6.06. Matematika - MAT
|
|
- Ondřej Konečný
- před 6 lety
- Počet zobrazení:
Transkript
1 6.06. Matematika - MAT Obor: M/01 Stavebnictví Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání:13 Platnost učební osnovy: od , aktualizace , ) Pojetí vyučovacího předmětu a) Cíle vyučovacího předmětu Cílem předmětu matematika je připravit žáky pro plnohodnotný život, ve kterém se budou s matematikou setkávat v mnoha oblastech lidské činnosti. Matematika nachází uplatnění např. v ekonomii, technice a v přírodních vědách. Pomáhá rozvíjet logické myšlení, úsudek, schopnost abstrakce, geometrickou a prostorovou představivost, analyzovat text úloh, učí hledat cestu k samostatnému řešení problémů. Cílem je připravit žáky tak, aby uměli získané poznatky aplikovat nejen ve svém dalším studiu na vysoké škole, ale i v reálných životních situacích. b) Charakteristika učiva Matematika na střední škole navazuje na znalosti a dovednosti získané na základní škole. je rozděleno do čtyř ročníků a je řazeno s ohledem na požadavky odborných předmětů. V rámci tematických celků, které na sebe navazují, se žáci učí: - provádět početní operace - upravovat algebraické výrazy - řešit různé typy rovnic, nerovnic a jejich soustav - sestrojovat grafy funkcí - odvozovat a používat vlastnosti funkcí - početně i konstrukčně řešit geometrické úlohy - řešit kombinatorické úlohy a určit pravděpodobnost - řešit úlohy využívající posloupnosti - porozumět základům finanční matematiky - interpretovat statistické údaje - využívat matematické a fyzikální tabulky, kalkulátor a prostředky IKT je tvořeno těmito tematickými celky: Operace s čísly a výrazy Funkce a její průběh. Řešení rovnic a nerovnic Planimetrie Stereometrie Analytická geometrie v rovině Posloupnosti a jejich užití Kombinatorika, pravděpodobnost a statistika v praktických úlohách c) Cíle vzdělávání v oblasti citů, postojů, hodnot a preferencí Výuka směřuje k tomu, aby žáci získávali: - pozitivní postoj k matematice a zájem o ni a její aplikace - motivaci k celoživotnímu vzdělávání - důvěru ve vlastní schopnosti a práci d) Výukové strategie (pojetí výuky) Předmět se vyučuje v oboru stavebnictví se zaměřením pozemní stavby a inženýrské stavby dopravní a vodohospodářské stavby v 1. ročníku čtyři hodiny týdně, ve 2. ročníku tři hodiny týdně, ve 3. ročníku dvě hodiny týdně a ve 4. ročníku čtyři hodiny týdně, v oboru stavebnictví se zaměřením rekonstrukce staveb a architektura v 1. ročníku čtyři hodiny týdně a ve ročníku po třech hodinách týdně. Výuka předmětu probíhá v kmenových učebnách formou výkladu, odvozováním a procvičováním učiva. Vhodně je zařazováno využití audiovizuální techniky. Podle typu učiva volí učitel další vyučovací metody (samostatnou práci, práci ve skupinách). Učitel pravidelně zadává domácí úkoly, vede tím žáky k systematické přípravě na vyučovací hodiny. Součástí výuky jsou poměrně časté krátké prověrky, předem hlášené písemné práce na opakování tematického celku a pravidelné čtvrtletní práce. e) Hodnocení výsledků žáků Hodnocení výsledků je v souladu s platným klasifikačním řádem a jsou k němu použity tyto prostředky: - čtvrtletní práce (v 1. až 3. ročníku jsou čtyři, ve 4. ročníku jsou v prvním pololetí dvě, ve druhém pololetí je závěrečná práce společná pro všechny třídy ročníku) - ústní zkoušení, kdy učitel hodnotí schopnost žáka ústně obhájit a vysvětlit řešení úloh 52
2 - písemné práce zahrnující celé tematické celky - krátké desetiminutovky hodnotící pravidelnou přípravu - hodnocení aktivní účasti v hodinách - hodnocení plnění domácích úkolů f) Přínos předmětu k rozvoji klíčových kompetencí a aplikaci průřezových témat Vyučovací předmět se podílí na rozvoji všech klíčových kompetencí, zejména však: - kompetencí k učení (vede žáky k práci s učebnicí, učí je chápat strukturu učebnice, klade důraz na čtení s porozuměním) - kompetencí k řešení problémů (navozuje situace, při kterých žáci formulují problémy, analyzují je a hledají cesty k jejich řešení; učitel vede žáky ke správné volbě známého algoritmu, příp. k vytvoření nového algoritmu řešení; připouští práci s chybou a na jejím základě vede žáky k jiným postupům a poučením se z chyb; vede žáky k předvídání a odhadům výsledku úlohy, k provádění zkoušky správnosti řešení; zadává úlohy, které vedou k zobecňování provedení syntézy, vyslovení hypotézy a vede žáky k ověřování těchto hypotéz) - komunikativních kompetencí (učitel učí žáky formulovat myšlenky, obhajovat vlastní názor, vyžaduje přesnost při formulaci definic a vět; učí žáky argumentovat, používat různé typy tvrzení, rozlišovat definici a větu, zdůvodnit nebo vyvrátit hypotézu; vede žáky ke klasifikaci informací z různých zdrojů, učí žáky rozpoznat jejich důvěryhodnost, vyhodnotit informace kvantitativního i kvalitativního charakteru, které jsou obsaženy v grafech, diagramech, tabulkách; učí žáky prezentovat výsledky řešení úlohy, prezentovat získané informace formou grafů, diagramů a tabulek apod.) - kompetencí sociálních a personálních (učitel vytváří příležitosti k činnosti ve dvojicích, ve skupinách, vede žáky k organizaci práce ve skupinách, k zodpovědnosti za práci skupiny; umožňuje střídat role žáků ve skupině, učí je hodnotit podíl na řešení úlohy svůj i jiných; vede žáky k úctě k práci jiných, nechává žáky hodnotit práci druhých, vede je k odhadu důsledků svého jednání a schopnosti nést následky) - kompetencí občanských (vede žáky k zodpovědnému plnění povinností a úkolů; vybírá vhodné úlohy s ekologickou tematikou, vede žáky k poznání, že je třeba přírodu a životní prostředí chránit; učí žáky při zdůvodňování stanovisek a postupů uplatňovat základy logiky a rozlišovat seriózní a demagogickou argumentaci) - kompetencí matematických (rozvíjí logické myšlení, učí uvědoměle využívat matematických vědomostí a dovedností při řešení problémů běžných situací, matematizovat reálné situace a vyhodnotit výsledek vzhledem k realitě, správně používat fyzikální jednotky, aplikovat základní matematické poznatky a postupy v odborné složce vzdělávání) Matematika integruje tato průřezová témata: Občan v demokratické společnosti: Žáci jsou vedeni k tomu, aby vyjadřovali své názory a respektovali názory jiných, hledali kompromisy a byli kriticky tolerantní k ostatním. Člověk a svět práce: Učitel pomáhá žákům reálně posuzovat jejich schopnosti, možnosti dalšího studia na vysoké škole a pracovního uplatnění, uvědomovat si rozvoj vědy a techniky v současném světě a z toho plynoucí nutnost celoživotního vzdělávání. Člověk a životní prostředí: Vhodně zvolené úlohy přispívají k tomu, aby si žák uvědomoval negativní dopady lidské činnosti na životní prostředí a nutnost jeho ochrany. Informační a komunikační technologie: Žák využívá v matematice prostředky IKT k získávání informací a k prezentaci vlastní práce. 2) a kompetence 1. ročník, 4 hodiny týdně, 34 týdnů, celkem 136 hodin 1. Opakování a rozšíření učiva základní školy - utřídí si a doplní znalosti ze základní školy Množiny - provádí aritmetické operace v množině reálných čísel Číselné obory - používá různé zápisy reálného čísla Zaokrouhlování čísel - užívá základní množinové pojmy Reálná čísla, jejich vlastnosti a operace s reálnými - používá absolutní hodnotu čísly - zapíše a znázorní interval, provádí operace s Absolutní hodnota reálného čísla intervaly (sjednocení, průnik, doplněk) Intervaly - řeší praktické úlohy s využitím trojčlenky, Úměry, trojčlenka procentového a úrokového počtu Procentový a úrokový počet - řeší pravoúhlý trojúhelník pomocí Pythagorovy věty Pythagorova věta, goniometrické funkce ostrého a goniometrických funkcí úhlu 53
3 - dosadí do výrazu a určí hodnotu výrazu - určí nulový bod výrazu - určuje definiční obor lomeného výrazu - provádí operace s mnohočleny a lomenými výrazy - provádí operace s mocninami a odmocninami - zapíše číslo ve tvaru a.10 n a používá ho při výpočtech - upravuje výrazy obsahujícími mocniny a odmocniny - zavede souřadnicový systém, sestrojí body pomocí souřadnic - sestrojí graf konstantní a lineární funkce - z parametrů funkce určí její vlastnosti - rozlišuje lineární rovnice a nerovnice - provádí ekvivalentní úpravy rovnic a nerovnic - diskutuje o počtu řešení a ověřuje správnost řešení zkouškou - řeší soustavy rovnic různými metodami, zvolí nejvhodnější metodu - řeší slovní úlohy užitím rovnic nebo jejich soustav - u nerovnic vyznačí řešení na číselné ose a řešení zapíše intervalem, řeší soustavu lineárních nerovnic o jedné neznámé - řeší nerovnice v součinovém a podílovém tvaru - sestrojí graf lineární funkce s absolutní hodnotou - užívá definici absolutní hodnoty při řešení lineárních rovnic a nerovnic s absolutní hodnotou - sestrojí graf kvadratické funkce - z parametrů funkce určí její vlastnosti - vypočítá souřadnice vrcholu paraboly - řeší kvadratické rovnice pomocí diskriminantu - podle hodnoty diskriminantu rozhodne o počtu řešení - vhodně používá Viètovy vzorce při řešení jednoduchých kvadratických rovnic - rozloží kvadratický trojčlen v součin - řeší soustavu lineární a kvadratické rovnice o dvou neznámých - užije kvadratickou rovnici při řešení slovních úloh - vyřeší kvadratickou nerovnici početně i graficky - řeší jednoduché iracionální rovnice - třídí úpravy rovnic na ekvivalentní a neekvivalentní 2. Algebraické výrazy Hodnota výrazu, nulový bod výrazu Operace s mnohočleny, umocnění dvojčlenu pomocí vzorců Rozklady mnohočlenů na součin vytýkáním a pomocí vzorců Operace s lomenými výrazy Definiční obor lomeného výrazu 3. Mocniny a odmocniny Mocniny s celočíselným mocnitelem Zápis čísla ve tvaru a.10 n, řád čísla n-tá odmocnina, věty pro počítání s odmocninami Mocniny s racionálním mocnitelem Operace s výrazy obsahujícími mocniny a odmocniny 4. Lineární funkce, rovnice a nerovnice Lineární a konstantní funkce, jejich grafy Lineární rovnice o jedné neznámé Lineární rovnice o jedné neznámé s neznámou ve jmenovateli Vyjádření neznámé z technického vzorce Soustavy dvou lineárních rovnic o dvou neznámých, jejich početní i grafické řešení Užití rovnic a jejich soustav při řešení slovních úloh Lineární nerovnice o jedné neznámé a jejich soustavy Lineární nerovnice v součinovém a podílovém tvaru Lineární funkce, rovnice a nerovnice s absolutní hodnotou 5. Kvadratická funkce, rovnice a nerovnice Kvadratická funkce a její graf Řešení neúplné a úplné kvadratické rovnice, diskriminant Vztahy mezi kořeny a koeficienty kvadratické rovnice Rozklad kvadratického trojčlenu Užití kvadratických rovnic při řešení slovních úloh Soustava lineární a kvadratické rovnice o dvou neznámých Kvadratická nerovnice, její početní a grafické řešení Iracionální rovnice 2. ročník, 3 hodiny týdně, 34 týdnů, celkem 102 hodin 1. Planimetrie - řeší úlohy na polohové a metrické vlastnosti Základní geometrické útvary v rovině, jejich vztahy rovinných útvarů, používá správné značení Trojúhelníky a mnohoúhelníky, základní pojmy a - užívá věty o shodnosti a podobnosti trojúhelníků v vlastnosti početních i konstrukčních úlohách Věty o shodnosti a podobnosti trojúhelníků v - aplikuje Pythagorovu větu, Euklidovy věty a početních i konstrukčních úlohách Thaletovu větu při konstrukci iracionální odmocniny Věty Euklidovy a věta Pythagorova - používá Pythagorovu větu a goniometrické funkce Definice goniometrických funkcí ostrého úhlu, 54
4 při řešení pravoúhlého trojúhelníku - rozlišuje základní druhy rovinných obrazců, využívá jejich vlastností, určí jejich obvod a obsah - používá získané znalosti při řešení úloh z praxe - využívá poznatků o množinách všech bodů dané vlastnosti při řešení konstrukčních úloh - sestrojí obrazy útvarů v daném shodném (podobném) zobrazení, užije vlastnosti zobrazení - definuje goniometrické funkce v oboru reálných čísel - sestrojí grafy goniometrických funkcí - užívá základní goniometrické vzorce při úpravách výrazů s goniometrickými funkcemi - řeší základní goniometrické rovnice, používá vlastnosti a vztahy mezi goniometrickými funkcemi při řešení jednodušších goniometrických rovnic - používá sinovou a kosinovou větu k řešení obecného trojúhelníku - používá sinovou a kosinovou větu k řešení úloh z praxe - užije různá zadání funkce - užívá s porozuměním pojmy definiční obor, obor hodnot, argument funkce, hodnota funkce - rozlišuje jednotlivé druhy funkcí, načrtne jejich grafy a určí jejich vlastnosti - určí průsečíky grafu funkce s osami souřadnic - určí intervaly monotonie a body, ve kterých funkce nabývá extrému - řeší reálné problémy pomocí funkcí - vysvětlí význam základu a v předpisech exponenciální a logaritmické funkce - definuje logaritmus a užívá věty o logaritmech - uplatňuje získané znalosti k řešení jednoduchých exponenciálních a logaritmických rovnic řešení pravoúhlého trojúhelníku Kružnice, kruh a jejich části Obsahy a obvody rovinných obrazců, řešení úloh z technické praxe a běžného života Množiny všech bodů dané vlastnosti, jednoduché konstrukční úlohy Shodná a podobná zobrazení (souměrnosti, posunutí, otočení, stejnolehlost) v rovině 2. Goniometrie a trigonometrie Orientovaný úhel a jeho velikost v míře obloukové a stupňové Goniometrické funkce v oboru reálných čísel, jejich základní vlastnosti a grafy Některé goniometrické vzorce, úpravy výrazů s goniometrickými funkcemi Základní goniometrické rovnice Věta sinová a kosinová Řešení obecného trojúhelníku 3. Funkce Pojem funkce, definiční obor a obor hodnot, hodnota funkce v bodě, graf funkce Vlastnosti funkcí (monotónnost, extrémy funkce) Shrnutí poznatků o dosud probraných funkcích Funkce lineární lomená, nepřímá úměrnost a jejich grafy Funkce mocninné a jejich grafy Funkce inverzní Funkce exponenciální a funkce logaritmická a jejich grafy Vlastnosti logaritmů, věty o počítání s logaritmy Jednoduché exponenciální a logaritmické rovnice 3. ročník, zaměření pozemní stavby a zaměření inženýrské stavby dopravní a vodohospodářské stavby: 2 hodiny týdně, 34 týdnů, celkem 68 hodin 1. Stereometrie - určuje vzájemnou polohu bodů, přímek a rovin Základní polohové a metrické vlastnosti v prostoru - určuje odchylku přímek a rovin Konstrukce rovinných řezů hranolu a jehlanu - určuje vzdálenosti bodů, přímek a rovin Povrchy a objemy těles: základních a komolých, - počítá povrchy a objemy základních těles koule a jejích částí - řeší stereometrické úlohy z praxe Řešení úloh z praxe - používá kombinatorické pravidlo součinu při řešení jednoduchých úloh - v úlohách vhodně používá variace, permutace či kombinace - užívá vztahy pro počet variací, permutací a kombinací bez opakování a pro počet variací s opakováním - počítá s faktoriály a kombinačními čísly - pomocí binomické věty rozepíše n-tou mocninu dvojčlenu - rozlišuje náhodný pokus a náhodný jev - používá znalosti z kombinatoriky při výpočtu pravděpodobnosti náhodného jevu - určuje pravděpodobnost sjednocení neslučitelných 2. Kombinatorika, pravděpodobnost a statistika Kombinatorická pravidla Variace, permutace a kombinace bez opakování, variace s opakováním Počítání s faktoriály a kombinačními čísly Pascalův trojúhelník, binomická věta Náhodný pokus, náhodný jev, jev opačný, jevy neslučitelné a nezávislé Pravděpodobnost náhodného jevu, průniku neslučitelných a sjednocení nezávislých jevů Statistický soubor, jednotka, znak, hodnota znaku Absolutní a relativní četnost Charakteristiky polohy a variability průměry, modus, medián, rozptyl, směrodatná odchylka, variační rozpětí 55
5 jevů a pravděpodobnost průniku nezávislých jevů - užívá s porozuměním základní pojmy statistiky - vypočítá absolutní a relativní četnost, aritmetický průměr, modus, medián, rozptyl a směrodatnou odchylku, variační rozpětí - čte, vyhodnotí a sestaví tabulky, diagramy a grafy se statistickými údaji - vysvětlí posloupnost jako zvláštní případ funkce - určí posloupnost výčtem prvků, vzorcem pro n-tý člen, graficky - rozliší aritmetickou a geometrickou posloupnost a řeší úlohy s jejich využitím - orientuje se v základních pojmech finanční matematiky a provádí výpočty jednoduchých finančních úloh Vyhledávání a vyhodnocování statistických dat v grafech a tabulkách 3. Posloupnosti a finanční matematika Definice posloupnosti, způsoby zadání posloupnosti, její vlastnosti, graf Aritmetická posloupnost Geometrická posloupnost Základy finanční matematiky; jednoduché a složené úrokování 3. ročník, zaměření rekonstrukce staveb a architektura: 3 hodiny týdně, 34 týdnů, celkem 102 hodin 1. Stereometrie - určuje vzájemnou polohu bodů, přímek a rovin Základní polohové a metrické vlastnosti v prostoru - určuje odchylku přímek a rovin Konstrukce rovinných řezů hranolu a jehlanu - určuje vzdálenosti bodů, přímek a rovin Povrchy a objemy těles: základních a komolých, - počítá povrchy a objemy základních těles koule a jejích částí - řeší stereometrické úlohy z praxe Řešení úloh z praxe - používá kombinatorické pravidlo součinu při řešení jednoduchých úloh - v úlohách vhodně používá variace, permutace či kombinace - užívá vztahy pro počet variací, permutací a kombinací bez opakování a pro počet variací s opakováním - počítá s faktoriály a kombinačními čísly - pomocí binomické věty rozepíše n-tou mocninu dvojčlenu - rozlišuje náhodný pokus a náhodný jev - používá znalosti z kombinatoriky při výpočtu pravděpodobnosti náhodného jevu - určuje pravděpodobnost sjednocení neslučitelných jevů a pravděpodobnost průniku nezávislých jevů - užívá s porozuměním základní pojmy statistiky - vypočítá absolutní a relativní četnost, aritmetický průměr, modus, medián, rozptyl a směrodatnou odchylku, variační rozpětí - čte, vyhodnotí a sestaví tabulky, diagramy a grafy se statistickými údaji - vysvětlí posloupnost jako zvláštní případ funkce - určí posloupnost výčtem prvků, vzorcem pro n-tý člen, graficky - rozliší aritmetickou a geometrickou posloupnost a řeší úlohy s jejich využitím - orientuje se v základních pojmech finanční matematiky a provádí výpočty jednoduchých finančních úloh 2. Kombinatorika, pravděpodobnost a statistika Kombinatorická pravidla Variace, permutace a kombinace bez opakování, variace s opakováním Počítání s faktoriály a kombinačními čísly Pascalův trojúhelník, binomická věta Náhodný pokus, náhodný jev, jev opačný, jevy neslučitelné a nezávislé Pravděpodobnost náhodného jevu, průniku neslučitelných a sjednocení nezávislých jevů Statistický soubor, jednotka, znak, hodnota znaku Absolutní a relativní četnost Charakteristiky polohy a variability průměry, modus, medián, rozptyl, směrodatná odchylka, variační rozpětí Vyhledávání a vyhodnocování statistických dat v grafech a tabulkách 3. Posloupnosti a finanční matematika Definice posloupnosti, způsoby zadání posloupnosti, její vlastnosti, graf Aritmetická posloupnost Geometrická posloupnost Základy finanční matematiky; jednoduché a složené úrokování 56
6 - orientuje se v kartézské soustavě souřadnic, znázorní bod, umístění vektoru - určí vzdálenost dvou bodů, souřadnice středu úsečky, souřadnice vektoru a velikost vektoru - provádí početní i grafické operace s vektory (součet a rozdíl vektorů, násobení vektorů reálným číslem, skalární součin vektorů) - určí velikost úhlu dvou vektorů - užije vlastností kolmých a kolineárních vektorů - aplikuje znalosti z odborných předmětů při skládání vektorů - užívá různá analytická vyjádření přímky - řeší analyticky polohové a metrické vztahy bodů a přímek 4. Vektorová algebra a analytická geometrie přímky v rovině Soustava souřadnic na přímce a v rovině Vzdálenost dvou bodů, střed úsečky Vektor, jeho souřadnice a velikost Operace s vektory: součet a rozdíl vektorů, vektor opačný, násobení vektoru reálným číslem Lineární závislost a nezávislost dvou vektorů Skalární součin vektorů, úhel dvou vektorů, kolmost vektorů Vyjádření přímky v rovině (parametrické vyjádření, obecná rovnice, směrnicový tvar rovnice) Dvě přímky v rovině (vzájemná poloha, odchylka, kolmost) Vzdálenost bodu od přímky, vzdálenost dvou rovnoběžných přímek 4. ročník, zaměření pozemní stavby a zaměření inženýrské stavby dopravní a vodohospodářské stavby: 4 hodiny týdně, 30 týdnů, celkem 120 hodin 1. Vektorová algebra a analytická geometrie - orientuje se v kartézské soustavě souřadnic, znázorní lineárních a kvadratických útvarů v rovině bod, umístění vektoru Soustava souřadnic na přímce a v rovině - určí vzdálenost dvou bodů, souřadnice středu úsečky, Vzdálenost dvou bodů, střed úsečky souřadnice vektoru a velikost vektoru Vektor, jeho souřadnice a velikost - provádí početní i grafické operace s vektory (součet Operace s vektory: součet a rozdíl vektorů, vektor a rozdíl vektorů, násobení vektorů reálným číslem, opačný, násobení vektoru reálným číslem skalární součin vektorů) Lineární závislost a nezávislost dvou vektorů - určí velikost úhlu dvou vektorů Skalární součin vektorů, úhel dvou vektorů, kolmost - užije vlastností kolmých a kolineárních vektorů vektorů - aplikuje znalosti z odborných předmětů při skládání Vyjádření přímky v rovině (parametrické vyjádření, vektorů obecná rovnice, směrnicový tvar rovnice) - užívá různá analytická vyjádření přímky Dvě přímky v rovině (vzájemná poloha, odchylka, - řeší analyticky polohové a metrické vztahy bodů a kolmost) přímek Vzdálenost bodu od přímky, vzdálenost dvou - definuje jednotlivé kuželosečky, uvede jejich rovnoběžných přímek základní parametry Kružnice - z daných parametrů kuželosečku načrtne Vzájemná poloha kružnice a přímky - sestaví a užije obecnou i středovou (vrcholovou) Elipsa rovnici kuželosečky Vzájemná poloha elipsy a přímky - řeší úlohy o vzájemné poloze přímky a kuželosečky Hyperbola Vzájemná poloha hyperboly a přímky Parabola - orientuje se v učivu středoškolské matematiky - řeší komplexní úlohy - řeší různé typy otevřených a uzavřených úloh - při řešení úlohy vybírá nejvhodnější způsob řešení - aplikuje získané poznatky v úlohách z praxe - při řešení úloh vhodně využívá kalkulátor a tabulky Vzájemná poloha paraboly a přímky 2. Shrnutí, doplnění a systematizace poznatků ročníku Číselné obory Algebraické výrazy Rovnice a nerovnice Funkce Posloupnosti a finanční matematika Planimetrie Stereometrie Analytická geometrie Kombinatorika, pravděpodobnost a statistika 57
7 4. ročník, zaměření rekonstrukce staveb a architektura: 3 hodiny týdně, 30 týdnů, celkem 90 hodin 1. Analytická geometrie kvadratických útvarů - definuje jednotlivé kuželosečky, uvede jejich v rovině základní parametry Kružnice - z daných parametrů kuželosečku načrtne Vzájemná poloha kružnice a přímky - sestaví a užije obecnou i středovou (vrcholovou) Elipsa rovnici kuželosečky Vzájemná poloha elipsy a přímky - řeší úlohy o vzájemné poloze přímky a kuželosečky Hyperbola Vzájemná poloha hyperboly a přímky Parabola - orientuje se v učivu středoškolské matematiky - řeší komplexní úlohy - řeší různé typy otevřených a uzavřených úloh - při řešení úlohy vybírá nejvhodnější způsob řešení - aplikuje získané poznatky v úlohách z praxe - při řešení úloh vhodně využívá kalkulátor a tabulky Vzájemná poloha paraboly a přímky 2. Shrnutí, doplnění a systematizace poznatků ročníku Číselné obory Algebraické výrazy Rovnice a nerovnice Funkce Posloupnosti a finanční matematika Planimetrie Stereometrie Analytická geometrie Kombinatorika, pravděpodobnost a statistika 58
6.06. Matematika - MAT
6.06. Matematika - MAT Obor: 36-46-M/01 Geodézie a katastr nemovitostí Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání:13 Platnost učební osnovy: od 1.9.2010, aktualizováno 1.9.2015, 1.9.2016
Více6.06. Matematika - MAT
6.06. Matematika - MAT Obor: 36-47-M/01 Stavebnictví Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání: 12 Platnost učební osnovy: od 1.9.2008 1) Pojetí vyučovacího předmětu a) Cíle vyučovacího
VíceMatematika PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí
VíceMINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,
VíceMatematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:
Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za
Více6.06. Matematika - MAT
6.06. Matematika - MAT Obor: 36-47-M/01 Stavebnictví Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání:14 Platnost učební osnovy: od 1.9.2008, aktualizace 1.9.2015, 1.9.2016, 1.9.2018 1) Pojetí
VíceMATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)
MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo
VícePožadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků
Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy
VíceMgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -
VíceMINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro nástavbové studium. varianta B 6 celkových týd.
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro nástavbové studium (hodinová dotace: varianta A 4 až 5 celkových týd. hodin, varianta B 6 celkových týd. hodin) Schválilo
VíceMATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
VíceGymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Cvičení z matematiky geometrie (CZMg) Systematizace a prohloubení učiva matematiky Planimetrie, Stereometrie, Analytická geometrie, Kombinatorika, Pravděpodobnost a statistika Třída: 4.
VíceUčební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky
Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace
VíceMINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy
VíceGymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky algebra (CZMa) Systematizace a prohloubení učiva matematiky: Číselné obory, Algebraické výrazy, Rovnice, Funkce, Posloupnosti, Diferenciální
VíceMATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)
MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a
VíceGymnázium Jiřího Ortena, Kutná Hora
Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory
VíceSystematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné
VíceRočník: I. II. III. IV. Celkem Počet hodin:
UČEBNÍ OSNOVY Název předmětu: MATEMATIKA Ročník: I. II. III. IV. Celkem Počet hodin: 2 3 3 4 12 POJETÍ PŘEDMĚTU Obecné cíle předmětu Cílem předmětu matematika je vybavit žáky matematickými dovednostmi,
VíceMATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik
MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené
Více65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03
Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou
VíceRočník: I. II. III. Celkem Počet hodin:
UČEBNÍ OSNOVY POJETÍ PŘEDMĚTU Název předmětu: MATEMATIKA Ročník: I. II. III. Celkem Počet hodin: 1 1 2 4 Obecné cíle předmětu Výchova přemýšlivého člověka, který bude umět matematické dovednosti používat
VíceMinisterstvo školství, mládeže a tělovýchovy. Praha 21. prosince 2017 č. j.: MSMT-31863/2017-1
Ministerstvo školství, mládeže a tělovýchovy Praha 21. prosince 2017 č. j.: MSMT-31863/2017-1 Opatření č. 7 ministra školství, mládeže a tělovýchovy, kterým se mění rámcové vzdělávací programy oborů středního
VíceMaturitní okruhy z matematiky - školní rok 2007/2008
Maturitní okruhy z matematiky - školní rok 2007/2008 1. Některé základní poznatky z elementární matematiky: Číselné obory, dělitelnost přirozených čísel, prvočísla a čísla složená, největší společný dělitel,
VíceMaturitní témata profilová část
Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,
VíceGymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021
Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,
VíceMATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA
MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné
VíceDodatek č. 3 ke školnímu vzdělávacímu programu. Technické lyceum. (platné znění k 1. 9. 2009)
Střední průmyslová škola Jihlava tř. Legionářů 72/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Technické lyceum (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje
VíceMaturitní otázky z předmětu MATEMATIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti
VíceMaturitní okruhy z matematiky ve školním roce 2010/2011
Vyučující: RNDr. Ivanka Dvořáčková Třída: 8.A Maturitní okruhy z matematiky ve školním roce 2010/2011 Otázka Okruh 1 1. Výroky a operace s nimi 2. Množiny a operace s nimi 2 3. Matematické věty a jejich
VíceTematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová
Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.
VíceNezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky.
Maturitní témata Matematika Školní rok 2016/17 Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky. Příprava ke zkoušce trvá 15 minut, ústní zkouška
VíceMaturitní témata z matematiky
Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou
VíceMaturitní zkouška z matematiky (v profilové části) Informace o zkoušce, hodnocení zkoušky, povolené pomůcky a požadavky
Maturitní zkouška z matematiky (v profilové části) Informace o zkoušce, hodnocení zkoušky, povolené pomůcky a požadavky A. Informace o zkoušce Písemná maturitní zkouška z matematiky v profilové části se
VíceDodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)
Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje
VíceMaturitní témata z matematiky
Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy
VíceCZ 1.07/1.1.32/02.0006
PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI
VíceB) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.
4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti
VíceCvičení z matematiky jednoletý volitelný předmět
Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky
VíceMINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem)
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14.června
VíceRočník: I. II. III. Celkem Počet hodin:
Školní vzdělávací program: Kuchař - číšník Kód a název oboru vzdělávání: 65-51-H/01 Kuchař - číšník Délka a forma studia: tříleté denní studium Stupeň vzdělání: střední vzdělání s výučním listem Datum
VícePožadavky k opravným zkouškám z matematiky školní rok 2013-2014
Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,
VíceSBÍRKA ÚLOH I. Základní poznatky Teorie množin. Kniha Kapitola Podkapitola Opakování ze ZŠ Co se hodí si zapamatovat. Přírozená čísla.
Opakování ze ZŠ Co se hodí si zapamatovat Přírozená čísla Číselné obory Celá čísla Racionální čísla Reálná čísla Základní poznatky Teorie množin Výroková logika Mocniny a odmocniny Množiny Vennovy diagramy
VíceZměna týdenní hodinové dotace v 1. ročníku v předmětu matematika. původní dotace 3 hodiny týdně, nově 4 hodiny týdně
Dodatek č.. Školního vzdělávacího programu Obchodní akademie Lysá nad Labem, obor -1-M/0 Obchodní akademie, platného od 1. 9. 01 - platnost dodatku je od 1. 9. 015 Změna týdenní hodinové dotace v 1. ročníku
VíceMaturitní témata od 2013
1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy
VíceMATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011
MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 1. Výroková logika a teorie množin Výrok, pravdivostní hodnota výroku, negace výroku; složené výroky(konjunkce, disjunkce, implikace, ekvivalence);
VíceProjekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace
Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového
VícePožadavky k opravným zkouškám z matematiky školní rok 2014-2015
Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,
VíceElektrikář-silnoproud
Školní vzdělávací program pro obor Elektrikář-silnoproud 26-51-H/02 Dodatek dle opatření ministra školství, mládeže a tělovýchovy č.6 ze dne 21.prosince 2017 platný od 1.9.2018 počínaje 1.ročníkem Střední
VíceUkázkový návrh ŠVP a rozložení výuky matematiky pro obory L5 alespoň 6 hodin (týdenních)
Ukázkový návrh ŠVP a rozložení výuky matematiky pro obory L5 alespoň 6 hodin (týdenních) Na základě Opatření č.4 ministra školství z 22. června 2017, a opatření ministra školství č.7 z 21. prosince 2017
VícePředmět: Matematika. Charakteristika vyučovacího předmětu:
Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu matematika a ve volitelných předmětech Deskriptivní geometrie,
VíceModelový návrh ŠVP a rozložení výuky matematiky pro obory L5 alespoň 6 hodin (týdenních)
Modelový návrh ŠVP a rozložení výuky matematiky pro obory L5 alespoň 6 hodin (týdenních) Na základě Opatření č. 4 ministra školství z 22. června 2017 a Opatření ministra školství č. 7 z 21. prosince 2017
VíceCvičení z matematiky - volitelný předmět
Vyučovací předmět : Období ročník : Učební texty : Cvičení z matematiky - volitelný předmět 3. období 9. ročník Sbírky úloh, Testy k přijímacím zkouškám, Testy Scio, Kalibro aj. Očekávané výstupy předmětu
VíceVyučovací hodiny mohou probíhat v multimediální učebně a odborných učebnách s využitím interaktivní tabule.
Charakteristika předmětu 2. stupně Matematika je zařazena do vzdělávací oblasti Matematika a její aplikace. Vyučovací předmět má časovou dotaci v 6. ročníku 4 hodiny týdně, v 7., 8. a 9 ročníku bylo použito
VíceUčební osnova předmětu Matematika. Pojetí vyučovacího předmětu
Obor vzdělání: 26 41 M/01 Elektrotechnika Délka a forma studia: 4 roky denní studium Celkový počet týdenních hodin za studium: 14 Platnost: od 1. 9. 2014 Učební osnova předmětu Matematika Pojetí vyučovacího
VíceČást 6 Kurikulární rámec pro jednotlivé oblasti vzdělávání Matematické vzdělávání
Změnový list ŠVP Číslo změny: 03/2018 Změna pro Školní vzdělávací program oboru vzdělání 23-61-H/01 Autolakýrník platný od 1. 9. 2010 Část dokumentu: Část 6 Kurikulární rámec pro jednotlivé oblasti vzdělávání
VíceUčební osnova předmětu matematika. Pojetí vyučovacího předmětu
Učební osnova předmětu matematika Obor vzdělání: 23 41 M/01 Strojírenství, 2 41 M/01 Elektrotechnika Délka a forma studia: 4 roky denní studium Celkový počet týdenních hodin za studium: 12 Platnost: od
VíceUČEBNÍ OSNOVA PŘEDMĚTU
UČEBNÍ OSNOVA PŘEDMĚTU MATEMATIKA Název školního vzdělávacího programu: Název a kód oboru vzdělání: Celkový počet hodin za studium (rozpis učiva): Management ve stavebnictví 63-41-M/001 Ekonomika a podnikání
VíceUČEBNÍ OSNOVA PŘEDMĚTU
UČEBNÍ OSNOVA PŘEDMĚTU MATEMATIKA Název školního vzdělávacího programu: Název a kód oboru vzdělání: Celkový počet hodin za studium (rozpis učiva): Zedník 36-67-H/01 Zedník 1. ročník = 66 hodin/ročník (2
VícePythagorova věta Pythagorova věta slovní úlohy
Vyučovací předmět: Matematika Ročník: 8. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo provádí početní operace v oboru celých a racionálních čísel, užívá ve výpočtech druhou mocninu
VícePythagorova věta Pythagorova věta slovní úlohy. Mocniny s přirozeným mocnitelem mocniny s přirozeným mocnitelem operace s mocninami
Vyučovací předmět: Matematika Ročník: 8. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo užívá různé způsoby kvantitativního vyjádření vztahu celek část (procentem) řeší aplikační úlohy
VíceKomplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice
VíceMatematika - 6. ročník Očekávané výstupy z RVP Učivo Přesahy a vazby desetinná čísla. - zobrazení na číselné ose
Matematika - 6. ročník desetinná čísla - čtení a zápis v desítkové soustavě F užití desetinných čísel - zaokrouhlování a porovnávání des. čísel ve výpočtových úlohách - zobrazení na číselné ose MDV kritické
VíceUkázkový návrh úpravy ŠVP a rozložení výuky matematiky pro obory M/L0 alespoň 10 hodin (týdenních)
Ukázkový návrh úpravy ŠVP a rozložení výuky matematiky pro obory M/L0 alespoň 10 hodin (týdenních) Na základě Opatření č.2 ministra školství z 22. června 2017, a opatření ministra školství č.5 z 21. prosince
VíceZákladní škola Blansko, Erbenova 13 IČO
Základní škola Blansko, Erbenova 13 IČO 49464191 Dodatek Školního vzdělávacího programu pro základní vzdělávání Škola v pohybu č.j. ERB/365/16 Škola: Základní škola Blansko, Erbenova 13 Ředitelka školy:
VícePŘEDMĚT: MATEMATIKA Školní výstupy Učivo Průřezová témata Poznámky, přesahy
PŘEDMĚT: MATEMATIKA ROČNÍK: PRVNÍ/KVINTA Školní výstupy Učivo Průřezová témata Poznámky, přesahy Žák určuje číselný obor daného čísla (N, Z, Q, R) a rozlišuje základní vlastnosti číselných oborů pracuje
VíceMatematika Název a adresa školy: Název ŠVP: Hodinová dotace: Platnost ŠVP: Pojetí a cíle vyučovacího předmětu Vyučovací metody, strategie
Dodatek č. 14. Školního vzdělávacího programu Obchodní akademie Lysá nad Labem, obor 6-41-M/02 Obchodní akademie, platného od 1. 9. 2012 - platnost dodatku je od 1. 9. 2018 Úpravy ŠVP v souladu s Opatřením
VíceŠkolní vzdělávací program pro obor
Školní vzdělávací program pro obor Malíř a lakýrník 39-41-H/01 Dodatek dle opatření ministra školství, mládeže a tělovýchovy č.6 ze dne 21.prosince 2017 platný od 1.9.2018 počínaje 1.ročníkem Střední škola
VícePlanimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Planimetrie 2. část, Funkce, Goniometrie 2. ročník a sexta 4 hodiny týdně PC a dataprojektor, učebnice Planimetrie II. Konstrukční úlohy Charakterizuje
VíceStřední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 příspěvková organizace sídlo: 612 00 Brno, Křižíkova 11
Témata k ústní maturitní zkoušce z předmětu Účetnictví profilové části maturitní zkoušky Školní rok 2012/2013 třída: 4.T 1. Legislativní úprava účetnictví 2. Účetní dokumentace 3. Manažerské účetnictví
VíceCHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ VOLITELNÉ PŘEDMĚTY Seminář z matematiky Mgr. Dana Rauchová
CHARAKTERISTIKA VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ VOLITELNÉ PŘEDMĚTY Seminář z matematiky Mgr. Dana Rauchová Vyučovací volitelný předmět Cvičení z matematiky je zařazen samostatně na druhém
Více1.3. Cíle vzdělávání v oblasti citů, postojů, hodnot a preferencí
1Příloha 6.04 1. Pojetí vyučovacího předmětu 1.1. Obecný cíl vyučovacího předmětu Obecným cílem předmětu Matematika je vychovat přemýšlivého člověka, který bude umět používat matematiku v odborných předmětech
Více5.2 Vzdělávací oblast - Matematika a její aplikace 5.2.1 Matematika 5.2.2 Cvičení z matematiky
5.2 Vzdělávací oblast - Matematika a její aplikace 5.2.1 Matematika 5.2.2 Cvičení z matematiky Ročník 2. Hodinová dotace Matematika 3 3 3 2 Cvičení z matematiky 0 0 R (2) R (2) Vyučovací předmět Matematika
VíceTEMATICKÝ PLÁN VÝUKY
STŘEDNÍ P RŮMYSLOVÁ ŠKOLA, Praha 10, Na Třebešíně 22 TEMATICKÝ PLÁN VÝUKY Studijní obor: 18 20 M/01 Informační technologie Zaměření: Předmět: Matematika Ročník: 2. Počet hodin 3 Počet hodin celkem: 102
VíceTEMATICKÝ PLÁN VÝUKY
TEMATICKÝ PLÁN VÝUKY Studijní obor: 23-41 - M/01 Strojírenství Zaměření: Předmět: Matematika Ročník: 1. Počet hodin 4 Počet hodin celkem: 136 týdně: Tento plán vychází z Rámcového vzdělávacího programu
VíceInovace č. 2 Školních vzdělávacích programů:
Inovace č. 2 Školních vzdělávacích programů: ŠVP 36-64-H/01 Tesař ŠVP 33-56-H/01 Truhlář ŠVP 41-55-H/01 Opravář zemědělských strojů ŠVP 41-54-H/01 Podkovář a zemědělský kovář ŠVP 82-51-H/04 Umělecký keramik
Více1.3. Cíle vzdělávání v oblasti citů, postojů, hodnot a preferencí
1. Pojetí vyučovacího předmětu 1.1. Obecný cíl vyučovacího předmětu Obecným cílem předmětu Matematika je vychovat přemýšlivého člověka, který bude umět používat matematiku v odborných předmětech vzdělávání,
VíceŠKOLNÍ VZDĚLÁVACÍ PROGRAM
Vyučovací předmět : Období ročník : Učební texty : Matematika 3. období 9. ročník J.Coufalová : Matematika pro 9.ročník ZŠ (Fortuna) Očekávané výstupy předmětu Na konci 3. období základního vzdělávání
Více1. Učební osnovy Matematika a její aplikace. ŠVP - učební osnovy - Karlínské gymnázium, Praha 8, Pernerova 25
1. Učební osnovy 1.1. Matematika a její aplikace Charakteristika vzdělávací oblasti Výuka na gymnáziu rozvíjí a prohlubuje pochopení kvantitativních a prostorových vztahů reálného světa, utváří kvantitativní
VíceMiroslav Bartošek, František Procházka, Miroslav Staněk. autoři návrhu.
Modelový návrh úpravy ŠVP a rozložení výuky matematiky pro obory M/L0 alespoň 10 hodin (týdenních) Na základě Opatření č. 2 ministra školství z 22. června 2017 a Opatření ministra školství č. 5 z 21. prosince
Více- vyučuje se: v 6. a 8. ročníku 4 hodiny týdně v 7. a 9. ročníku 5 hodin týdně - je realizována v rámci vzdělávací oblasti Matematika a její aplikace
5.4.2. MATEMATIKA - 2. stupeň Charakteristika vyučovacího předmětu: - vyučuje se: v 6. a 8. ročníku 4 hodiny týdně v 7. a 9. ročníku 5 hodin týdně - je realizována v rámci vzdělávací oblasti Matematika
VíceMatematika - Kvarta. řeší ekvivalentními úpravami rovnice s neznámou ve jmenovateli
- Kvarta Matematika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k učení Kompetence pracovní Učivo
VíceTÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA G5 5.1 Teorie množin, provádí správně operace s množinami, výroková logika množiny vyžívá při řešení úloh; pracuje správně s výroky, užívá správně logické spojky a kvantifikátory;
VícePředmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace.
Matematika Charakteristika vyučovacího předmětu Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace. Výuka matematiky přispívá k pochopení kvantitativních a prostorových vztahů reálného
VíceObsahové, časové a organizační vymezení vyučovacího předmětu
Matematika Charakteristika vyučovacího předmětu Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace. Výuka matematiky přispívá k pochopení kvantitativních a prostorových vztahů reálného
VíceEKOLOGIE A ŽIVOTNÍ PROSTŘEDÍ
Přílohy školního vzdělávacího programu EKOLOGIE A ŽIVOTNÍ PROSTŘEDÍ - inovace platné od 1.9.2011 Střední průmyslová škola keramická a sklářská Karlovy Vary adresa: nám. 17.listopadu 12, 360 05 Karlovy
Více3.4.1. Tabulace učebního plánu
3.4.1. Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět: MATEMATIKA Ročník: Kvinta, 1. ročník Tématická Číselné obory Druhy čísel (N, Z, Q, R, I) - prezentuje přehled číselných oborů Mocniny
VíceŽák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.
STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní
VícePředpokládané znalosti žáka 1. stupeň:
Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje
VícePředmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace.
Matematika Charakteristika vyučovacího předmětu Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace. Výuka matematiky přispívá k pochopení kvantitativních a prostorových vztahů reálného
VíceModelový návrh úpravy ŠVP a rozložení výuky matematiky pro obory H alespoň 4 hodiny (týdenní)
Modelový návrh úpravy ŠVP a rozložení výuky matematiky pro obory H alespoň 4 hodiny (týdenní) Na základě Opatření č. 3 ministra školství z 22. června 2017 a Opatření ministra školství č. 6 z 21. prosince
VíceMatematika. 8. ročník. Číslo a proměnná druhá mocnina a odmocnina (využití LEGO EV3) mocniny s přirozeným mocnitelem. výrazy s proměnnou
list 1 / 7 M časová dotace: 4 hod / týden Matematika 8. ročník M 9 1 01 provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu Číslo a proměnná druhá
VíceUkázkový návrh úpravy ŠVP a rozložení výuky matematiky pro obory H alespoň 4 hodiny (týdenní)
Ukázkový návrh úpravy ŠVP a rozložení výuky matematiky pro obory H alespoň 4 hodiny (týdenní) Na základě Opatření č. 3 ministra školství z 22. června 2017, a opatření ministra školství č. 6 z 21. prosince
VíceReálné gymnázium a základní škola města Prostějova Školní vzdělávací program pro ZV Ruku v ruce
2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY 2. 2 Cvičení z matematiky Časová dotace 7. ročník 1 hodina 8. ročník 1 hodina 9. ročník 1 hodina Charakteristika: Předmět cvičení z matematiky doplňuje vzdělávací
VíceMatematika - 6. ročník
Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru
Více- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr
Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování
VíceKombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy
VíceZákladní škola Fr. Kupky, ul. Fr. Kupky 350, Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE MATEMATIKA A JEJÍ APLIKACE Matematika 8.
5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 8. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo ČÍSLO A PROMĚNNÁ M9101 M9102
Vícemění rámcové vzdělávací programy oborů středního vzdělávání kategorie stupně dosaženého vzdělání M a L0 uvedených v příloze č. 1 tohoto opatření.
Ministerstvo školství, mládeže a tělovýchovy Praha 21. prosince 2017 č. j.: MSMT-31863/2017-1 Opatření č. 5 ministra školství, mládeže a tělovýchovy, kterým se mění rámcové vzdělávací programy oborů středního
VíceTEMATICKÝ PLÁN. září říjen
TEMATICKÝ PLÁN Předmět: MATEMATIKA Literatura: Matematika doc. RNDr. Oldřich Odvárko, DrSc., doc. RNDr. Jiří Kadleček, CSc Matematicko fyzikální tabulky pro základní školy UČIVO - ARITMETIKA: 1. Rozšířené
Více