyváženost negativních a pozitivních výroků, otevřenost), tvořivá komunikace (plynulost, pohotovost, nápaditost, účelově efektivní komunikace) vyjednávání a řešení problémových situací Předpokládané počty hodin jsou spočítány pro 4 hodiny a 33 týdnů, to je 132 hodin za rok definuje funkci tangens, kotangens, sinus, kosinus pro pravoúhlý trojúhelník ovládá práci s kalkulačkou při výpočtu hodnoty funkce a velikosti úhlu aplikuje funkce při řešení slovních úloh Pravoúhlý trojúhelník zapisuje a čte text zapsaný matematickou symbolikou pozná co je výrok a určí pravdivostní hodnotu, rozliší definici a větu, předpoklad a závěr věty, správný a nesprávný úsudek správně užívá výroky obsahující slova aspoň, nejvýše, právě, každý, žádný a umí tyto výroky negovat používá existenční a obecný kvantifikátor správně používá logické spojky k tvorbě a rozboru složených výroků, složené výroky neguje vysloví k implikaci, její negaci i obměnu vytváří hypotézy, zdůvodňuje jejich pravdivost, vyvrací nesprávná tvrzení Výroková logika logické spojky kvantifikátory důkazy přímý, nepřímý sporem
2 Školní výstupy Učivo Průřezová témata Poznámky, přesahy používá pojmy podmnožina, průnik, sjednocení a rozdíl množin pracuje s Vennovými diagramy na číselné ose znázorňuje intervaly a určuje jejich sjednocení, průnik, doplněk, rozdíl Množiny základní množinové pojmy - rovnost, doplněk, sjednocení, průnik, rozdíl množin Vennovy diagramy intervaly na konkrétních příkladech mnohočlenů určí koeficient, člen, stupeň mnohočlenu provádí operace s mnohočleny sčítání, násobení, dělení, vytváří opačný mnohočlen aktivně užívá vzorce pro 2. a 3. mocninu dvojčlenu upravuje efektivně výrazy s proměnnými, provádí rozklad na součin vytýkáním nebo rozkladem na součin užitím vzorce ovládá početní operace s lomenými výrazy, určí jejich definiční obor. Výrazy s proměnnými mnohočleny výrazy s mocninami a odmocninami lomené výrazy při řešení využívá ekvivalentních i důsledkových úprav rovnic a nerovnic vyjadřuje neznámou ze vzorce diskutuje o řešitelnosti nebo počtu řešení řeší všechny typy lineárních rovnic nahradí v rovnici absolutní hodnotu příslušným výrazem užívá dosazovací a sčítací metodu při řešení soustav rovnic se dvěma a třemi neznámými dovednosti aplikuje ve slovních úlohách a grafickém řešení řeší kvadratické rovnice užitím diskriminantu používá vztahy mezi kořeny a koeficienty kvadratické rovnice pro efektivní řešení vysvětlí pojem parametr v rovnici Rovnice a nerovnice (45) lineární a kvadratické rovnice a nerovnice a jejich soustavy rovnice a nerovnice s jednou neznámou lineární rovnice a nerovnice s absolutní hodnotou soustavy lineárních rovnic se dvěma a třemi neznámými grafické řešení soustav rovnic slovní úlohy kvadratické rovnice, iracionální rovnice lineární a kvadratické rovnice s parametrem soustavy lineárních a kvadratických rovnic rozloží kvadratický trojčlen a řeší nerovnici metodou nulových bodů upraví různé typy rovnic na kvadratickou rovnici v základním tvaru aplikuje řešení kvadratických rovnic ve slovních úlohách kvadratické nerovnice rovnice a nerovnice s neznámou ve jmenovateli slovní úlohy
3 Školní výstupy Učivo Průřezová témata Poznámky, přesahy Základy planimetrie (42) používá geometrické pojmy, zdůvodňuje a využívá vlastnosti geometrických útvarů v rovině třídí útvary na základě jejich vlastností dokáže shodnost trojúhelníků užitím vět o shodnosti trojúhelníků řeší úlohy, v nichž využívá vlastnosti středového a obvodového úhlu užívá vlastnosti podobnosti v praktických úlohách - měřítko aktivně užívá Euklidovy věty, větu Pythagorovu, určuje obvody a obsahy rovinných útvarů klasifikace rovinných útvarů, přímky a jejich vzájemná poloha, úhel, dvojice úhlů trojúhelník, shodnost trojúhelníků mnohoúhelníky konvexní a nekonvexní kružnice, kruh a její části, středový a obvodový úhel podobnost trojúhelníků Pythagorova věta, Euklidovy věty Z měřítko mapy řeší polohové a nepolohové konstrukční úlohy užitím všech bodů dané vlastnosti a pomocí konstrukce na základě výpočtu využívá náčrt při řešení rovinného nebo prostorového problému, symbolicky zapisuje konstrukci v úlohách početní geometrie aplikuje funkční vztahy řeší úlohy z praxe množiny bodů dané vlastnosti konstrukční úlohy
4 PŘEDMĚT: MATEMATIKA ROČNÍK: DRUHÝ/SEXTA Školní výstupy Učivo Průřezová témata Poznámky, přesahy Žák vysvětlí pojmy: geometrické zobrazení v rovině, shodné zobrazení, podobné zobrazení definuje osovou a středovou souměrnost, posunutí, otočení, stejnolehlost sestrojí obraz geometrického útvaru v daném zobrazení řeší polohové i nepolohové konstrukční úlohy pomocí shodných zobrazení Planimetrie pojem zobrazení v rovině shodná zobrazení osová a středová souměrnost, posunutí, otočení konstrukční úlohy řešené pomocí shodných zobrazení podobné zobrazení stejnolehlost Možné využití geometrického softwaru definuje pojmy: kartézský součin, relace, zobrazení, funkce, definiční obor a obor hodnot funkce, funkce rostoucí, klesající, nerostoucí, neklesající, shora a zdola omezená, omezená, sudá, lichá, periodická, maximum a minimum funkce rozhodne, zda daný předpis či graf představuje funkci z grafu funkce popíše její vlastnosti Funkce základní pojmy teorie funkcí lineární funkce funkce s absolutními hodnotami kvadratická funkce lineární lomená funkce Možné využití vhodného softwaru (Cabri, Derive) sestrojí grafy elementárních funkcí (v základním i posunutém tvaru) a určí jejich vlastnosti sestrojí grafy elementárních funkcí s absolutní hodnotou znalostí funkcí využívá při grafickém řešení rovnic a nerovnic, dále při řešení aplikačních úloh modeluje závislosti reálných dějů pomocí známých funkcí provádí úpravy výrazů s mocninami a odmocninami definuje pojem inverzní funkce, dokáže určit k dané funkci funkci inverzní a sestrojit její graf mocninná funkce, mocniny, odmocniny inverzní funkce, funkce druhá odmocnina definuje logax, ovládá a dokáže aplikovat věty o logaritmech aplikuje vlastnosti exponenciálních a logaritmických funkcí přiřešení exponenciální a logaritmické rovnice převádí stupňovou míru na obloukovou a naopak definuje goniometrické funkce sinus, kosinus, tangens a kotangens v pravoúhlém trojúhelníku i pomocí jednotkové kružnice exponenciální funkce a exponenciální rovnice logaritmická funkce a logaritmické rovnice goniometrická funkce a goniometrické rovnice používá vztahy mezi goniometrickými funkcemi a vzorce pro dvojnásobný a poloviční argument řeší goniometrické rovnice
5 Školní výstupy Učivo Průřezová témata Poznámky, přesahy vysloví sinovou a kosinovou větu a věty z nich odvozené (větu pro obsah trojúhelníka a větu pro poloměr kružnice opsané trojúhelníku) řeší obecný trojúhelník a jednoduché praktické úlohy užitím sinové a kosinové věty Trigonometrie sinová a kosinová věta zobrazí jednoduchá tělesa ve volném rovnoběžném promítání popíše všechny možnosti pro vzájemnou polohu dvou přímek, přímky a roviny, dvou a tří rovin rozhodne o rovnoběžnosti přímek a rovin užitím kritérií pro rovnoběžnost sestrojí rovinný řez hranolu a jehlanu, průsečnici rovin, průnik přímky s tělesem rozhodne o kolmosti přímek a rovin užitím kritérií pro kolmost definuje odchylku dvou přímek, přímky a roviny, dvou rovin a dané odchylky vypočítá určí vzdálenost bodu od přímky a od roviny charakterizuje základní mnohostěny a rotační tělesa (hranol, jehlan, komolý jehlan, rotační válec, rotační kužel, rotační komolý kužel, koule, části koule a kulové plochy) vypočítá objem a povrch základních těles (hranol, jehlan, komolý jehlan, rotační válec, rotační kužel, rotační komolý kužel, koule, části koule a kulové plochy), poznatků využívá v praktických úlohách Stereometrie volné rovnoběžné promítání polohové vlastnosti přímek a rovin v prostoru rovinné řezy hranolu a jehlanu metrické vztahy v prostoru tělesa objem a povrch těles Možné využití geometrického softwaru
6 PŘEDMĚT MATEMATIKA ROČNÍK: TŘETÍ/SEPTIMA Školní výstupy Učivo Průřezová témata Mezipředmětové vztahy Žák ovládá zavedení souřadnic v rovině vypočítá souřadnice středu úsečky a vzdálenost dvou bodů Souřadnice souřadnice v rovině vzdálenost bodů střed úsečky definuje vektor jako množinu všech orientovaných úseček, které mají stejnou velikost a stejný směr určí souřadnice vektoru vypočítá velikost vektoru Vektory orientovaná úsečka vektory operace s vektory F -práce s vektory sečte dva vektory graficky i pomocí souřadnic vypočítá souřadnice rozdílu vektorů, násobku vektoru reálným číslem vypočítá skalární součin dvou vektorů vypočítá úhel dvou vektorů Analytická geometrie v rovině určí směrový vektor přímky parametrické vyjádření přímky vyjádří přímku parametricky obecná rovnice přímky určí normálový vektor přímky zapíše obecnou rovnici přímky zapíše směrnicový tvar rovnice přímky popíše vzájemnou polohu dvou přímek v rovině polohové úlohy v rovině vypočítá vzdálenost bodu od přímky metrické úlohy v rovině vypočítá odchylku dvou přímek v rovině definuje kružnici, elipsu, parabolu a hyperbolu vyjádří kružnici, elipsu a hyperbolu středovou rovnicí, parabolu vrcholovou rovnicí Kuželosečky kružnice elipsa parabola hyperbola
7 Školní výstupy Učivo Průřezová témata Mezipředmětové vztahy převede obecnou rovnici kuželosečky na středový nebo vrcholový tvar, určí základní údaje a kuželosečku načrtne popíše vzájemnou polohu kuželosečky a přímky napíše rovnici tečny kuželosečky v zadaném bodě používá základní kombinatorická pravidla v jednoduchých příkladech rozhodne, zda se jedná o kombinace, permutace či variace a podle vzorce vypočítá jejich počet upravuje výrazy s faktoriály a kombinačními čísly Kombinatorika základní kombinatorická pravidla variace permutace kombinace kombinační číslo, Pascalův trojúhelník používá binomickou větu řeší reálné problémy s kombinatorickým podtextem binomická věta odlišuje pojem náhodný jev a množina možných výsledků vypočítá pravděpodobnost jevu, je-li znám počet příznivých a všech možných výsledků vypočítá pravděpodobnost opačného jevu, pravděpodobnost sjednocení jevů, pravděpodobnost nezávislých jevů Pravděpodobnost náhodný jev a jeho pravděpodobnost pravděpodobnost sjednocení a průniku jevů nezávislost jevů
8 PŘEDMĚT: MATEMATIKA ROČNÍK: ČTVRTÝ/OKTÁVA Školní výstupy Učivo Průřezová témata Poznámky, přesahy Žák diskutuje a kriticky hodnotí statistické informace a daná statistická sdělení volí a užívá vhodné statistické metody k analýze a zpracování dat využívá výpočetní techniku reprezentuje graficky soubory dat čte a interpretuje tabulky, diagramy rozlišuje rozdíly v zobrazení obdobných souborů vzhledem k jejich odlišným charakteristikám chápe společné znaky a odlišnosti komplexních čísel a ostatních číselných oborů zapíše algebraický a goniometrický tvar, převádí tyto dva tvary komplexních čísel mezi sebou ovládá početní operace v C v obou tvarech komplexních čísel řeší základní typy rovnic v C (lineární, s absolutní hodnotou, kvadratickou, binomickou, bikvadratickou) vyznačí v Gaussově rovině množinu obrazů komplexních čísel dané vlastnosti Zpracování dat, statistika 10 analýza a zpracování dat v různých reprezentacích statistický soubor absolutní a relativní četnost vážený aritmetický průměr, medián, modus, percentil, kvartil, směrodatná odchylka, mezikvartilová odchylka Komplexní čísla 22 pojem komplexního čísla Gaussova rovina algebraický tvar komplexního čísla goniometrický tvar komplexního čísla operace s komplexními čísly rovnice v C 2hod. týdně, to je cca 56 hodin chápe posloupnost jako speciální případ funkce určí posloupnost rekurentně a vzorcem pro n-tý člen rozliší aritmetickou a geometrickou posloupnost používá vztahy pro geometrickou a aritmetickou posloupnost k řešení jednoduchých slovních úloh vysvětlí indukční krok při důkazu matematickou indukcí a jednoduchý důkaz provede vysvětlí pojem limity posloupnosti, vysvětlí rozdíl mezi konvergentní a divergentní posloupností vypočítá základní typy limit posloupností vysvětlí rozdíl mezi nekonečnou posloupností a nekonečnou řadou vysvětlí pojem konvergentní, resp. divergentní nekonečná řada určí podmínky pro součet nekonečné geometrické řady Posloupnosti a řady 30 posloupnost, vzorec pro n-tý člen rekurentní určení posloupnosti vlastnosti posloupnosti aritmetická a geometrická posloupnost, užití matematická indukce limita posloupnosti nekonečná řada nekonečná geometrická řada
9 Školní výstupy Učivo Průřezová témata Poznámky, přesahy určí podmínku konvergence nekonečné geometrické řady a určí její součet interpretuje z funkčního hlediska složené úrokování řeší aplikační úlohy s využitím poznatků o funkcích a aplikuje exponenciální funkci a geometrickou posloupnost ve finanční matematice spočítá výši daně ze mzdy při rovné a progresivní daňové kvótě posoudí výhodnost kvóty v daném případě rozhodne o výhodách a nevýhodách jednotlivých druhů spoření Daňová a finanční matematika 10 jednoduché a složené úrokování využití geometrické posloupnosti a řady jednoduché úlohy daň z úroku, čistý výnos základní úlohy z finanční matematiky posouzení výhodnosti nabízených finančních produktů ZSV ekonomika 6 hodin na opakování a písemné práce
10 PŘEDMĚT: CVIČENÍ Z MATEMATIKY ROČNÍK: ČTVRTÝ/OKTÁVA Školní výstupy Učivo Průřezová témata Poznámky, přesahy Žák určuje číselný obor daného čísla (N, Z, Q, R) a rozlišuje základní vlastnosti číselných oborů pracuje s racionálními čísly ve tvaru zlomku i ve tvaru desetinných čísel, znázorní je na číselné ose znázorní absolutní hodnotu reálného čísla na číselné ose a chápe její geometrický význam ovládá výpočty s mocninami s přirozeným i celočíselným exponentem zapisuje čísla ve formě a.10 k určí číselně 2. a 3. odmocninu Základní poznatky z matematiky (45) číselné obory, jejich vlastnosti pojem absolutní hodnoty reálného čísla mocniny s přirozeným a celým mocnitelem druhá a třetí odmocnina zapisuje a čte text zapsaný matematickou symbolikou pozná co je výrok a určí pravdivostní hodnotu, rozliší definici a větu, předpoklad a závěr věty, správný a nesprávný úsudek správně užívá výroky obsahující slova aspoň, nejvýše, právě, každý, žádný a umí tyto výroky negovat používá existenční a obecný kvantifikátor správně používá logické spojky k tvorbě a rozboru složených výroků, složené výroky neguje vysloví k implikaci, její negaci i obměnu Výroková logika logické spojky kvantifikátory důkazy přímý, nepřímý sporem vytváří hypotézy, zdůvodňuje jejich pravdivost, vyvrací nesprávná tvrzení řeší různé typy rovnic vedoucí na lineární rovnici využívá k řešení graf lineární funkce řeší úlohy s využitím parametru řeší slovní úlohy s využitím lineární rovnice Lineární funkce a rovnice 4 h Kvadratická funkce a rovnice 8h chápe vztahy mezi kořeny a koeficienty kvadratické rovnice řeší rovnice s neznámou pod odmocninou, ve jmenovateli využívá algebraických úprav při řešení rovnic sestrojí různými způsoby kvadratickou funkci využívá vlastnosti kvadratické funkce při řešení kvadratických rovnic a slovních úloh řeší úlohy na kvadratickou rovnici s využitím parametru řeší slovní složitější úlohy s využitím kvadratické rovnice řeší bikvadratické rovnice, reciproké rovnice 3. a 4. řádu Rovnice vyšších řádů 5h
11 Školní výstupy Učivo Průřezová témata Poznámky, přesahy využívá substituci při řešení rovnic zná vlastnosti a graf lineární lomené funkce chápe pojem asymptota určí rovnice asymptot Lineární lomená funkce 3h řeší různé typy lineárních a kvadratických rovnic s absolutní hodnotou různými úpravami (ekvivalentními i důsledkovými) metodu nulových bodů využívá k sestrojení grafu lineární, kvadratické, lineární lomené funkce s absolutní hodnotou využívá graf funkce k řešení rovnic Funkce a rovnice s absolutní hodnotou 8h vysvětlí pojem inverzní funkce využívá vlastností inverzní funkce při sestrojování grafů obou funkcí řeší různé typy exponenciálních a logaritmických rovnic s použitím vztahů obou funkcí vysvětlí souvislost grafu funkce a řešení rovnice v jednodušších úlohách Exponenciální a logaritmické funkce a rovnice 8h sestrojí graf základních i složitějších goniometrických funkcí, určí periodu složených goniometrických funkcí u složených goniometrických funkcí určí posunutí v soustavě souřadnic, definiční obor a obor hodnot sestrojí graf základních cyklometrických funkcí řeší různé typy goniometrických rovnic metodami s využitím vzorců včetně součtových vysvětlí souvislost mezi grafem funkce a řešením rovnice v jednodušších úlohách Goniometrické funkce a rovnice 10h Řeší různé typy soustav rovnic metodou sčítací i dosazovací a s využitím grafů funkcí, aplikuje tyto metody na řešení úloh z analytické geometrie Soustavy rovnic 10h
12 Školní výstupy Učivo Průřezová témata Poznámky, přesahy Znázorní bod, přímku a rovinu v soustavě souřadnic, odvodí analytickou rovnici přímky a roviny v prostoru, využívá pojmů směrový a normálový vektor, řeší úlohy na vzájemnou polohu přímek a rovin, najde jejich průsečík ( průsečnici ), pokud existuje, řeší úlohy na odchylky přímek a rovin, kolmost přímek a rovin, vysvětlí pojem vzdálenosti v prostoru a využije ho v konkrétních úlohách ( vzdálenost bodu od roviny, dvou rovnoběžných přímek a rovin, přímky rovnoběžné s rovinou ) Analytická geometrie v prostoru 14 h
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -
VíceMATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
VíceGymnázium Jiřího Ortena, Kutná Hora
Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory
VíceMatematika PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí
VíceSystematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné
VíceMaturitní okruhy z matematiky - školní rok 2007/2008
Maturitní okruhy z matematiky - školní rok 2007/2008 1. Některé základní poznatky z elementární matematiky: Číselné obory, dělitelnost přirozených čísel, prvočísla a čísla složená, největší společný dělitel,
VíceMaturitní témata profilová část
Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,
VíceUčební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky
Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace
VíceMATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)
MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo
VíceMaturitní otázky z předmětu MATEMATIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti
VíceMATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA
MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné
VíceGymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky algebra (CZMa) Systematizace a prohloubení učiva matematiky: Číselné obory, Algebraické výrazy, Rovnice, Funkce, Posloupnosti, Diferenciální
VíceMATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011
MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 1. Výroková logika a teorie množin Výrok, pravdivostní hodnota výroku, negace výroku; složené výroky(konjunkce, disjunkce, implikace, ekvivalence);
VíceMATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)
MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a
VíceDodatek č. 3 ke školnímu vzdělávacímu programu. Technické lyceum. (platné znění k 1. 9. 2009)
Střední průmyslová škola Jihlava tř. Legionářů 72/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Technické lyceum (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje
VícePožadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků
Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy
VíceMatematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:
Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za
VíceMaturitní témata z matematiky
Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou
VíceMaturitní témata z matematiky
Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy
VíceNezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky.
Maturitní témata Matematika Školní rok 2016/17 Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky. Příprava ke zkoušce trvá 15 minut, ústní zkouška
VíceB) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.
4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti
VíceGymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021
Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,
VíceMaturitní zkouška z matematiky (v profilové části) Informace o zkoušce, hodnocení zkoušky, povolené pomůcky a požadavky
Maturitní zkouška z matematiky (v profilové části) Informace o zkoušce, hodnocení zkoušky, povolené pomůcky a požadavky A. Informace o zkoušce Písemná maturitní zkouška z matematiky v profilové části se
VíceMaturitní témata od 2013
1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy
VíceGymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Cvičení z matematiky geometrie (CZMg) Systematizace a prohloubení učiva matematiky Planimetrie, Stereometrie, Analytická geometrie, Kombinatorika, Pravděpodobnost a statistika Třída: 4.
VícePředmět: Matematika. Charakteristika vyučovacího předmětu:
Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu matematika a ve volitelných předmětech Deskriptivní geometrie,
VíceDodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)
Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje
VíceMaturitní okruhy z matematiky ve školním roce 2010/2011
Vyučující: RNDr. Ivanka Dvořáčková Třída: 8.A Maturitní okruhy z matematiky ve školním roce 2010/2011 Otázka Okruh 1 1. Výroky a operace s nimi 2. Množiny a operace s nimi 2 3. Matematické věty a jejich
Více3.4.1. Tabulace učebního plánu
3.4.1. Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět: MATEMATIKA Ročník: Kvinta, 1. ročník Tématická Číselné obory Druhy čísel (N, Z, Q, R, I) - prezentuje přehled číselných oborů Mocniny
VícePlanimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Planimetrie 2. část, Funkce, Goniometrie 2. ročník a sexta 4 hodiny týdně PC a dataprojektor, učebnice Planimetrie II. Konstrukční úlohy Charakterizuje
VíceCZ 1.07/1.1.32/02.0006
PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI
VíceTematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová
Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.
VíceMINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,
VíceMATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik
MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené
Více5.2 Vzdělávací oblast - Matematika a její aplikace 5.2.1 Matematika 5.2.2 Cvičení z matematiky
5.2 Vzdělávací oblast - Matematika a její aplikace 5.2.1 Matematika 5.2.2 Cvičení z matematiky Ročník 2. Hodinová dotace Matematika 3 3 3 2 Cvičení z matematiky 0 0 R (2) R (2) Vyučovací předmět Matematika
VíceKomplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice
VíceSBÍRKA ÚLOH I. Základní poznatky Teorie množin. Kniha Kapitola Podkapitola Opakování ze ZŠ Co se hodí si zapamatovat. Přírozená čísla.
Opakování ze ZŠ Co se hodí si zapamatovat Přírozená čísla Číselné obory Celá čísla Racionální čísla Reálná čísla Základní poznatky Teorie množin Výroková logika Mocniny a odmocniny Množiny Vennovy diagramy
VícePRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná
PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků
VíceGymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna
Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí
VíceMINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro nástavbové studium. varianta B 6 celkových týd.
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro nástavbové studium (hodinová dotace: varianta A 4 až 5 celkových týd. hodin, varianta B 6 celkových týd. hodin) Schválilo
VíceZákladní škola Blansko, Erbenova 13 IČO
Základní škola Blansko, Erbenova 13 IČO 49464191 Dodatek Školního vzdělávacího programu pro základní vzdělávání Škola v pohybu č.j. ERB/365/16 Škola: Základní škola Blansko, Erbenova 13 Ředitelka školy:
VíceGymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Základní poznatky, Rovnice a nerovnice, Planimetrie 1. část 1. ročník a kvinta 4 hodiny týdně PC a dataprojektor, učebnice Základní poznatky Číselné
VíceCvičení z matematiky - volitelný předmět
Vyučovací předmět : Období ročník : Učební texty : Cvičení z matematiky - volitelný předmět 3. období 9. ročník Sbírky úloh, Testy k přijímacím zkouškám, Testy Scio, Kalibro aj. Očekávané výstupy předmětu
VíceTÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA G5 5.1 Teorie množin, provádí správně operace s množinami, výroková logika množiny vyžívá při řešení úloh; pracuje správně s výroky, užívá správně logické spojky a kvantifikátory;
VícePožadavky k opravným zkouškám z matematiky školní rok 2013-2014
Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,
VíceTÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA G5 5.1 Teorie množin, provádí správně operace s množinami, výroková logika množiny vyžívá při řešení úloh; pracuje správně s výroky, užívá správně logické spojky a kvantifikátory;
VíceTÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA G5 VÝSTUP 5.1 Teorie množin, provádí správně operace s množinami, výroková logika množiny vyžívá při řešení úloh; pracuje správně s výroky, užívá správně logické spojky a kvantifikátory;
VíceZákladní škola Fr. Kupky, ul. Fr. Kupky 350, Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE MATEMATIKA A JEJÍ APLIKACE Matematika 8.
5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 8. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo ČÍSLO A PROMĚNNÁ M9101 M9102
VíceMatematika - 6. ročník Očekávané výstupy z RVP Učivo Přesahy a vazby desetinná čísla. - zobrazení na číselné ose
Matematika - 6. ročník desetinná čísla - čtení a zápis v desítkové soustavě F užití desetinných čísel - zaokrouhlování a porovnávání des. čísel ve výpočtových úlohách - zobrazení na číselné ose MDV kritické
Více- vyučuje se: v 6. a 8. ročníku 4 hodiny týdně v 7. a 9. ročníku 5 hodin týdně - je realizována v rámci vzdělávací oblasti Matematika a její aplikace
5.4.2. MATEMATIKA - 2. stupeň Charakteristika vyučovacího předmětu: - vyučuje se: v 6. a 8. ročníku 4 hodiny týdně v 7. a 9. ročníku 5 hodin týdně - je realizována v rámci vzdělávací oblasti Matematika
VíceMINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy
Více6.7 Matematika. 6.7.1 Charakteristika vyučovacího předmětu
6.7 Matematika 6.7.1 Charakteristika vyučovacího předmětu Obsahové vymezení předmětu: Vyučovací předmět Matematika je zařazen jako povinný ve všech ročnících čtyřletého studia. Patří do vzdělávací oblasti
Více- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr
Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování
VícePředmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace.
Matematika Charakteristika vyučovacího předmětu Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace. Výuka matematiky přispívá k pochopení kvantitativních a prostorových vztahů reálného
VíceZměna týdenní hodinové dotace v 1. ročníku v předmětu matematika. původní dotace 3 hodiny týdně, nově 4 hodiny týdně
Dodatek č.. Školního vzdělávacího programu Obchodní akademie Lysá nad Labem, obor -1-M/0 Obchodní akademie, platného od 1. 9. 01 - platnost dodatku je od 1. 9. 015 Změna týdenní hodinové dotace v 1. ročníku
VícePředmět: MATEMATIKA Ročník: 6.
Předmět: MATEMATIKA Ročník: 6. Výstupy z RVP Školní výstupy Učivo Mezipředm. vazby, PT Číslo a proměnná - užívá různé způsoby kvantitativního vyjádření vztahu celek - část (přirozeným číslem, poměrem,
VíceObsahové, časové a organizační vymezení vyučovacího předmětu
Matematika Charakteristika vyučovacího předmětu Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace. Výuka matematiky přispívá k pochopení kvantitativních a prostorových vztahů reálného
VícePožadavky k opravným zkouškám z matematiky školní rok 2014-2015
Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,
VíceŽák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.
STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní
VíceMatematika. 8. ročník. Číslo a proměnná druhá mocnina a odmocnina (využití LEGO EV3) mocniny s přirozeným mocnitelem. výrazy s proměnnou
list 1 / 7 M časová dotace: 4 hod / týden Matematika 8. ročník M 9 1 01 provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu Číslo a proměnná druhá
Více6.06. Matematika - MAT
6.06. Matematika - MAT Obor: 36-47-M/01 Stavebnictví Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání:13 Platnost učební osnovy: od 1.9.2008, aktualizace 1.9.2015, 1.9.2016 1) Pojetí vyučovacího
VícePředmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace.
Matematika Charakteristika vyučovacího předmětu Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace. Výuka matematiky přispívá k pochopení kvantitativních a prostorových vztahů reálného
VíceCvičení z matematiky jednoletý volitelný předmět
Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky
Více6.06. Matematika - MAT
6.06. Matematika - MAT Obor: 36-47-M/01 Stavebnictví Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání: 12 Platnost učební osnovy: od 1.9.2008 1) Pojetí vyučovacího předmětu a) Cíle vyučovacího
VíceCHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ VOLITELNÉ PŘEDMĚTY Seminář z matematiky Mgr. Dana Rauchová
CHARAKTERISTIKA VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ VOLITELNÉ PŘEDMĚTY Seminář z matematiky Mgr. Dana Rauchová Vyučovací volitelný předmět Cvičení z matematiky je zařazen samostatně na druhém
VícePředmět: Matematika. Charakteristika vyučovacího předmětu:
Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Deskriptivní geometrie
Více6.06. Matematika - MAT
6.06. Matematika - MAT Obor: 36-46-M/01 Geodézie a katastr nemovitostí Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání:13 Platnost učební osnovy: od 1.9.2010, aktualizováno 1.9.2015, 1.9.2016
VícePythagorova věta Pythagorova věta slovní úlohy. Mocniny s přirozeným mocnitelem mocniny s přirozeným mocnitelem operace s mocninami
Vyučovací předmět: Matematika Ročník: 8. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo užívá různé způsoby kvantitativního vyjádření vztahu celek část (procentem) řeší aplikační úlohy
VíceRočník: I. II. III. IV. Celkem Počet hodin:
UČEBNÍ OSNOVY Název předmětu: MATEMATIKA Ročník: I. II. III. IV. Celkem Počet hodin: 2 3 3 4 12 POJETÍ PŘEDMĚTU Obecné cíle předmětu Cílem předmětu matematika je vybavit žáky matematickými dovednostmi,
VícePředmět: Matematika. Charakteristika vyučovacího předmětu:
Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Základní cvičení z matematiky,
VíceRovnice, soustavy rovnic, funkce, podobnost a funkce úhlů, jehlany a kužely
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika (MAT) Rovnice, soustavy rovnic, funkce, podobnost a funkce úhlů, jehlany a kužely Kvarta 4 hodiny týdně Učebna s PC a dataprojektorem (interaktivní
VíceZákladní poznatky, Rovnice a nerovnice, Planimetrie 1. část
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Základní poznatky, Rovnice a nerovnice, Planimetrie 1. část 1. ročník 4 hodiny týdně PC a dataprojektor Číselné obory Přirozená a celá čísla Racionální
VíceMatematika vyšší gymnázium
Matematika vyšší gymnázium Obsahové vymezení Vyučovací předmět Matematika vychází ze vzdělávacího obsahu vzdělávací oblasti Matematika a její aplikace, kde vzdělávací oblast je současně vzdělávacím oborem.
VíceMatematika - Kvarta. řeší ekvivalentními úpravami rovnice s neznámou ve jmenovateli
- Kvarta Matematika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k učení Kompetence pracovní Učivo
Více6.06. Matematika - MAT
6.06. Matematika - MAT Obor: 36-47-M/01 Stavebnictví Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání:14 Platnost učební osnovy: od 1.9.2008, aktualizace 1.9.2015, 1.9.2016, 1.9.2018 1) Pojetí
VíceZákladní škola Fr. Kupky, ul. Fr. Kupky 350, Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE MATEMATIKA A JEJÍ APLIKACE Matematika 7.
5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 7. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo ČÍSLO A PROMĚNNÁ M9101 provádí
VícePředmět: Matematika. Charakteristika vyučovacího předmětu:
Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Deskriptivní geometrie
VíceŠKOLNÍ VZDĚLÁVACÍ PROGRAM
Vyučovací předmět : Období ročník : Učební texty : Matematika 3. období 9. ročník J.Coufalová : Matematika pro 9.ročník ZŠ (Fortuna) Očekávané výstupy předmětu Na konci 3. období základního vzdělávání
VícePythagorova věta Pythagorova věta slovní úlohy
Vyučovací předmět: Matematika Ročník: 8. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo provádí početní operace v oboru celých a racionálních čísel, užívá ve výpočtech druhou mocninu
VíceČtyřleté gymnázium MATEMATIKA. Charakteristika vyučovacího předmětu:
1 z 14 Čtyřleté gymnázium MATEMATIKA Charakteristika vyučovacího předmětu: Obsahové vymezení: Vyučovací předmět matematika pokrývá vzdělávací oblast Matematika a její aplikace, stanovenou RVPGV. Vzdělávací
VícePředpokládané znalosti žáka 1. stupeň:
Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje
VíceUkázkový návrh ŠVP a rozložení výuky matematiky pro obory L5 alespoň 6 hodin (týdenních)
Ukázkový návrh ŠVP a rozložení výuky matematiky pro obory L5 alespoň 6 hodin (týdenních) Na základě Opatření č.4 ministra školství z 22. června 2017, a opatření ministra školství č.7 z 21. prosince 2017
VíceUkázkový návrh úpravy ŠVP a rozložení výuky matematiky pro obory M/L0 alespoň 10 hodin (týdenních)
Ukázkový návrh úpravy ŠVP a rozložení výuky matematiky pro obory M/L0 alespoň 10 hodin (týdenních) Na základě Opatření č.2 ministra školství z 22. června 2017, a opatření ministra školství č.5 z 21. prosince
Více65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03
Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou
VíceMatematika Název a adresa školy: Název ŠVP: Hodinová dotace: Platnost ŠVP: Pojetí a cíle vyučovacího předmětu Vyučovací metody, strategie
Dodatek č. 14. Školního vzdělávacího programu Obchodní akademie Lysá nad Labem, obor 6-41-M/02 Obchodní akademie, platného od 1. 9. 2012 - platnost dodatku je od 1. 9. 2018 Úpravy ŠVP v souladu s Opatřením
VíceMinisterstvo školství, mládeže a tělovýchovy. Praha 21. prosince 2017 č. j.: MSMT-31863/2017-1
Ministerstvo školství, mládeže a tělovýchovy Praha 21. prosince 2017 č. j.: MSMT-31863/2017-1 Opatření č. 7 ministra školství, mládeže a tělovýchovy, kterým se mění rámcové vzdělávací programy oborů středního
VíceModelový návrh ŠVP a rozložení výuky matematiky pro obory L5 alespoň 6 hodin (týdenních)
Modelový návrh ŠVP a rozložení výuky matematiky pro obory L5 alespoň 6 hodin (týdenních) Na základě Opatření č. 4 ministra školství z 22. června 2017 a Opatření ministra školství č. 7 z 21. prosince 2017
VíceMatematika. 6. ročník. Číslo a proměnná. desetinná čísla (využití LEGO EV3) číselný výraz. zaokrouhlování desetinných čísel. (využití LEGO EV3)
list 1 / 8 M časová dotace: 4 hod / týden Matematika 6. ročník (M 9 1 01) (M 9 1 02) (M 9 1 03) provádí početní operace v oboru celých a racionálních čísel; čte, zapíše, porovná desetinná čísla a zobrazí
VíceŠkolní vzdělávací program
Školní vzdělávací program Obor: 7941K/81, Gymnázium všeobecné ( osmileté ) Obor: 7941/41, Gymnázium všeobecné ( čtyřleté ) Učební osnovy pro vyšší stupeň osmiletého gymnázia a čtyřleté gymnázium Vzdělávací
Více1.3. Cíle vzdělávání v oblasti citů, postojů, hodnot a preferencí
1Příloha 6.04 1. Pojetí vyučovacího předmětu 1.1. Obecný cíl vyučovacího předmětu Obecným cílem předmětu Matematika je vychovat přemýšlivého člověka, který bude umět používat matematiku v odborných předmětech
VíceOčekávané výstupy RVP Školní výstupy Učivo Poznámky (průřezová témata, mezipředmětové vztahy apod.)
Vzdělávací obsah vyučovacího předmětu MATEMATIKA pro 2. stupeň: 6. ročník Očekávané výstupy RVP Školní výstupy Učivo Poznámky (průřezová témata, M-9-3-06 Načrtne a sestrojí rovinné útvary. M-9-3-01 Zdůvodňuje
Více1.3. Cíle vzdělávání v oblasti citů, postojů, hodnot a preferencí
1. Pojetí vyučovacího předmětu 1.1. Obecný cíl vyučovacího předmětu Obecným cílem předmětu Matematika je vychovat přemýšlivého člověka, který bude umět používat matematiku v odborných předmětech vzdělávání,
VíceVyučovací hodiny mohou probíhat v multimediální učebně a odborných učebnách s využitím interaktivní tabule.
Charakteristika předmětu 2. stupně Matematika je zařazena do vzdělávací oblasti Matematika a její aplikace. Vyučovací předmět má časovou dotaci v 6. ročníku 4 hodiny týdně, v 7., 8. a 9 ročníku bylo použito
VíceProjekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace
Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového
Více5. 6 Matematika. Charakteristika vyučovacího předmětu
Charakteristika vyučovacího předmětu 5. 6 Matematika Výuka matematiky na gymnáziu rozvíjí a prohlubuje pochopení kvantitativních a prostorových vztahů reálného světa, utváří kvantitativní gramotnost žáků
VíceMiroslav Bartošek, František Procházka, Miroslav Staněk. autoři návrhu.
Modelový návrh úpravy ŠVP a rozložení výuky matematiky pro obory M/L0 alespoň 10 hodin (týdenních) Na základě Opatření č. 2 ministra školství z 22. června 2017 a Opatření ministra školství č. 5 z 21. prosince
VíceOVO RVP OVO ŠVP Tématický celek Učivo RVP Učivo ŠVP Zařazení PT Integrace Mezipředmětové vztahy
Čte a zapisuje tvrzení v symbolickém jazyce matematiky, užívá správně logické spojky a kvantifikátory, rozliší definici a větu, rozliší předpoklad a závěr věty; rozliší správný a nesprávný úsudek Definuje
VíceMatematika. 7. ročník. Číslo a proměnná celá čísla. absolutní hodnota čísla. zlomky. racionální čísla
list 1 / 9 M časová dotace: 4 hod / týden Matematika 7. ročník (M 9 1 01) provádí početní operace v oboru celých a racionálních čísel; čte a zapíše celé číslo, rozliší číslo kladné a záporné, určí číslo
VíceKombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy
VíceTémata absolventského klání z matematiky :
Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný
Více