MODELS OF MEAN FLOW STRESS AND STRUCTURE EVOLUTION OF IRON ALUMINIDES IN HOT FORMING

Podobné dokumenty
SIMPLE MODELS DESCRIBING HOT DEFORMATION RESISTANCE OF SELECTED IRON ALUMINIDES

JEDNODUCHÉ MODELY DEFORMAČNÍCH ODPORŮ A STRUKTUROTVORNÉ PROCESY PŘI TVÁŘENÍ ALUMINIDŮ ŽELEZA ZA TEPLA

STŘEDNÍ PŘIROZENÉ DEFORMAČNÍ ODPORY PŘI TVÁŘENÍ OCELÍ ZA TEPLA - VLIV CHEMICKÉHO A STRUKTURNÍHO STAVU

Ivo Schindler a Marek Spyra b Eugeniusz Hadasik c Stanislav Rusz a Marcel Janošec a

Tváření,tepelné zpracování

Miloš Marek a, Ivo Schindler a

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2006, ročník LII, řada strojní článek č.

MODELS OF HOT DEFORMATION RESISTANCE OF A NB-TI HSLA STEEL

Melting the ash from biomass

The Over-Head Cam (OHC) Valve Train Computer Model

DEFORMACNÍ CHOVÁNÍ ŽÁRUVZDORNÉ CR-NI-SI OCELI DEFORMATION BEHAVIOUR OF A REFRACTORY CR-NI-SI STEEL

UTILIZATION OF THE HOT WEDGE TEST IN RESEARCH OF HOT FORMABILITY OF FREE-CUTTING STAINLESS STEELS

VÝZKUM VLASTNOSTÍ SMĚSI TEKBLEND Z HLEDISKA JEJÍHO POUŽITÍ PRO STAVBU ŽEBRA

CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA

VLIV OBSAHU NIKLU NA VLASTNOSTI LKG PO FERITIZAČNÍM ŽÍHÁNÍ EFFECT OF THE CONTENT OF NICKEL ON DI PROPERTIES AFTER FERRITIZATION ANNEALING

Vliv metody vyšetřování tvaru brusného kotouče na výslednou přesnost obrobku

MOŽNOSTI VYUŽITÍ MIKROLEGOVANÝCH OCELÍ. Tomáš Schellong Kamil Pětroš Václav Foldyna. JINPO PLUS a.s., Křišťanova 2, Ostrava, ČR

Introduction to MS Dynamics NAV

VYSOKOTEPLOTNÍ CREEPOVÉ VLASTNOSTI SLITINY Fe31Al3Cr S PŘÍSADOU Zr. HIGH TEMPERATURE CREEP PROPERTIES Fe31Al3Cr ALLOY WITH Zr ADITIVE

CREEP AUSTENITICKÉ LITINY S KULIČKOVÝM GRAFITEM CREEP OF AUSTENITIC DUCTILE CAST IRON

Possibilities of removing H 2. S from gas from gasification of biomass

MOŽNOSTI TVÁŘENÍ MONOKRYSTALŮ VYSOKOTAVITELNÝCH KOVŮ V OCHRANNÉM OBALU FORMING OF SINGLE CRYSTALS REFRACTORY METALS IN THE PROTECTIVE COVER

SEMI-PRODUCTS. 2. The basic classification of semi-products is: standardized semi-products non-standardized semi-products

Litosil - application

tváření, tepelné zpracování

DC circuits with a single source

Compression of a Dictionary

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Effect of temperature. transport properties J. FOŘT, Z. PAVLÍK, J. ŽUMÁR,, M. PAVLÍKOVA & R. ČERNÝ Č CTU PRAGUE, CZECH REPUBLIC

SLEDOVÁNÍ AKTIVITY KYSLÍKU PŘI VÝROBĚ LITINY S KULIČKOVÝM GRAFITEM

HOT FORMABILITY OF LEDEBURITIC TOOL STEEL X155CrVMo12.1. TVAŘ ITELNOST LEDEBURITICKÉ NÁSTROJOVÉ OCELI X155CrVMo12.1 ZA TEPLA

INFLUENCE OF CONSTRUCTION OF TRANSMISSION ON ECONOMIC PARAMETERS OF TRACTOR SET TRANSPORT

Klepnutím lze upravit styl předlohy. nadpisů. nadpisů.

POVRCHOVÉ VYTVRZENÍ PM NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM PLAZMOVOU NITRIDACÍ SURFACE HARDENING OF NIOBIUM-CONTAINING PM TOOL STEEL BY PLASMA NITRIDING

VYUŽITÍ DYNAMICKÝCH MODELŮ OCELÍ V SIMULAČNÍM SOFTWARE PRO TVÁŘENÍ

LOGOMANUÁL / LOGOMANUAL

Standardní řada lisů Standard range of presses: x x x

ZDOKONALENÁ KLÍNOVÁ ZKOUŠKA TVARITELNOSTI PRI VÁLCOVÁNÍ ZA TEPLA IMPROVED WEDGE TEST OF FORMABILITY AT HOT ROLLING

Transformers. Produkt: Zavádění cizojazyčné terminologie do výuky odborných předmětů a do laboratorních cvičení

KOEFICIENT RYCHLOSTNÍ CITLIVOSTI PŘI TVÁŘENÍ OCELÍ ZA TEPLA VLIV TEPLOTY A CHEMICKÉHO SLOŽENÍ

Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Teacher: Student:

VÝZKUM PLASTICKÝCH VLASTNOSTÍ CrNiSi OCELI ZA TEPLA VÁLCOVÁNÍM A KROUCENÍM

Dynamic Development of Vocabulary Richness of Text. Miroslav Kubát & Radek Čech University of Ostrava Czech Republic

STUDIUM DEFORMAČNÍHO CHOVÁNÍ NÍZKOUHLÍKOVÉ OCELI PŘI FINÁLNÍM DVOUPRŮCHODU NA PÁSOVÉ TRATI STECKEL ZA TEPLA. Libor Černý a, Ivo Schindler b

Aplikace matematiky. Dana Lauerová A note to the theory of periodic solutions of a parabolic equation

Biosensors and Medical Devices Development at VSB Technical University of Ostrava

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

CARBONACEOUS PARTICLES IN THE AIR MORAVIAN-SILESIAN REGION

DUPLEXNÍ POVLAKOVÁNÍ PM NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM DUPLEX COATING OF THE NIOBIUM-ALLOYED PM TOOL STEEL

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

ACOUSTIC EMISSION SIGNAL USED FOR EVALUATION OF FAILURES FROM SCRATCH INDENTATION

SPECIFICATION FOR ALDER LED

WORKSHEET 1: LINEAR EQUATION 1

Rapid tooling. Rapid tooling. Zpracoval: Přemysl Pokorný. Pracoviště: TUL- KVS

Ja n T. Št e f a n. Klíčová slova: Řada knih, srovnání cen v čase, cena vazby a ocelorytové viněty, lineární regresní analýza.

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost

BLATNÍKY A BEDNY NA NÁŘADÍ MUDGUARDS AND TOOLBOXES

Air Quality Improvement Plans 2019 update Analytical part. Ondřej Vlček, Jana Ďoubalová, Zdeňka Chromcová, Hana Škáchová

STANOVENÍ CREEPOVÝCH VLASTNOSTÍ ALUMINIDU ŽELEZA SE ZRETELEM NA JEJICH UŽITÍ JAKO KONSTRUKCNÍHO MATERIÁLU

DETERMINATION OF MECHANICAL AND ELASTO-PLASTIC PROPERTIES OF MATERIALS BY NANOINDENTATION METHODS

KULOVÝ STEREOTEPLOMĚR NOVÝ přístroj pro měření a hodnocení NEROVNOMĚRNÉ TEPELNÉ ZÁTĚŽE

SMĚROVÁ KRYSTALIZACE EUTEKTIK SYSTÉMU Ti-Al-Si DIRECTIONAL CRYSTALLIZATION OF Ti-Al-Si EUTECTICS

THE PREDICTION PHYSICAL AND MECHANICAL BEHAVIOR OF FLOWING LIQUID IN THE TECHNICAL ELEMENT

ASTM A694 F60 - TEPELNÉ ZPRACOVÁNÍ A MECHANICKÉ VLASTNOSTI ASTM A694 F60 HEAT TREATMENT AND MECHANICAL PROPERTIES

T E S T R E P O R T No. 18/440/P124

PLASTICKÉ VLASTNOSTI VYSOKOPEVNOSTNÍCH MATERIÁLŮ DĚLENÝCH NESTANDARDNÍMI TECHNOLOGIEMI

Friction drives have constant or variable drives (it means variators). Friction drives are used for the transfer of smaller outputs.

CHAIN TRANSMISSIONS AND WHEELS

1-AYKY. Instalační kabely s Al jádrem. Standard TP-KK-133/01, PNE Konstrukce. Použití. Vlastnosti. Installation cables with Al conductor

4 TABULKY ZÁKLADNÍCH STATISTICKÝCH CHARAKTE- RISTIK TÌLESNÝCH ROZMÌRÙ TABLES OF BASIC STATISTICAL CHARACTERISTICS OF BODY PARAMETERS

VLIV OHŘEVU Z HLEDISKA PŘÍPRAVY MATERIÁLU K VÁLCOVÁNÍ VYTYPOVANÝCH ZNAČEK Cr-Mo OCELÍ

EXPLOITATION OF THE ELEMENTS OF ARTIFICIAL INTELLIGENCE FOR TIME PREDICTION OF COOLING DOWN METAL SPECIMENS BEFORE FORMING.

Technická část Technical section

GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA

Obrábění robotem se zpětnovazební tuhostí

UPM3 Hybrid Návod na ovládání Čerpadlo UPM3 Hybrid 2-5 Instruction Manual UPM3 Hybrid Circulation Pump 6-9

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

SVAŘOVÁNÍ KOVOVÝCH MATERIÁLŮ LASEREM LASER WELDING OF METAL MATERIALS

VLASTNOSTI KOMPOZITNÍCH POVLAKŮ S KATODICKY VYLUČOVANOU MATRICÍ

PC/104, PC/104-Plus. 196 ept GmbH I Tel. +49 (0) / I Fax +49 (0) / I I

FIRE INVESTIGATION. Střední průmyslová škola Hranice. Mgr. Radka Vorlová. 19_Fire investigation CZ.1.07/1.5.00/

SDÍLENÍ TEPLA PŘI ODLÉVÁNÍ KRUHOVÝCH FORMÁTŮ NA ZPO. Příhoda Miroslav Molínek Jiří Pyszko René Bsumková Darina

STUDIUM ODUHLIČENÍ POVRCHOVÝCH VRSTEV LOŽISKOVÝCH OCELÍ 100Cr6. RESEARCH OF DECARBURIZATION SURFACE LAYER OF BEARING STEEL 100Cr6

SPECIAL FORMING METHODS. Use: It is used for the production of cylindrical and conical parts of exact shapes, which needn t be further machined.

Transportation Problem

TKGA3. Pera a klíny. Projekt "Podpora výuky v cizích jazycích na SPŠT"

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ DISERTAČNÍ PRÁCE

CREEP INTERMETALICKÉ SLITINY TiAl PRI VELMI MALÝCH RYCHLOSTECH DEFORMACE. CREEP OF INTERMETALLIC ALLOY TiAl AT VERY LOW STRAIN RATES

DATA SHEET. BC516 PNP Darlington transistor. technický list DISCRETE SEMICONDUCTORS Apr 23. Product specification Supersedes data of 1997 Apr 16

STLAČITELNOST. σ σ. během zatížení

DEFORMACE A ZOTAVOVOVACÍ PROCESY PŘI VÁLCOVÁNÍ ALUMINIDU ŽELEZA PŘI VYSOKÝCH TEPLOTÁCH

TechoLED H A N D B O O K

Comparison of Two Designs for the Spiral Casing of the Fan Grinding Mill. Porovnání dvou konstrukčních variant spirálové skříně ventilátorového mlýna

HODNOCENÍ MIKROSTRUKTURY A VLASTNOSTÍ ODLITKŮ ZE SLITINY AZ91HP EVALUATION OF MICROSTRUCTURE AND PROPERTIES OF SAND CAST AZ91HP MAGNESIUM ALLOY

Silicified stems of upper Paleozoic plants from the Intra Sudetic and Krkonoše Piedmont basins

Database systems. Normal forms

STUDY OF PLASTIC DEFORMATION OF MAGNESIUM ALLOYS WITH GRADUATE ALUMINIUM CONTENT

Influence of Pre-Oxidation on Mechanical Properties of Zr1Nb Alloy

COMPARISON OF VOLATILE OIL CONTENT EVALUATION METHODS OF SPICE PLANTS SROVNÁNÍ METOD STANOVENÍ OBSAHU SILICE V KOŘENINOVÝCH ROSTLINÁCH

Transkript:

Acta Metallurgica Slovaca, 13, 2007, 4 (618-624 618 MODELS OF MEAN FLOW STRESS AND STRUCTURE EVOLUTION OF IRON ALUMINIDES IN HOT FORMING Suchánek P. 1, Schindler I. 1, Kulveitová H. 1, Kratochvíl P. 2, Hanus P. 2 1 VŠB Technical University of Ostrava, Faculty of Metallurgy and Materials Engineering, 17. listopadu 15, 708 33 Ostrava Poruba, Czech Republic 2 Department of Material Science, Technical University of Liberec, Hálkova 6, 461 17 Liberec, Czech Republic e-mail: pavel.suchanek@vsb.cz, pekrat@met.mff.cuni.cz MODELY ST Ř EDNÍCH P Ř IROZENÝCH DEFORMAČ NÍCH ODPORŮ A VÝVOJ STRUKTURY ALUMINIDŮ ŽELEZA P Ř I TVÁ Ř ENÍ ZA TEPLA Suchánek P. 1, Schindler I. 1, Kulveitová H. 1,Kratochvíl P. 2, Hanus P. 2 1 VŠB Technická univerzita Ostrava, Fakulta metalurgie a materiálového inženýrství, 17. listopadu 15, 708 33 Ostrava Poruba, Česká republika 2 Katedra materiálů, Technická universita v Liberci, Hálkova 6, 461 17 Liberec, Česká republika e-mail: pavel.suchanek@vsb.cz, pekrat@met.mff.cuni.cz Abstrakt Byly zkoumány čtyři aluminidy železa (typu Fe 3 Al s následujícími přísadami: s TiB 2, s Ti, s B, s Ti a B, jejich chemické složení v hm. % následuje: M1 (Fe - 16,5Al - 3,96Cr - 0,33TiB 2-0,01C, M2 (Fe - 19,2Al - 4,89Cr - 0,68Ti - 0,04C, M3 (Fe - 16,8Al - 4,00Cr - 0,063B - 0,02C, M4 (Fe - 18,4Al - 4,94Cr - 0,61Ti - 0,070B - 0,04C. Vzorky s odstupňovanou tloušťkou byly válcovány za tepla. Výhoda použití těchto vzorků s odstupňovanou tloušťkou spočívá v trojnásobném množství získaných dat pro jednu definovanou tvářecí teplotu v porovnání s válcováním jednoduchých plochých vzorků s konstantní tloušťkou. Každému vzorku byly měněny následující parametry: válcovací teplota, nastavení velikosti mezery mezi válci (tj. konečná deformace jednotlivých stupínků vzorku, nominální otáčky válců z nich je odvozena deformační rychlost. Deformační odpory byly počítány, metodou několika násobné nelineární regrese s využitím statistického programu Unistat 5.5, z hodnot válcovacích sil měřených na laboratorní trati Tandem. Byly vyvinuty matematické modely středních přirozených deformačních odporů vybraných aluminidů železa v závislosti na teplotě a deformaci. Pomocí metalografického rozboru byly zjišťovány postdynamické strukturotvorné procesy použitých aluminidů válcovaných na laboratorní stolici K350 za tepla. Byly použity tři tvářecí teploty a tři režimy ochlazování, následně sledována a porovnávána struktura jednotlivých aluminidů železa. Byly popsány rozdílnosti v deformačním chování a tvařitelnosti materiálů, které mají dobré creepové vlastnosti za vysokých teplot. Abstract Four iron aluminides (type Fe 3 Al were tested with following additives: with TiB 2, with Ti, with B, with Ti and B, their chemical compositions in wt. % as follow: M1 (Fe - 16.5Al - 3.96Cr - 0.33TiB 2-0.01C, M2 (Fe - 19.2Al - 4.89Cr - 0.68Ti - 0.04C, M3 (Fe - 16.8Al - 4.00Cr - 0.063B - 0.02C, M4 (Fe - 18.4Al - 4.94Cr - 0.61Ti - 0.070B - 0.04C. Flat specimens with graded in size thickness were hot rolled. An advantage of the sample with thickness graded in size consists in a three times higher quantity of data achieved by its rolling at exactly defined

Acta Metallurgica Slovaca, 13, 2007, 4 (618-624 619 temperature as compared with rolling of one flat sample with a constant thickness. For each sample the following parameters were changed: temperature, roll gap adjustment (i.e. total deformation of the particular step of the sample and nominal revolutions of rolls they determine the achieved strain rate. Deformation resistance was calculated, by method based on non-linear regression by means of the statistical software Unistat 5.5, from the roll force values that were measured in the laboratory rolling mill Tandem. Mathematical models of mean flow stress of selected iron aluminides depending on temperature and strain were developed. Postdynamic structure-forming processes of the tested aluminides were investigated by metallography after hot rolling in the laboratory mill stand K350. Three forming temperatures and three modes of cooling were used, and then the structures of each iron aluminides were compared. Differences in deformation behavior and formability of the materials, which creep resistance at high temperatures is good, were described. Keywords: Structure of iron aluminides, Fe 3 Al, hot rolling, mean flow stress, sample with graded in size 1. Introduction Iron aluminides of type Fe 3 Al have been representing an object of investigation for many years. These alloys feature low material costs and lower specific weight, they guarantee compared with expensive corrosion-resistant steel types savings of elements, such as Cr, Ni, and some others. They have high resistance in sulphidic and oxidic atmosphere, especially at high temperatures, and therefore their use e.g. for structural parts in aviation, heating elements, heat exchangers, equipment in chemical production, etc. is supposed [1]. An essential step is increase in their creep resistance at temperatures above 600 C. This is achieved by additives which form stable phases, increasing strength of the material at temperatures of their use. On the other side, deformation resistance that is increased in this way can result unfavourably in production of such components, e.g. in application of hot rolling. Another key parameter in evaluation of the material is its structure, by which mechanical properties are given. Influence of various modes of forming and cooling on the resulting structure of specified alloys after one height reduction was investigated. 2. Experiment Four melts of iron aluminides (type Fe 3 Al with a similar chemical composition with various contents of Cr, Ti and B (see Tab.1, were studied and compared. The experiment was divided in two parts. First the mean flow stress (MFS was found out in the laboratory rolling mill Tandem, and then postdynamic structure-forming processes of investigated aluminides, rolled in the laboratory mill stand K350, were studied [2]. Table 1 Chemical composition of the studied materials Alloy Al (wt. % / at. % Cr Ti B C M1 16.5/28.9 4.0/3.6 TiB 2=0.33/0.76 0.01/0.04 M2 19.2/32.8 4.9/4.3 0.68/0.65 0.04/0.12 M3 16.8/29.3 4.0/3.6 0.06/0.27 0.02/0.08 M4 18.4/31.7 4.9/4.4 0.61/0.59 0.07/0.30 0.02/0.08

Acta Metallurgica Slovaca, 13, 2007, 4 (618-624 620 2.1 Models of mean flow stress Flat samples with graded in size thickness, which were prepared by water cutting and grinding, were hot rolled. Each sample was carefully measured and afterwards directly heated in an electric resistance furnace to the rolling temperature (900 1200 C. The heated sample was immediately rolled down in stand A of the laboratory mill Tandem [2] (roll diameter ca 159 mm. Roll forces and actual revolutions of rolls were recorded by means of computer. After cooling down of the rolled stock, width and thickness of individual steps were also measured. All recorded variables mentioned above were put down in the Excel table and recalculated on values of equivalent (logarithmic height reduction e h, strain rate [s -1 ] and MFS σ m [MPa] [3, 4]. The resulting equation for description of MFS should make it possible a quick prediction of force parameters during rolling. Based on previous experience a simple model for description of MFS of the investigated material in relation to deformation (strengthening and dynamic softening are taken into account, temperature and strain rate, was chosen: B h D σ = A e exp( C e e& exp( G T (1 h where σ [MPa] is mean flow stress (c means as calculated During calculation of material constants A... G (by means of the statistical software Unistat 5.5 in the equation of type Eq. 1, in case of all studied materials M1, M2, M3 and M4 an observation was made that enabled without registered loss of accuracy to simplify this relation by exclusion of the deformation member e h, which is sufficiently represented in the parameter of strain rate, see Eq. 2, as it was already found out and verified by previous experiments [3]. 2 = 3 v r e& eh (2 ld where v r [mm/s] is actual peripheral speed of rolls with radius R [mm], l d [mm] represents the roll bite length [5]. The following models were the result of this mathematical processing: σ = 2017 e exp 00225 M1 (3 & 0,032 σ = 6763 e exp 00395 M2 (4 & 0,159 σ = 4954 e exp 00311 M3 (5 & 0,040 σ = 8832 e exp 00389 M4 (6 & 0,083 Accuracy of the achieved models may be evaluated by a simply defined relative error [%] according to the relation: (σ m σ / σ m 100, where σ m is an observed and σ a calculated value of the mean flow stress. Relative errors did not surpass values of ca ±10 % in case of alloys M1 and M3 or ±7 % in case of alloys M2 and M4 (see Fig. 1, which is quite sufficient for given purposes.

Acta Metallurgica Slovaca, 13, 2007, 4 (618-624 621 a dependence of relative error of MFS model on strain b dependence of relative error of MFS model on strain rate c dependence of relative error of MFS model on temperature Fig.1 Relative errors of the mean flow stress calculated according to Eqs. 3 6 for M1 M4 alloys 2.1 Microstructure evolution The used forming temperatures for all 4 aluminides were 900 C, 1100 C and 1300 C. Samples were rolled with one height reduction in the four-high mill stand K350 [2], the working rolls (roll diameter ca 64 mm of which rotated with revolutions 80 min -1. The size of the relative height reduction corresponded to value of 33 %. Immediately after rolling 3 modes of cooling were applied: quenching of the sample in oil directly or after dwell on the forming temperature lasting 1 minute or 5 minutes. The resulting microstructure was evaluated by means of optical metallography e.g. see Figs. 2 and 3. 1 mm 1 mm a 1100 C / oil quenching b 1100 C / 1 min, oil quenching 1 mm c 1100 C / 5 min, oil quenching Fig.2 Comparison of structure development in case of selected M3 samples depending on schedule of cooling from deformation temperature 1100 C

Acta Metallurgica Slovaca, 13, 2007, 4 (618-624 622 1 mm 1 mm a initial state b 900 C / 5 min, oil quenching 1 mm c 1100 C / 5 min, oil quenching d 1300 C / 5 min, oil quenching Fig.3 Structure of selected samples of M2 alloy 1 mm In Fig. 2 an example of the structure evolution in dependence on the mode of cooling in case of the chosen iron aluminide M3 is shown. This example proves a fact that is common for all four investigated materials, namely that recrystallization proceeded only in dwell on the temperature. Hence, softening of the investigated alloys by static recrystallization became apparent. Rolling at temperature of 1100 C with the following dwell lasting 1 or 5 minutes on the same temperature see Figs. 2 b,c and Fig. 3 c seemed to be the best way of forming from viewpoint of the deformed structure. A more pronounced refining of the structure due to recrystallization occurred in areas of more intensively formed surfaces of samples. Rolling at temperature of 900 C led to only mild procedure of recrystallization processes, which can be found out from photo in Fig. 3 b. Rolling at temperature of 1300 C did not result in grain refinement because during the following dwell on the temperature a complete recrystallization and subsequent grain coarsening came into being, virtually to grain size corresponding to the initial state compare photos in Figs. 3 a and 3 d. 3. Discussion of results The mathematical model of MFS calculated on the basis of the methodology mentioned above, is capable to compare different deformation behaviour of M1 M4 materials. For this purpose graphs in Fig. 4 were plotted. M2 and M4 alloys on one side exhibit a sharper rise of σ m with increasing strain against M1 and M3, but on the other side reach deformation resistance by ca 20 to 30 MPa lower. In case of alloys M2 and M4 also a fall of MFS with increased forming temperature is more pronounced. Based on laboratory rolling of flat samples with the graded in size thickness, values of σ m of iron aluminides M1, M2, M3 and M4 were obtained after recalculation from roll forces namely in the range of logarithmic height strain e h from 0.20 to 0.76, strain rate from 20 to 96 s -1. Rolling temperatures T were in range from 960 to 1200 C. As far as accuracy of derived models of MFS is concerned, for M1 alloy the root of the mean square error was 17.3 and the value of R 2 = 0.91; for M2 alloy analogical magnitude 6.1 and 0.97; for M3 alloy 9.9 and 0.95; for M4 alloy 10.1 and 0.95. It is possible to welcome that scattering of deviations between values of σ m that were found out from experiments and recalculated from Eqs. 3 6 is uniform in the whole range (and, moreover, these relative deviations do not surpass ±10 % in case of M1 and M3, and ±7 % in case of M2 and M4 alloys, respectively.

Acta Metallurgica Slovaca, 13, 2007, 4 (618-624 623 alloy M1 alloy M2 Fig.4 Example of MFS 3D-maps of selected alloys in dependence on strain rate and temperature Models of MFS of iron aluminides alloys M2 and M4 exhibited a more sensitivity to changes of forming conditions (deformation size and forming temperature compared with alloys M1 and M3, which can be demonstrated in Fig. 4. Reasons for different deformation behaviour should be found in origin of various phases after the thermal history of each of the materials, i.e. in presence and morphology of phases, formation of which is connected with presence of the used additives. These phases (they function as some obstacles influence both recrystallization (by blocking the movement of grain boundaries and the proper deformation during rolling. Stress along grain boundaries, densely occupied by heterogeneous phases, initiates the intercrystalline fracture, as it could be with the material M3. The following phases, which could cause the above mentioned differences in deformation resistance of the investigated materials, were found in these materials [6]: M1: particles TiB 2 along grain boundaries and inside the grains and unidentifiable particles, which are rich in Cr (without Ti on grains; M2: particles with Ti, mostly of TiC type; M3: particles Fe 3 B, which start to dissolve at higher temperatures; M4: particles which are similar as in the case of M1, only different as far as morphology is concerned. 4. Summary Four selected iron aluminides (type Fe 3 Al of similar basic chemical composition with various combinations of Ti and B content were investigated. Values of mean flow stress of these materials were experimentally obtained, mathematically described and compared. Postdynamic structure-forming processes of the tested aluminides were investigated by metallography after laboratory hot rolling. Rolling at temperature of 1100 C with the following dwell on the same temperature seemed to be the best way of forming from viewpoint of the grain refinement. Rolling at temperature of 900 C led to only mild procedure of recrystallization processes, whereas dwell at temperature of 1300 C yielded in coarsening of the recrystallized grains. Acknowledgement The investigation was made in the framework of research plans MSM 6198910015 and MSM 4674788501 (Ministry of Education of the Czech Republic.

Acta Metallurgica Slovaca, 13, 2007, 4 (618-624 624 Literature [1] McKamey C.G. et al.: A review of recent developments in Fe 3 Al-based alloys, Journal of Materials Research, 1991, 6, No. 8, pp. 1779-1804. [2] Information on www.fmmi.vsb.cz/model. [3] Kratochvíl P., Schindler I.: Conditions for Hot Rolling of Iron Aluminide. Advanced Engineering Materials, 6, 2004, No. 5, pp. 307-310. [4] Kratochvíl P., Schindler I.: Válcovatelnost intermetalické sloučeniny typu Fe 3 Al. Možnosti fyzikálního modelování při výzkumu válcování pásu. In 56. pracovní seminář Společnosti ocelové pásy, Trojanovice, VŠB-TU Ostrava, 2004, pp. 71-76. [5] Krejndlin N. N.: Rascot obzatij pri prokatke cvetnych metallov. Moskva : Metallurgizdat, 1963. [6] Komenda V.: Diploma thesis, UK MFF Praha 2006.