Skutečná spotřeba vody vybranými kulturními a plevelnými druhy rostlin stanovená v polních podmínkách



Podobné dokumenty
Meteorologické faktory transpirace

Kořenový systém plodin jako adaptační opatření na sucho

Stanovení transpirace lesních porostů metody a cíle.

Ing. Matěj Orság Vodní bilance rychle rostoucích dřevin

WATER REGIME OF MAIZE (ZEA MAYS L.) IN DIFFERENT MOISTURE CONDITIONS

ZMĚNA KLIMATU A JEJÍ DOPADY NA RŮST A VÝVOJ POLNÍCH PLODIN

Ing. Eva Pohanková Růstové modely nástroj posouzení dopadů změny klimatu na výnos polních plodin

DYNAMIKA PROMĚNLIVOSTI KONVERZNÍHO FAKTORU ZA TYPICKÝCH DNŮ

Rožnovský, J., Litschmann, T. Středová, H., Středa, T. (eds): Voda, půda a rostliny Křtiny, , ISBN

Oddělení biomasy a vodního režimu

1. Meziplodiny jako součást systémů hospodaření

Vodní režim půd a jeho vliv na extrémní hydrologické jevy v měřítku malého povodí. Miroslav Tesař, Miloslav Šír, Václav Eliáš

7/12. Vlhkost vzduchu Výpar

Václav Brant, Milan Kroulík, Petr Zábranský, Jan Sova, Jan Lukáš, Michaela Škeříková a Veronika Řičařová Precizní zemědělství, Praha, 7.3.

Ekosystém. tok energie toky prvků biogeochemické cykly

Zemědělské systémy I týden

Výzkumný ústav rostlinné výroby, v.v.i. Praha - Ruzyně

Měření transpirace prostřednictvím transpiračního proudu a operačních struktur dřevin významných z hlediska vodního provozu

Key words Solar radiation; spatial insolation; phytoclimate; tautochrones

Indikátory pro polní plodiny v rámci výzkumného záměru

6. Tzv. holocenní klimatické optimum s maximálním rozvojem lesa bylo typické pro a) preboreál b) atlantik c) subrecent

Rožnovský, J., Litschmann, T., (eds): Závlahy a jejich perspektiva. Mikulov, , ISBN

Vliv redukovaného zpracování půdy na výskyt drátovců a zavíječe kukuřičného

Možné dopady změny klimatu na zásoby vody Jihomoravského kraje

Metody hodnocení sucha v lesních porostech. Kateřina N. Hellebrandová, Vít Šrámek, Martin Hais

Plevelné rostliny příčiny jejich expanzí a metody jejich regulace. Doc. Ing. Jan Mikulka, CSc.

Jak načasovat zásah proti časným škůdcům řepky

Příloha č. 1: Základní geometrické charakteristiky výzkumných povodí

Key words solar radiation, phytoactinometry, reflected radiation, spatial radiation

Fyziologické a anatomické přizpůsobení sazenic na stres suchem - metody studia stresu

TVORBA VÝNOSŮ PŠENICE OZIMÉ A SILÁŽNÍ KUKUŘICE PŘI RŮZNÉM ZPRACOVÁNÍ PŮDY Forming of winter wheat and silage maize yields by different soil tillage

SLEDOVÁNÍ JARNÍCH FENOLOGICKÝCH FÁZÍ U BUKU LESNÍHO VE SMÍŠENÉM POROSTU KAMEROVÝM SYSTÉMEM

Metody řízení závlahy ve sklenících a kontejnerovnách. Tomáš Litschmann

Jak se projevuje změna klimatu v Praze?

Technika ošetřování půd uváděných do klidu


Vývoj počtu a plochy listů jabloní během vegetace v závislosti na povětrnostních podmínkách

Zatížení prostředí pesticidy. etapy I, II, III, V

Biologie a regulace pcháče rolního (Cirsium arvense L. Scop.) v cukrovce

Vliv pěstebních opatření na porostní mikroklima

Pásové výsevy meziplodin v pěstebních systémech kukuřice seté

VLIV DÁVKY A FORMY DUSÍKATÉ VÝŽIVY NA VÝNOS A OBSAH DUSÍKATÝCH LÁTEK V ZRNU

Koncentrace přízemního ozónu jako funkce parametrů prostředí ve vztahu k poškození listů.

Hodnocení roku 2013 a monitoring sucha na webových stránkách ČHMÚ možnosti zpracování, praktické výstupy

Minimalizační technologie zpracování půdy a možnosti jejich využití při ochraně půdy

ZMĚNY METEOROLOGICKÝCH VELIČIN NA STANICI VIKÝŘOVICE BĚHEM ZATMĚNÍ SLUNCE V BŘEZNU 2015

značné množství druhů a odrůd zeleniny ovocné dřeviny okrasné dřeviny květiny travní porosty.

FAKTORY KONKURENCESCHOPNOSTI PRODUKTŮ ROSTLINNÉ VÝROBY V ČR COMPETITIVENESS FACTORS OF PRODUCTS OF PLANT PRODUCTION IN THE CZECH REPUBLIC

MOŽNOSTI VYUŽITÍ BIOLOGICKY AKTIVNÍCH LÁTEK PŘI MOŘENÍ OSIVA SÓJI

Zavlažování broskvoní v podmínkách jižní Moravy a Slovenska

Od procesů k systému...cesta tam a zase zpátky. aneb JAK VLASTNĚ ROSTE ROSTLINA?

Možné dopady měnícího se klimatu na území České republiky

Der Einfluss von Überkonzentrationen bodennahen Ozons auf die Gesundheit der Waldbaumarten im Osterzgebirge sowie Möglichkeiten der Vorhersage.

Vyjadřování přesnosti v metrologii

Vliv abiotických a biotických stresorů na vlastnosti rostlin 2013

Možné dopady klimatické změny na dostupnost vodních zdrojů Jaroslav Rožnovský

Úvod k lesním ekosystémům

Změny bonitačního systému půd v kontextu změny klimatu. Bonitační systém v ČR. Využití bonitačního systému. Struktura kódu BPEJ - ČR

Otázky k předmětu Globální změna a lesní ekosystémy

Srovnání biodiverzity sadů v různých režimech hospodaření. Martin Bagar

Kořenový systém plodin a využití zásoby vody v půdním profilu - význam pro zemědělskou praxi

VÝNOSOVÝ POTENCIÁL TRAV VHODNÝCH K ENERGETICKÉMU VYUŽITÍ

Předmět: Hospodářská úprava lesů II

Hodnocení let 2013 a 2014 a monitoring sucha na webových stránkách ČHMÚ možnosti zpracování, praktické výstupy

FYZIOLOGICKÉ DŮSLEDKY PŮSOBENÍ NEDOSTATKU VODY NA ROSTLINY CHMELE Physiological consequences of water shortage on hop plants

Půdní a zemědělské sucho


Odhad vývoje agroklimatických podmínek v důsledku změny klimatu

Nadzemní biomasa a zásoba uhlíku

2) Povětrnostní činitelé studují se v ovzduší atmosféře (je to..) Meteorologie je to věda... Počasí. Meteorologické prvky. Zjišťují se měřením.

fytopatogenů a modelování

Růstové modely a agrometeorologický monitoring

Herbicidní ochrana brambor Pavel Kasal

VLIV ZALOŽENÍ A ORGANIZACE POROSTU NA TVORBU VÝNOSU ŘEPKY


Helena Zukalová 1, David Bečka 1, Jiří Šimka 1, Jan Vašák 1, Petr Škarpa 2, Eva Kunzová 3 1)Česká zemědělská univerzita v Praze 2)Mendelova

Ing. Jan Matějka ECO trend Research centre s.r.o.

plíseň bramboru, signalizační metody, termín vzcházení, suma ef. teplot

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost

Funkční přístup ke studiu vegetace (EKO/FV)

Toky energie v ekosystémech a evapotranspirace. Jakub Brom LAE ZF JU a ENKI o.p.s.

Vaše kukuřice bude tak čistá, že se v ní divočák neschová! Akris

Základní komponenty modelu lesa. Jan Kadavý

ODRŮDY ŘEPKY. ES Alpha ES Bourbon ES Mercure Granat Gamin.

Soubor specializovaných map povodí Teplého potoka pro simulaci odtokového procesu v suchém období

Sucho se za uplynulý týden výrazně prohloubilo a dosáhlo nejhoršího rozsahu v tomto roce

Management lesů význam pro hydrologický cyklus a klima

HODNOCENÍ ROZDÍLNÝCH REŽIMŮ PŘI PROCESU SPALOVÁNÍ

TRANSPIRACE A EVAPOTRANSPIRACE V EKOFYZIOLOGII LESNÍCH DŘEVIN

POTENCIÁLNÍ OHROŽENÍ SUCHEM PODLE SOUBORŮ LESNÍCH TYPŮ

Aplikovaná botanika BOT/ABP

Česká zemědělská univerzita v Praze. Ústav ekológie lesa Slovenskej akadémie vied. Vás srdečně zvou

VLASTNOSTI OSIVA JARNÍHO MÁKU Z PODZIMNÍCH A JARNÍCH VÝSEVŮ

Název zařízení / sestavy:

Aktuální problémy regulaci v souvislosti s omezením rozsahu povolených herbicidů

Errata: Respektujte varovné věty a symboly uvedené v označení Přípravek je ke dni povolen pouze pro profesionální uživatele

Na květen je sucho extrémní

Účinnost herbicidních látek firmy Dow AgroSciences na vybrané plevele v trávnících

KLÍČIVOST A VITALITA OSIVA VYBRANÝCH DRUHŮ JARNÍCH OBILNIN VE VZTAHU K VÝNOSU V EKOLOGICKÉM ZEMĚDĚLSTVÍ

Vodní režim rostlin. Transpirace. Energetická bilance listu. Fickovy zákony Hraniční vrstva Kutikula Průduchy

Transkript:

Skutečná spotřeba vody vybranými kulturními a plevelnými druhy rostlin stanovená v polních podmínkách Abstrakt Jan Pivec, Václav Brant Česká zemědělská univerzita v Praze, Katedra agroekologie a biometeorologie, Kamýcká 957, 165 21 Praha 6 Suchdol V letech 2005 až 2007 byla v polních podmínkách hodnocena spotřeba vody vybranými kulturními a plevelnými druhy. Hodnoty transpiračního toku byly měřeny 12-ti kanálovým průtokoměrem T4.2 firmy EMS Brno. Záznam hodnot během prováděných měření byl prováděn v 10-ti minutových intervalech. Transpirační tok byl měřen na kukuřice seté, laskavce ohnutého, lociky kompasové, pelyňku černobýlu, pcháče rolního, řepky ozimé a turanky kanadské. Průměrné denní hodnoty transpiračního toku se na základě provedených měření pohybovaly v rozmezí od 0,016 do 0,193 kg H 2 O den -1. Hodnoty maxim denních hodnot poté v rozmezí od 0,025 do 0,309 kg H 2 O den -1. Klíčová slova: transpirace, řepka ozimá, plevele, globální radiace, sytostní doplněk. Úvod Spotřeba vody rostlinami činí významnou položku vodní bilance krajiny (Merta et al., 2001). Důležitým faktorem ovlivňujícím vodní bilanci porostů na zemědělské půdě a následně krajiny je druhové složení fytocenóz. V rámci agrofytozenóz se na vodní bilanci porostů podílejí kulturní rostliny a plevele. Znalost intenzity transpirace kulturních rostlin a plevelů jako jednoho z členů rovnic pro výpočet vodní bilance stanoviště či porostu není důležitá pouze pro stanovení celkové transpirace agrofytocenózy, ale i pro posouzení vzájemných konkurenčních vztahů o vodu mezi kulturní rostlinou a plevely. Dosavadní znalosti o vláhových poměrech rostlinných druhů byly získány především v rámci studia lesních společenstev a hodnoty transpirace jsou známé u dřevin (Čermák et al., 1992, 1995, Schulze et al., 1985, Jech et al., 2003). Informace o vláhových nárocích bylinných druhů, zejména při jejich stanovení v přirozených podmínkách, nejsou relativně na základě literatury tak početné (Bethenod et al., 2000, Merta et al., 2001). Z hlediska stanovení vláhových nároků jedinců lze použít tzv. sapflow metru (průtokoměru), založeném na principu sledování šíření tepla v bylinných či v dřevnatých stoncích (Kučera et al., 1977). Průtok vody ve stonku transpirační tok závisí především na evaporačních nárocích přiléhající vrstvy atmosféry reprezentovaných kupř. sytostním doplňkem a dále na příkonu energie daném kupř. energií globálního záření (Woodward, Sheehy, 1983). Ověřováním závislostí mezi transpirací rostlin kukuřice a povětrnostními vlivy stanoviště v polních podmínkách se zabývali např. Pivec a Brant (2006). Z hlediska vláhových nároků kulturních plodin prokázali Brant et al. (2007a) rozdíly ve vláhových nárocích liniové a hybridní odrůdy řepky ozimé. V rámci polních pokusů byly rovněž stanoveny hodnoty transpirace u vybraných plevelných druhů z čeledi Asteraceae (Brant et al., 2007b). Cílem práce je na základě dosavadních experimentů provést srovnání vláhových nároků vybraných rostlinných a plevelných druhů stanovených v polních podmínkách Materiál a metody Použití metody tepelné bilance je založeno na vztahu (1) mezi vstupujícím množstvím tepla a přírůstkem teploty v definovaném prostoru (Kučera et al., 1977): P = Q dt cw + dt z, (1) kde P je vstupní tepelná energie (W), Q je transpirační tok (kg s -1 ), dt je teplotní diference v měřeném prostoru (K), c w je specifické teplo vody (J kg -1 K -1 ) a z je koeficient tepelných ztrát v měřeném 241

prostoru (W K -1 ). V našich pokusech probíhajících v letech 2005 až 2007 byly hodnoceny hodnoty transpiračního toku u vybraných kulturních a plevelných rostlin v polních podmínkách. Hodnoty Q byly měřeny 12-ti kanálovým průtokoměrem T4.2 pro průměr stvolu od 6 do 20 mm firmy EMS Brno. Záznam hodnot během prováděných měření byl prováděn v 10-ti minutových intervalech po celou dobu jednotlivých měření. Měřiště se vždy nacházelo na bázi rostliny nebo lodyhy (měřeny byly vybrané lodyhy na pelyňku černobýlu a pcháče rolního). Tabulka 1 dokumentuje hodnocené rostlinné druhy, lokalitu a dobu, po kterou měření probíhala. Měření transpiračního toku probíhalo na řepky ozimé v rozmezí vývojových fázích BBCH 65 89 (fáze kvetení až zrání). V letech 2005 a 2007 bylo měření prováděno na řepky ozimé odrůdy Navajo, v roce 2006 na odrůdách Jesper a Spirit. Hodnocené plevelné druhy se v době měření nacházely ve fázi začátku kvetení až počátku zrání semen. Jako doplňující meteorologické charakteristiky byly sledovány: teplota (t) a vlhkost vzduchu (r) z nichž byl stanovován sytostní doplněk (d), globální radiace (Rg) a srážky (S),. Tabulka 1: Specifikace lokality, termínu měření a druhů, u nichž byl měřen transpirační tok (n = počet měřených rostlin nebo lodyh). Rostlinný druh Termín měření n Lokalita Poznámka Kukuřice setá K (Zea mays) 2.8. 8.8. 2005 1 Červený Újezd měřeno v porostu kukuřice Laskavec ohnutý P (Amaranthus retroflexus) 2 Praha Suchdol měřeno na soliterních Locika kompasová P (Lactuca serriola) 9 8 Praha Suchdol měřeno na soliterních Pelyněk černobýl P (Artemisia vulgaris) 7* 7* Praha Suchdol ol měřeno na soliterních Pcháč rolní P (Cirsium arvense) 2.8. 8.8. 2005 1* Červený Újezd měřeno v porostu kukuřice Řepka ozimá K (Brassica napus) 9.6. 22.7. 2005 5.6. 25.7. 2006 6 6 Červený Újezd měřeno v porostu řepky ozimé 26.4. 29.6. 2007 24 Turanka kanadská P (Conyza canadensis) 6 9 Praha Suchdol měřeno na soliterních Vysvětlivky: K kulturní rostlina, P plevelná rostlina, n = počet měřených rostlin nebo lodyh* Pro aproximaci průběhu transpirace (záznamy v 10-ti minutových intervalech a průměrné denní hodnoty) pomocí globální radiace a sytostního doplňku byla použita lineární (aritmetická řada) a nelineární (geometrická řada) závislost, vyjádřená vztahem (2) Kučera (ústní sdělení): Y 1 1 2 2 + = ax /( X + b) X /( X c), (2) kde a, b, c jsou parametry, Y průtok vody rostlinou transpirace, X 1 globální radiace, X 2 sytostní doplněk. Pomocí této aproximace lze exaktně stanovit jednoznačně fenologickou fázi BBCH, odpovídající ukončení růstové fáze druhu. Zde se průběh skutečně měřené hodnoty transpirace protne s aproximovaným, určovaným pouze vstupními hodnotami globální radiace a sytostního doplňku. Výsledky a diskuse Průměrné denní hodnoty transpiračního toku stanovené v našich pokusech včetně denních průměrů přijaté energie a sumy srážek za sledované období dokumentuje tabulka 2. Z hlediska vláhových nároků rostliny je zajímavé i stanovení maxim denních hodnot transpiračního toku jako nejvyšších hraničních hodnot intervalu, ve kterém se hodnoty Q nacházely. Spodní hranice tohoto intervalu je samozřejmě určována téměř nulovou hodnotou, která byla zaznamenána při vysoké oblačnosti a srážkové aktivitě. Pozitivní závislost mezi hodnotami transpiračního toku rostliny a energetickým 242

vstupem vyjádřeným pomocí globální radiace je na základě podobnosti průběhu výše uvedených veličin dokumentována obr. 1 a 2. Přijatá energie slunečního záření však není jediným faktorem řídícím transpiraci. Spolu s dostupností vody v půdě (nebyla měřena), aerodynamickými podmínkami (nebyly měřeny) a evaporačními nároky atmosféry v zóně aktivního povrchu vegetace, vyjádřenými kupř. sytostním doplňkem (obr. 1), je rozhodujícím abiotickým faktorem prostředí procesu výparu vody z ekosystému do atmosféry (Kučera et al., 1977, Pivec, Brant, 2006). Průměrné denní hodnoty transpiračního toku se na základě provedených měření pohybovaly v rozmezí od 0,016 do 0,193 kg H 2 O den -1. Hodnoty maxim denních hodnot poté v rozmezí od 0,025 do 0,309 kg H 2 O den -1. Z hlediska stanovení vláhových nároků stanoviště či porostu je však potřebné určení hodnoty transpiračního toku na jednotky plochy porostu. Tato hodnota je jednak dána počtem jedinců kulturní rostliny na jednotku plochy a vychází z požadavků na optimální strukturu porostu a dále pak intenzitou zaplevelení, tj. abundancí plevelů a jejich druhovým spektrem, včetně produkce biomasy. Jestliže se v našich pokusech počet rostlin řepky ozimé pohyboval v rozmezí od 30 do 50 rostlin na m 2, pak lze na základě odhadu transpiračních nároků porostu vycházejícího z průměrné denní hodnoty Q = 0,055 kg H 2 O den -1 rostlinu -1 (průměrná hodnota z provedených měření za období 2005 2007) stanovit, že průměrná denní spotřeba vody porostem se může pohybovat v rozmezí 1,650 až 2,750 kg H 2 O den -1 m -2. To platí v případě, že do daného odhadu nejsou započteny hodnoty transpiračního toku plevelů. Z hlediska transpiračních nároků plevelů se však nejedná pouze o ovlivnění vláhových nároků porostu, ale také o kompetiční vztahy mezi kulturními a plevelnými rostlinami o vodu. Srovnáme-li například transpirační nároky rostlin ozimé řepky a lociky kompasové, která může porosty ozimé řepky zaplevelovat, zjistíme, že jsou obdobné. Poté můžeme vyslovit domněnku, že výskyt jedné rostliny lociky kompasové na jednotku plochy porostu řepky ozimé má stejný vliv na transpirační nároky porostu a kompetiční vztahy o vodu, jako zvýšení počtu jedinců řepky ozimé na danou jednotku plochy o jednu rostlinu. Výraznější ovlivnění transpiračních nároků porostu a kompetice o vodu nastane, budeme-li hodnotit vliv výskytu rostlin pelyňku černobýlu v porostech řepky ozimé. Dosahovala-li denní průměrná hodnota transpiračního toku 0,077 až 0,084 kg H 2 O na jednu lodyhu, pak při průměrném počtu lodyh, který se v řepce ozimé může pohybovat od 3 do 7, jsou vláhové nároky tohoto plevele ve srovnání s rostlinou řepky značně vyšší. Tabulka 2: Průměry denních hodnot transpiračního toku (Q, kg H 2 O den -1 ), jejich maxim (Q max, kg H 2 O den -1 ) a směrodatné odchylky Q max (Sd.Q max ) u hodnocených rostlinných druhů a průměrné denní sumy globální radiace (Rg, MJ m -2 den -1 ) a sumy srážek (S, mm) za sledované období. Rostlinný druh Termín měření Q Q max Sd.Q max Rg S Kukuřice setá 2.8. 8.8. 2005 0,193 0,309 14,801 20,6 (Zea mays) Laskavec ohnutý 0,018 0,080 14,104 99,0 (Amaranthus retroflexus) Locika kompasová (Lactuca serriola) 0,068 0,025 0,153 0,093 0,102 0,041 14,104 17,777 99,0 79,0 Pelyněk černobýl (Artemisia vulgaris) 0,077 0,084 0,150 0,157 0,062 0,092 14,104 17,777 99,0 79,0 Pcháč rolní 2.8. 8.8. 2005 0,016 0,025 14,801 20,6 (Cirsium arvense) Řepka ozimá (Brassica napus) 9.6. 22.7. 2005 5.6. 25.7. 2006 0,044 0,092 0,121 0,187 0,033 0,074 17,077 22,342 174,8 65,1 Turanka kanadská (Conyza canadensis) 26.4. 29.6. 2007 0,030 0,046 0,078 0,079 0,116 0,174 0,055 0,043 0,051 19,548 14,104 17,777 195,9 99,0 79,0 243

Obr. 1: Průměrné denní průběhy hodnot transpiračního toku (Q, kg h -1 ) u turanky kanadské (průměr ze 6 rostlin) a lociky kompasové (průměr z 9 rostlin) za období 19.8. až 22.8. 2006 a denní průběhy hodnot globální radiace (Rg, kj m -2 10 min -1 ), sytostního doplňku (d, hpa) a 10-min sumy srážek (S, mm) za téže období. 244

Obr. 2: Průměrné denní hodnoty transpiračního toku (Q, kg h -1 ) u řepky ozimé (průměr 6 rostlin) v období od 5.6. do 2.7. 2006 a denní průběhy hodnot globální radiace (Rg, MJ m -2 d -1 ), teploty vzduchu ve 2 m (t, C) a denní sumy srážek (S, mm) za téže období. Závěry Naměřené hodnoty a z nich vyplývající úvahy naznačily, jak významnou složku vodní bilance v agroindustriální krajině spotřeba vody zemědělskými plodinami i plevely představuje. Některé plevelné druhy (pcháč rolní) transpirují minimálně, méně než 0,1 l H 2 O denně, jiné díky rozvětvenému systému lodyh na jedince (pelyněk černobýl) a srovnatelné hodnotě průtoku vody lodyhou s hlavní hospodářskou plodinou představují výraznou konkurenci o vodu v agroekosystémech jako významných proměnlivých krajinotvorných prvcích. Uvážíme-li že se jedná o desítky tun vody z hektaru plochy denně, potom je toto množství srovnatelné ve vegetační periodě s porosty lesními, které však transpirují i mimo hlavní vegetační období. Poděkování Tento příspěvek vznikl v rámci výzkumného záměru MŠM 6046070901. 245

Literatura Bethenod, O., Katerji, N., Goujet, R., Bertolini, J. M., Rana,G. (2000): Determination and validation of corn crop transpiration by sap flow measurement under field conditions. Theor. Appl. Climatol., 3 4, 153 160. Brant, V., Pivec, J., Bečka, D. (2007a): Transpirace liniové a hybridní odrůdy řepky ozimé v závislosti na vybraných abiotických faktorech prostředí. Sborník z konference, Vliv abiotických a biotických stresorů na vlastnosti rostlin, ČZU v Praze, Praha, 123 126. Brant, V., Pivec, J., Neckář, K., Venclová, V. (2007b): Actual water consumption by the chosen weeds of Asteraceae family on the mature stage of development depending on environmental conditions. XIV. European Weed Research Society Symposium, Hamar, Norway, Oslo, 171. Čermák, J., Cienciala, E., Kučera, J., Hällgren, J.E. (1992): Radial velocity profiles of water flow in trunks of Norway spruce and oak and the response of spruce to severing. Tree Physiology. 10, 376 380. Čermák, J., Cienciala, E., Kučera, J., Lindroth, A., Bednářová, E. (1995): Individual variation of sapflow rate in large pine and spruce trees and stand transpiration: a pilot study at the central NOPEX site. J. Hydrol., 168, 17 27. Jech, D., Havlíčková, K., Weger, J. (2003): Funkce porostů rychle rostoucích dřevin v krajině. In: Weger, J. (ed.) Biomasa obnovitelný zdroj energie v krajině. VÚKOZ Průhonice. Kučera, J., Čermák, J., Penka, M. (1977): Improved thermal method of continual recording the transpiration flow rate dynamics. Biol. Plant., 19, 413 420. Merta, M., Sambale, C., Seidler, C., Peschke, G. (2001): Suitability of plant physiological methods to estimate the transpiration of agricultural crops. J. Plant Nutr. Soil Sci., 1, 43 48. Pivec, J., Brant, V. (2006): Porovnání závislosti průběhu transpirace kukuřice na povětrnostních vlivech stanoviště. Sborník referátů z konference: Vliv abiotických a biotických stresorů na vlastnosti rostlin 2006, ČZU v Praze, Praha, 279 283. Schulze, E. D., Čermák, J., Matyssek, R., Penka, M., Zimmemann, R., Vašíček, F. (1985): Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees a comparison of xylem flow, porometer and cuvette measurements. Oecologia. 66, 475 483. Woodward, F. I., Sheehy, J. E. (1983): Principles and measurements in environmental biology., Butterworth & Co, Ltd., London. 246