Akustika. Rychlost zvukové vlny v v prostředí s hustotou ρ a modulem objemové pružnosti K



Podobné dokumenty
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. x m. Ne čas!

Vlnění, optika mechanické kmitání a vlnění zvukové vlnění elmag. vlny, světlo a jeho šíření zrcadla a čočky, oko druhy elmag. záření, rentgenové z.

9. Umělé osvětlení. 9.1 Základní veličiny. e. (9.1) I =. (9.6)

Měření hladiny intenzity a spektrálního složení hluku hlukoměrem

3 Měření hlukových emisí elektrických strojů

ELEKTRICKÉ SVĚTLO 1 Řešené příklady

OPTIKA Fotometrie TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

ELEKTRICKÉ SVĚTLO 1 Řešené příklady

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

λ, (20.1) infračervené záření ultrafialové γ a kosmické mikrovlny

ZÁKLADNÍ POJMY SVĚTELNÉ TECHNIKY

EXPERIMENTÁLNÍ METODY I 11. Měření světelných veličin

Experimentální analýza hluku

Diagnostické ultrazvukové přístroje. Lékařské přístroje a zařízení, UZS TUL Jakub David kubadavid@gmail.com

Daniel Tokar

Fyzikální praktikum 1

OPTIKA - NAUKA O SVĚTLE

Aplikovaná optika. Optika. Vlnová optika. Geometrická optika. Kvantová optika. - pracuje s čistě geometrickými představami

Vlnění. vlnění kmitavý pohyb částic se šíří prostředím. přenos energie bez přenosu látky. druhy vlnění: 1. a. mechanické vlnění (v hmotném prostředí)

Akustická měření - měření rychlosti zvuku

Zvuk a jeho vlastnosti

Charakteristiky optického záření

Záznam a reprodukce zvuku

světelný tok -Φ [ lm ] (lumen) Světelný tok udává, kolik světla celkem vyzáří zdroj do všech směrů.

ZÁKLADY SVĚTELNÉ TECHNIKY

Zvukové jevy. Abychom slyšeli jakýkoli zvuk, musí být splněny tři základní podmínky: 1. musí existovat zdroj zvuku

ELEKTROAKUSTICKÁ ZAŘÍZENÍ výběr z učebních textů

Akustické vlnění. Akustická výchylka: - vychýlení objemového elementu prostředí ze střední polohy při vlnění

3.2 Rovnice postupné vlny v bodové řadě a v prostoru

ZRAKOVÝ ORGÁN A PROCES VIDĚNÍ. Prof. Ing. Jiří Habel, DrSc. FEL ČVUT Praha

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

Měření zvuku. Judita Hyklová. První soukromé jazykové gymnázium Hradec Králové, s r.o. Brandlova 875, Hradec Králové

telná technika Literatura: tlení,, vlastnosti oka, prostorový úhel Ing. Jana Lepší

ZVUKY KMITAJÍCÍCH TYČÍ

Fotometrie a radiometrie Důležitou částí kvantitativního popisu optického záření je určování jeho mohutnosti

Základní principy ultrazvuku a ovládání UZ přístroje MILAN JELÍNEK ARK, FN U SVATÉ ANNY IVO KŘIKAVA KARIM, FN BRNO 2013

Základy fyzikálněchemických

Trivium z optiky Fotometrie

PROTIHLUKOVÁ STĚNA Z DŘEVOCEMENTOVÝCH ABSORBČNÍCH DESEK

TZB - VZDUCHOTECHNIKA

DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory

Fyzika Pracovní list č. 8 Téma: Měření hladiny intenzity zvuku Mgr. Libor Lepík Student a konkurenceschopnost

Přednáší Kontakt: Ing. Michal WEISZ,Ph. Ph.D. Experimentáln. michal.weisz.

Ultrazvuk Principy, základy techniky Petr Nádeníček1, Martin Sedlář2 1 Radiologická klinika, FN Brno 2 Biofyzikální ústav, LF MU Brno Čejkovice 2011

MĚŘENÍ HYSTEREZNÍ SMYČKY TRANSFORMÁTORU

Hluk na pracovišti a jeho následky. MUDr. Beatrica Dlouhá Praha

TEST PRO VÝUKU č. UT 1/1 Všeobecná část QC

Vycházím se studijního textu k fyzikálnímu praktiku [1]. Existují různé možnosti, jak měřit svítivost

Radiologická fyzika. Zvuk a ultrazvuk

Uţití elektrické energie. Laboratorní cvičení 27

4. Akustika. 4.1 Úvod. 4.2 Rychlost zvuku

Seismografy a Seismické pozorovací sítě mají pro seismo

Její uplatnění lze nalézt v těchto oblastech zkoumání:

6. Střídavý proud Sinusových průběh

ZÁKLADNÍ FOTOMETRICKÉ VELIČINY

Téma: Světlo a stín. Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc

Elektrické světlo příklady

Radiometrie se zabývá objektivním a fotometrie subjektivním měřením světla.

Izolaní materiály. Šastník Stanislav. 2. týden

SNIŽOVÁNÍ HLUKU POČÍTAČŮ OBKLÁDÁNÍM STĚN ZVUKOIZOLAČNÍMI MATERIÁLY A REGULACÍ OTÁČEK VENTILÁTORŮ

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika

MĚŘENÍ HYSTEREZNÍ SMYČKY TRANSFORMÁTORU

12/40 Zdroj kmitů budí počátek bodové řady podle vztahu u(o, t) = m. 14/40 Harmonické vlnění o frekvenci 500 Hz a amplitudě výchylky 0,25 mm

VY_32_INOVACE_FY.18 ZVUKOVÉ JEVY

Část 3. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič, MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA

Řešené příklady z OPTIKY II

Měřicí a řídicí technika Bakalářské studium 2007/2008. odezva. odhad chování procesu. formální matematický vztah s neznámými parametry

Úloha č. 8 Vlastnosti optických vláken a optické senzory

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity

Druh učebního materiálu Anotace (metodický pokyn, časová náročnost, další pomůcky )

2. kapitola: Přenosová cesta optická (rozšířená osnova)

Kontrolní otázky k 1. přednášce z TM

Osvětlování a stínování

Mechanické kmitání a vlnění

Akustické vlnění

Fyziologická akustika. fyziologická akustika: jak to funguje psychologická akustika: jak to na nás působí

stránka 101 Obr. 5-12c Obr. 5-12d Obr. 5-12e

Akustika. Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na

08 - Optika a Akustika

fotometrická měření jedna z nejstarších měření vůbec!

SBÍRKA ÚLOH Z FYSIKY. Gymnázium F. X. Šaldy. pro přípravu k maturitní zkoušce, k přijímacím zkouškám do vysokých škol a k práci ve fysikálním semináři

Inovace výuky prostřednictvím šablon pro SŠ

Světlo x elmag. záření. základní principy

PSK1-10. Komunikace pomocí optických vláken I. Úvodem... SiO 2. Název školy:

Základní pojmy. Je násobkem zvětšení objektivu a okuláru

Registrační číslo projektu: CZ.1.07/1.4.00/

Viditelné elektromagnetické záření

Měření osvětlení. 1. Proměřte průměrnou osvětlenost v různých místnostech v areálu školy.

Pracovní třídy zesilovačů

Fyzikálními ději, které jsou spojeny se vznikem zvukového vlnění, jeho šířením a vnímáním zvuku sluchem se zabývá akustika.

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření hluku, vlhkosti a intenzity osvětlení

sf_2014.notebook March 31,

Plán výuky - fyzika tříletá

S V Ě T L O A O S V Ě T L O V Á N Í

AKUSTIKA. Zvuk je mechanické vlnění pružného prostředí, které vnímáme sluchem.

Mechatronické systémy s krokovými motory

Některé zákony rozdělení pravděpodobnosti. 1. Binomické rozdělení

Název: Měření rychlosti zvuku různými metodami

Stručný úvod do spektroskopie

PŘÍTECH. Klarinet Vlastnosti zvuku

Transkript:

zvuk každé mechanické vlnění v látkovém prostředí, které je schopno vyvolat v lidském uchu sluchový vjem akustika zabývá se fyzikálními ději spojenými se vznikem zvukového vlnění, jeho šířením a vnímáním zvuku uchem Uzavřená čára na obrázku vymezuje oblast, ve které je lidské ucho schopné vnímat, tj. zvukové pole s těmito vlastnostmi: je ze všech stran ohraničené práh slyšení < intenzita zvuku < práh bolesti infrazvuk 16 Hz frekvence zvuku 0000 Hz ultrazvuk (hyperzvuk>300mhz) největší citlivost ve frekvenčním pásmu 500 Hz-5000 Hz Rychlost zvukové vlny v v prostředí s hustotou ρ a modulem objemové pružnosti K K (poměr mezi změnou tlaku Δp a jí vyvolanou relativní změnou objemu ΔV/V) je v. Ve vzduchu při teplotě 0 ºC je rychlost vzduchu 343 m s -1. Obecná závislost šíření zvuku ve vzduchu na teplotě je dána vztahem (331,85+0,61{t}) m s -1. Zvuková vlna způsobuje podélnou výchylku částice prostředí, tím dochází ke změnám hustoty ρ a tedy i tlaku p. Je-li rovnovážný tlak v prostředí bez p 0, lze celkový tlak vyjádřit p = p 0 + p a, kde p a je akustický tlak způsobený zvukovou vlnou. Amplituda akustického tlaku je dána vztahem (p a ) max = (vρω) χ max, kde χ max je amplituda výchylky částice prostředí. Veličiny charakterizující zvuk: Objektivní (fyzikální) Frekvence ntenzita (amplituda) Fáze (nemá význam pro poslech, důležitá při interferenci) Akustický tlak Hladina intenzity [db] Subjektivní Výška tónu (určena základní frekvencí ve spektru tónu, odlišnost hodnotíme podle poměru frekvencí ne podle jejich rozdílu) Hlasitost [son] Barva tónu (určena přítomností vyšších harmonických ve spektru tónu) Hladina hlasitosti [Ph (fon)] 1

Závislost citlivosti ucha na výšce tónu je zřejmá z průběhu Kingsburyho křivek stejné hladiny hlasitosti. Křivky označené hodnotami hladin hlasitosti ve fónech od 0 do 10 fónů udávají pro každou frekvenci hladinu intenzity s potřebnou na dosáhnutí dané hladiny hlasitosti. Z diagramu vyplývá, že lidské ucho je při všech intenzitách nejcitlivější pro tóny s frekvencí 3000 až 4000 Hz. Hustota zvukové energie Celková energie harmonického oscilátoru je dána součtem okamžité kinetické a potenciální 1 1 energie, lze ji určit ze vztahu E mv max m max. U zvukového vlnění s touto energií kmitá každá částice prostředí, takže výsledná energie objemové jednotky prostředí je 1 m max E 1 1 max 1 pa w max = V V v ntenzita zvuku je vlastně hustota zářivého toku energie (energie, která prošla za jednotku času jednotkovou plochou postavenou kolmo ke směru šíření vlny) a lze ji tedy vypočítat jako E l E E p v v w a t S t l S V v ntenzita zvuku bodového zdroje klesá se čtvercem vzdálenosti, u složitějších zdrojů je nutno provést integraci. Zvuk se šíří hmotným prostředím, díky vazbám mezi částicemi prostředí se postupně zmenšuje amplituda výchylky, tj. klesá hustota zvukové energie, dochází k absorpci zvuku. Úbytek amplitudy je přímo úměrný její velikosti (tlumené kmity), takže pokles intenzity je x exponenciální e. 0

3 Šíření zvuku Zvuk se v izotropním prostředí šíří do všech směrů (Huyghensův princip), plochy, na nichž mají všechny částice stejně velkou výchylky i rychlost (stejnou fázi) jsou vlnoplochy, kolmice na vlnoplochu je paprsek. V blízkosti bodového zdroje jsou vlnoplochy kulové, ve velkých vzdálenostech je lze pokládat za rovinné. Zvukové vlny mohou být podélné (kdekoliv) nebo příčné (jen v pevných látkách). V kapalinách a pevných látkách je rychlost zvuku větší než v plynech. Rychlost šíření zvuku v plynech nezávisí na tlaku a hustotě, je o něco menší, než je střední rychlost molekul. Ve velmi zředěných plynech se ovšem zvuk prakticky nešíří (podmínkou platnosti odvozených vztahů je požadavek, aby střední volná dráha částic plynu byla podstatně menší, než jsou prostorové rozměry oblastí, v nichž se mění hustota a tlak). Dopplerův efekt Při Dopplerově jevu se mění pozorovaná frekvence vlny tím, že se zdroj nebo detektor nebo oba pohybují vzhledem k prostředí. Pro zvuk je pozorovaná frekvence zdroje vyjádřena v vd vztahem f f0, v d je rychlost pohybu detektoru vůči prostředí, v z je rychlost pohybu v vz zdroje vůči prostředí a v je rychlost zvuku v tomto prostředí. Frekvence roste při vzájemném pohybu zdroje a detektoru k sobě, klesá při jejich vzájemném pohybu od sebe. Rázová vlna Překročí-li rychlost zdroje vůči prostředí rychlost šíření zvuku v tomto prostředí, přestává platit Dopplerova rovnice, vzniká rázová vlna. Vrcholový úhel kuželové vlnoplochy je dán v vztahem sin (Machův úhel). v z Objektivní a subjektivní vnímání zvuku Zvuky vnímáme jako silné nebo slabé. Za objektivní fyzikální míru síly zvuku byla zvolena střední hodnota intenzity příslušného zvukového vlnění. V důsledku toho, že sluch je nestejně citlivý pro tóny různých výšek, může být subjektivní síla zvuku neboli hladina jeho hlasitosti různá i u dvou zvuků se stejnou intenzitou. Mimo to platí, že subjektivní síla zvuku neroste úměrně s jeho fyzikální intenzitou, ale zhruba podle Weberova a Fechnerova fyziologického zákona: roste-li fyzikální intenzita tónu dané frekvence geometricky, jeho subjektivní účinek h se zvětšuje přibližně jen aritmeticky (se stejným přírůstkem). Přibližné správné matematické vyjádření závislosti intenzity tónu k k hladině jeho hlasitosti má tedy tvar 0a. Konstanty k a a v tomto vzorci jsou určeny volbou intenzity tónu, jehož hladina hlasitosti se má rovnat nule, a volbou její jednotky. Za konstantu 0 (referenční hladina) byla zvolena prahová intenzita lidského vnímání 0 = 1 10-1 W m -. Hladina intenzity zvuku je definována vztahem B 10 log db. 0 Hladina hlasitosti zvuku je subjektivní vjem související s hladinou intenzity zvuku. Určuje se porovnáváním zkoumaného zvuku s referenčním tónem o frekvenci 1000Hz. L C ln Ph 0 měření hluku hlukoměry elektronická měřicí zařízení reagující na hluk a zvuk podobně jako lidské ucho vždy tři základní součásti: mikrofon, zařízení na zpracování signálu, indikátor detailní provedení se u jednotlivých výrobců liší

Ultrazvuk a jeho užití Pojem ultrazvuk zahrnuje všechna mechanická vlnění, jejichž frekvence leží nad hranicí vnímání lidským uchem (0 khz až 10 MHz). Mechanická vlnění s frekvencemi nad tímto intervalem se označují jako hyperzvuk. Současnými zdroji ultrazvuku lze dosáhnout akustické intenzity řádově 10 7 W m -, což umožňuje přenášet mnohem větší akustické výkony. To je důležité pro měření, při nichž se vysílaný signál prostředím zeslabuje a je třeba, aby přesto měl dostatečnou intenzitu, v okamžiku, kdy je registrován snímacím zařízením (měřicí sondou přijímačem). Zdroje ultrazvuku dělíme na mechanoakustické a elektroakustické. Mechanické zdroje jsou vhodné pro vytváření ultrazvukového pole s frekvencemi kolem 5 khz v tekutinách. Ve vzduchu se používají sirény s účinností až 75%, jejichž výkon dosahuje řádově až desítek kw. Ultrazvuk při takových výkonech působí velmi škodlivě na lidský organismus, narušuje tkáně a působí zhoubně na nervovou soustavu, proto je z hygienických důvodů použití výkonných ultrazvukových sirén ve vzduchu vyloučeno. Častější je využití ultrazvukového pole v kapalinách, pro frekvence kolem 0 khz se jako zdroje používají ejektorové generátory. Elektroakustické zdroje využívají piezoelektrické nebo magnetostrikční měniče, které lze používat pro přeměnu energie v obou směrech, tj. jako vysílače (budiče) i jako přijímače (snímače). Piezoelektrický jev je vznik elektrického napětí na stěnách tlakově namáhané destičky z vhodného materiálu (výbrusy monokrystalů křemene, umělé piezokeramické materiály na bázi Ti nebo Zr, lze je vyrobit téměř v libovolném tvaru a velikosti, všestranné použití pro frekvence nad 0 khz, vyzařované výkony zpravidla do 10 5 Wm - ). Magnetostrikce je změna rozměrů jádra elektromagnetu při změnách magnetizace (kolem 0 khz, měniče nejsou zdaleka tak univerzální jako piezoelektrické). Účinky ultrazvuku na prostředí jsou například koagulační (shlukování a spojování menších částeček na větší v plynech), disperzní (rozptyl větších částeček na menší v kapalinách), kavitační a tepelné (př.: ultrazvuková diatermie v lékařství). Využití ultrazvuku vyhodnocování zpoždění odraženého úzce směrovaného paprsku proti vysílanému, používá se v kapalinách a pevných látkách, v plynech je ultrazvuk příliš pohlcován (lokátory, defektoskopy, lékařská vyšetření). Doporučený materiál ke studiu: http://homen.vsb.cz/~ber30/texty/varhany/anatomie/pistaly_akustika.htm 4

část optiky, která popisuje světelné zdroje a osvětlení ploch z hlediska vnímání lidským okem, tj. studuje vlastnosti a projevy zářivé energie připadající na viditelný obor elektromagnetického záření (zhruba 380 nm až 750 nm). Ke každé energetické veličině charakterizující záření (radiometrické veličiny) lze přiřadit fotometrickou veličinu, charakterizující stejným způsobem světelné záření. Ze zdroje záření se šíří zářivá energie na všechny strany rychlostí světla c. Rozlišujeme primární a sekundární zdroje světla. Primární (vlastní) vidíme světlem, které samy vyzařují, sekundární (nevlastní) vidíme jen tehdy, je-li v jejich okolí primární zdroj, jehož světlo sekundární zdroj odráží, rozptyluje, případně nestejnoměrnou absorpcí jednotlivých složek složeného světla mění jeho barvu. Dále dělíme zdroje na izotropní a anizotropní (charakterizovány fotometrickým diagramem). Řez fotometrickým diagramem žárovky v objímce Zářivá energie W je energie vyzářená, přenesená nebo přijatá prostřednictvím elektromagnetického záření Zářivý tok e udává výkon přenášený zářením Φ e W, W J e dw dt e, Φ W Z celkové zářivé energie vysílané zdrojem se pro vnímání lidským okem uplatňuje pouze světelná energie přenášená viditelným zářením světlem. Proto z hlediska vnímání okem zavádíme světelný tok Φ jako světelnou energii, která projde danou plochou v okolí zdroje za určitou dobu (jednotka lumen; lm světelný tok, který vysílá bodový zdroj o svítivosti 1 cd do kužele s prostorovým úhlem 1 sr, tj. který vysílá absolutně černé těleso do celého poloprostoru při teplotě tuhnoucí Pt, za normálního tlaku plochou velikosti S = 5,307 10-7 m ). e 5

Jak velká část celkového zářivého toku zářiče je schopna vzbudit zrakový vjem závisí na teplotě zářiče. Pro absolutně černé těleso je největší asi při teplotě 6000 K. Podíl světelného toku a jemu příslušného zářivého toku udává světelnou účinnost zdroje světla K e udává se v % a závisí na vlnové délce světla. Označíme-li zářivý tok monochromatického záření o vlnové délce λ Φ eλ a k němu příslušnou světelnou účinnost monochromatického záření K λ, je celkový tok záření vlnové délky λ určen vztahem K d 0 e Oko není stejně citlivé pro celý obor viditelného záření, nejcitlivější je na 555 nm, nejméně citlivé na okrajové části viditelného spektra. Jeho citlivost se navíc mění za soumraku (obr.). Poměrná světelná účinnost při čípkovém a tyčinkovém vidění. Závislost relativní světelné účinnosti jednobarevného záření na vlnové délce lze potom vyjádřit K 1 555nm 0 K 1 K 0 pro viditelnou část spektra pro neviditelnou část spektra 6

Bodový zdroj Zdroj pozorovaný z dostatečně velké vzdálenosti lze pokládat za bodový. Kužel, jehož vrcholem je bodový zdroj a jehož plášť tvoří světelné paprsky vytváří světelnou trubici. Svítivost zdroje je definována světelným tokem dφ, který vyzařuje bodový všesměrový světelný zdroj do prostorového úhlu d(jednotka kandela; cd). d d Kandela je rovna 1/60 kolmé svítivosti čtverečního cm černého tělesa při teplotě tuhnoucí Pt (177 C) za normálního tlaku (101,35 10 3 Pa). Jednotkou prostorového úhlu je steradián (viz obr.), protože úhel α se mění od 0 do π, má celkový světelný tok hodnotu sind 4 V případě anizotropních zdrojů zavádíme střední svítivost 0, pro kterou platí 0 0 4 kde Φ je světelný tok vysílaný zdrojem do celého prostoru. (ntenzita) osvětlení E je dána rovnoměrně dopadajícím světelným tokem dφ na těleso o povrchu ds (jednotka lux; lx) d E ds r cos Pozn.: Pro čtení je třeba alespoň 10 lx, v učebnách a kancelářích alespoň 30 lx. 7

Plošný zdroj Skutečné zdroje vyzařují vždy plochou konečné velikosti. Nelze-li tuto plochu zanedbat, pokládáme těleso za plošný zdroj. Svítivost určíme analogicky jako u bodového zdroje (představíme si pozorovatele v dostatečně velké vzdálenosti zdroj se jeví bodový). Jas L je fotometrické veličina určená podílem rovnoměrně rozložené svítivosti zdánlivého povrchu zdroje (velikost průmětu skutečného povrchu zdroje do roviny kolmé na směr šíření) a velikosti tohoto povrchu L d S cosd S Pro většinu plošných zdrojů je jas pozorovaný z libovolného směru je přibližně konstantní, tj. nezávisí na směru, pod nímž vystupují paprsky ze zdroje k pozorovateli. Potom pro svítivost platí n cos kde n je svítivost zdroje ve směru normály k ploše S (Lambertův zákon). Díky nezávislosti jasu kosinových zdrojů na směru se pak tyto zdroje jeví jako ploché (Měsíc). Dopadá-li do uvažovaného bodu osvětlované plochy světlo z celého poloprostoru, považujeme zdroj za nekonečně velký, intenzita osvětlení nezávisí na vzdálenosti od zdroje. V praxi lze za nekonečně velké pokládat zdroje, jejichž velikost je mnohem větší než vzdálenost od osvětlované plochy (obloha, svítící stropy). Při fotografování, filmování a kopírování různých předloh bývá důležitá volba doby, po kterou je osvětlen na světlo citlivý materiál. Proto se zavádí veličina osvit (expozice) H kde E stř je střední hodnota osvětlení. H E t stř 0 cos Měření fotometrických veličin Přístroje na měření směrových svítivostí jsou fotometry, intenzity osvětlení se měří luxmetry. Fotometr je založen na skutečnosti, že intenzita světla i intenzita osvětlení jsou nepřímo úměrné druhé mocnině vzdálenosti od zdroje. Pokud tedy dva zdroje vyvolávají na tomtéž místě stejnou světelnou intenzitu nebo při stejném úhlu dopadu stejné světelné intenzity, lze z intenzity známého (srovnávacího) zdroje a známého poměru jejich vzdáleností vypočítat intenzitu měřenou. Přesnost fotometrů závisí především na přesnosti stejných intenzit. Jako luxmetry se zpravidla používají přístroje, jejichž údaj přímo závisí na množství energie dopadající na plošnou jednotku za jednotku času. Tato závislost se mění se spektrálním složením (k měření se využívá fotoelektrického jevu), přístroje lze tedy použít pouze pro měření světla, které má vždy stejné spektrum (př.: Slunce). 8