ŽÁRUPEVNOST ZÁKLADNÍHO MATERIÁLU A SVAROVÝCH SPOJŮ OCELI P23 CREEP RESISTANCE OF STEEL P23 AND WELDMENTS



Podobné dokumenty
, Hradec nad Moravicí

CREEP AUSTENITICKÉ LITINY S KULIČKOVÝM GRAFITEM CREEP OF AUSTENITIC DUCTILE CAST IRON

CREEPOVÉ CHOVÁNÍ SVAROVÝCH SPOJŮ OCELE P23 CREEP BEHAVIOUR OF STEEL P23 WELDMENTS

PODKRITICKÝ RŮST TRHLINY VE SVAROVÉM SPOJI MEZI KOMOROU A PAROVODEM KOTLE VÝKONU 230 T/H. Jan KOROUŠ, Ondrej BIELAK BiSAFE, s.r.o.

Obr. 1. Řezy rovnovážnými fázovými diagramy a) základního materiálu P92, b) přídavného materiálu

NEKONVENČNÍ VLASTNOSTI OCELI 15NiCuMoNb5 (WB 36) UNCONVENTIONAL PROPERTIES OF 15NiCuMoNb (WB 36) GRADE STEEL. Ladislav Kander Karel Matocha

, Hradec nad Moravicí CHOVÁNÍ OCELI T23 PŘI DLOUHODOBÉM ÚČINKU TEPLOTY BEHAVIOUR OF STEEL T23 AFTER LONG-TIME TEMPERATURE EFFECT

STRUKTURNÍ STABILITA A VLASTNOSTI SVAROVÝCH SPOJŮ OCELI T24

Hodnocení degradace ocelí pro tepelnou energetiku pomocí mikrosrukturních paramertrů

ŽÁRUPEVNÉ VLASTNOSTI A MIKROSTRUKTURA HETEROGENNÍCH SVAROVÝCH SPOJŮ P91/P23 CREEP PROPERTIES AND MICROSTRUCTURE OF HETEROGENEOUS WELD JOINTS P91/923

VÝVOJ NOVÉ TECHNOLOGIE OPRAVY SVAROVÝCH SPOJŮ POMOCÍ WELD OVERLAY (WOL)

OPTIMALIZACE SVAŘOVACÍCH PARAMETRŮ PŘI ODPOROVÉM BODOVÉM SVAŘOVÁNÍ KOMBINOVANÝCH MATERIÁLŮ

MOŽNOSTI VYUŽITÍ MIKROLEGOVANÝCH OCELÍ. Tomáš Schellong Kamil Pětroš Václav Foldyna. JINPO PLUS a.s., Křišťanova 2, Ostrava, ČR

Tomáš Vlasák a, Jan Hakl a, Jiří Sochor b, Jan Čech b

TECHNOLOGIE SVAŘOVÁNÍ MIKROLEGOVANÝCH OCELÍ DOMEX 700MC SVOČ FST

CREEPOVÉ VLASTNOSTI A STRUKTURA OCELI P91 CREEP PROPERTIES AND STRUCTURE OF STEEL P91

E-B 312. EN 1599: E Z (CrMo) B 42

E-B 321. EN ISO 3580: E Z (CrMoV) B 22

STRUKTURNÍ A FÁZOVÁ ANALÝZA OCELI T23 STRUCTURE AND PHASE ANALYSIS OF T23 STEEL

Nikl a jeho slitiny. Ing. David Hrstka, Ph.D. -IWE

HETEROGENNÍ SVAROVÉ SPOJE V ENERGETICE

ROZVOJ CREEPOVÉ DEFORMACE A POŠKOZENÍ KOMORY PŘEHŘÍVÁKU Z CrMoV OCELI

SVAŘOVÁNÍ KOVOVÝCH MATERIÁLŮ LASEREM LASER WELDING OF METAL MATERIALS

KA 19 - UKÁZKOVÝ PROJEKT

PROBLEMATICKÉ SVAROVÉ SPOJE MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ

VÝZKUM MOŽNOSTÍ ZVÝŠENÍ ŽIVOTNOSTI LOŽISEK CESTOU POVRCHOVÝCH ÚPRAV

HODNOCENÍ MIKROSTRUKTURY A VLASTNOSTÍ ODLITKŮ ZE SLITINY AZ91HP EVALUATION OF MICROSTRUCTURE AND PROPERTIES OF SAND CAST AZ91HP MAGNESIUM ALLOY

, Hradec nad Moravicí POLYKOMPONENTNÍ SLITINY HOŘČÍKU MODIFIKOVANÉ SODÍKEM

VÝZKUM MECHANICKÝCH VLASTNOSTÍ SVAROVÝCH SPOJŮ MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ T24 A P92. Ing. Petr Mohyla, Ph.D.

ELEKTROCHEMIE NA SYSTÉMECH S TENKÝMI VRSTVAMI ELECTRO-CHEMICAL ANALYSIS ON SYSTEMS THIN FILM SUBSTRATE

STŘEDNÍ PŘIROZENÉ DEFORMAČNÍ ODPORY PŘI TVÁŘENÍ OCELÍ ZA TEPLA - VLIV CHEMICKÉHO A STRUKTURNÍHO STAVU

Konstrukční materiály pro stavbu kotlů

LICÍ PÁNVE V OCELÁRNĚ ARCELORMITTAL OSTRAVA POUŽITÍ NOVÉ IZOLAČNÍ VRSTVY

STANOVENÍ CREEPOVÝCH VLASTNOSTÍ ALUMINIDU ŽELEZA SE ZRETELEM NA JEJICH UŽITÍ JAKO KONSTRUKCNÍHO MATERIÁLU

VLIV TEPELNĚ-MECHANICKÉHO ZPRACOVÁNÍ NA VLASTNOSTI DRÁTU Z MIKROLEGOVANÉ OCELI. Stanislav Rusz a Miroslav Greger a Otakar Drápal b Radim Lukáš a

TEPELNÉ ZPRACOVÁNÍ NIKLOVÝCH SUPERSLITIN HEAT TREATMENT OF HIGH-TEMPERATURE NICKEL ALLOYS. Božena Podhorná a Jiří Kudrman a Karel Hrbáček b

CFD simulace teplotně-hydraulické charakteristiky na modelu palivové tyči v oblasti distanční mřížky

VLIV STŘÍDAVÉHO MAGNETICKÉHO POLE NA PLASTICKOU DEFORMACI OCELI ZA STUDENA.

VLIV OBSAHU HLINÍKU NA VLASTNOSTI HOŘČÍKOVÝCH SLITIN PŘI ODLÉVÁNÍ DO BENTONITOVÝCH A FURANOVÝCH FOREM

4. Tenkostěnné za studena tvarované prvky. Návrh na únavu OK.

MOŽNOSTI TVÁŘENÍ MONOKRYSTALŮ VYSOKOTAVITELNÝCH KOVŮ V OCHRANNÉM OBALU FORMING OF SINGLE CRYSTALS REFRACTORY METALS IN THE PROTECTIVE COVER

E-B 420. SFA/AWS A 5.4: E EN 1600: (E Z 19 9 Nb 2 2*)

ACOUSTIC EMISSION SIGNAL USED FOR EVALUATION OF FAILURES FROM SCRATCH INDENTATION

Požadavky na kvalifikaci postupu svařování vybraných VPO podle ASME předpisů

DUPLEXNÍ POVLAKOVÁNÍ PM NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM DUPLEX COATING OF THE NIOBIUM-ALLOYED PM TOOL STEEL

OBSERVATION OF KINETICS OF STRUCTURAL CHANGES DURING LONG-TERM ANNEALING OF TRANSITIONAL WELDS ON P91 STEEL

Lisování nerozebíratelných spojů rámových konstrukcí

ŽÁUPEVNÉ VLASTNOSTI VYBRANÝCH SUPERSLITIN NA BÁZI Ni. HIGH TEMPERATURE PROPERTIES OF SELECTED Ni BASE SUPERALLOYS. Jan Hakl Tomáš Vlasák

S VAŘOVÁNÍ BETONÁŘSKÉ VÝZTUŽE HOSPODÁRNÉ Ř E Š E N Í

SMĚROVÁ KRYSTALIZACE EUTEKTIK SYSTÉMU Ti-Al-Si DIRECTIONAL CRYSTALLIZATION OF Ti-Al-Si EUTECTICS

DETERMINATION OF MECHANICAL AND ELASTO-PLASTIC PROPERTIES OF MATERIALS BY NANOINDENTATION METHODS

HODNOCENÍ VLASTNOSTÍ VÝKOVKŮ ROTORŮ Z OCELI 26NiCrMoV115

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2010, ročník X, řada stavební článek č. 17.

STRUKTURNÍ STABILITA A ŽÁRUPEVNOST FERITICKÝCH OCELÍ STRUCTURAL STABILITY AND CREEP RESISTANCE OF FERRITIC STEELS

i. Vliv zvýšených teplot na vlastnosti ocelí

POVRCHOVÉ VYTVRZENÍ PM NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM PLAZMOVOU NITRIDACÍ SURFACE HARDENING OF NIOBIUM-CONTAINING PM TOOL STEEL BY PLASMA NITRIDING

POUŽITÍ AUTOMATICKÝCH SPOJEK PRO HOMOGENIZACI OCELI V PÁNVÍCH PŘI VYSOKÝCH TEPLOTÁCH. Petr ŠPALEK

HOMOGENNÍ A HETEROGENNÍ SVAROVÉ SPOJE ŽÁROPEVNÝCH OCELÍ SIMILAR AND DISSIMILAR WELD JOINTS OF CREEP-RESISTING STEELS

THE IMPACT OF PROCESSING STEEL GRADE ON CORROSIVE DEGRADATION VLIV TEPELNÉHO ZPRACOVÁNÍ OCELI NA KOROZNÍ DEGRADACI

ČESKÁ TECHNICKÁ NORMA

SVĚTELNÁ A ELEKTRONOVÁ MIKROSKOPIE SVAROVÉHO SPOJE OCELI P91 LIGHT AND ELECTRON MICROSCOPY OF THE STEEL P91 WELD JOINT.

TEPELNÁ PRÁCE TRUBKOVÉHO KRYSTALIZÁTORU THERMAL WORK OF THE TUBE CC MOULD

POROVNÁNÍ ODOLNOSTI SVAROVÝCH SPOJU POTRUBÍ Z OCELÍ TYPU CrNiMo PROTI BODOVÉ KOROZI

E-B 420. SFA/AWS A 5.4: E EN 1600: (E Z 19 9 Nb B 2 2*)

OK TUBRODUR Typ náplně: speciální rutilová. Ochranný plyn: s vlastní ochranou. Svařovací proud:

Mikrostrukturní analýza svarového spoje oceli P92 po creepové expozici

OK AUTROD SFA/AWS A 5.14: ERNiCrMo-3 EN ISO 18274: S Ni 6625 (NiCr22Mo9Nb)

PRODUKTIVNÍ OBRÁBĚNÍ OCELI P91

VÝZNAM A NENAHRADITELNOST VIZUÁLNÍ KONTROLY PŘI KVALIFIKACI PROCESU SVAŘOVÁNÍ

VLIV TEPELNÉHO ZPRACOVÁNÍ NA MECHANICKÉ VLASTNOSTI A VYSOKOTEPLOTNÍ STABILITU NIKLOVÉ SLITINY IN 792 5A

OK TUBRODUR Typ náplně: speciální rutilová. Ochranný plyn: s vlastní ochranou. Svařovací proud:

C 321. EN ISO A: ~ G Z (CrMoV)

OCELI A LITINY. Ing. V. Kraus, CSc. Opakování z Nauky o materiálu

INFLUENCE OF TEMPERING ON THE PROPERTIES OF CAST C-Mn STEEL AFTER NORMALIZING AND AFTER INTERCRITICAL ANNEALING. Josef Bárta, Jiří Pluháček

MECHANICKÉ VLASTNOSTI A STRUKTURNÍ STABILITA LITÝCH NIKLOVÝCH SLITIN PO DLOUHODOBÉM ÚČINKU TEPLOTY

VLIV OBSAHU NIKLU NA VLASTNOSTI LKG PO FERITIZAČNÍM ŽÍHÁNÍ EFFECT OF THE CONTENT OF NICKEL ON DI PROPERTIES AFTER FERRITIZATION ANNEALING

Vladislav OCHODEK VŠB TU Ostrava Katedra mechanické technologie ústav svařování Vl. Ochodek 3/2012

Zkušební protokol č. 18/12133/12

ASTM A694 F60 - TEPELNÉ ZPRACOVÁNÍ A MECHANICKÉ VLASTNOSTI ASTM A694 F60 HEAT TREATMENT AND MECHANICAL PROPERTIES

APLIKACE VYBRANÝCH METOD PRO MĚŘENÍ ZBYTKOVÉHO NAPĚTÍ APPLICATION OF SOME METHODS FOR RESIDUAL STRESS MEASUREMENT

5. Spojování prvků z nerezových ocelí Mechanické spoje, svařování, materiály na spoje. Návrh spojů. Provádění spojů.

NEDESTRUKTIVNÍ HODNOCENÍ MATERIÁLU ENERGETICKÝCH KOMPONENT NONDESTRUCTIVE EVALUATION OF POWER PLANT PARTS Zbyněk BUNDA a,b, Josef VOLÁK a,b

Svařovací dráty TIG MMA

Tváření,tepelné zpracování

PŘÍSPĚVEK K OPTIMALIZACI MATERIÁLU PRO LOPATKY LETECKÝCH TURBIN. SVÚM a.s., Areál VÚ, Praha 9,

Arc - welded joints in steel - Guidance on quality levels for imperfections (ISO 5817:1992)

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VLIV TEPELNÉHO ZPRACOVÁNÍ NA STRUKTURU A MECHANICKÉ VLASTNOSTI NÁSTROJOVÝCH OCELÍ

NÁVRH MATERIÁLU A POVRCHOVÉ ÚPRAVY PRO ŘEZNÉ NÁSTROJE URČENÝCH K OBRÁBĚNÍ PRYŽOVÝCH HADIC ZPEVNĚNÝCH KEVLAREM

a)čvut Praha, stavební fakulta, katedra fyziky b)čvut Praha, stavební fakulta, katedra stavební mechaniky

þÿ V l i v v o d í k u n a p e v n o s t a s v ay i t vysokopevných martenzitických ocelí pro automobilové aplikace

ČESKÁ TECHNICKÁ NORMA

VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI JEMNOZRNNÝCH SVAŘITELNÝCH OCELÍ PRO TENKOSTĚNNÉ ODLITKY

VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI OCELI PRO ŽELEZNICNÍ KOLA THE INFLUENCE OF HEAT TREATENT ON THE PROPPERTIES OF STEEL FOR RAILWAY WHEELS

DRÁTY PRO SVAŘOVÁNÍ POD TAVIDLEM

SIMULACE TEPELNÉHO ZPRACOVÁNÍ TYČOVÉ OCELI NA INDUKČNÍCH ZUŠLECHŤOVACÍCH LINKÁCH

materiálové inženýrství

ČESKÁ TECHNICKÁ NORMA

Wear with respect to load and to abrasive sand under Dry Sand/Steel Wheel abrasion condition

POSSIBLE GENERALISATION OF DECREASE IN MECHANICAL PROPERTIES OF CARBON STEEL (ČSN ) ON OTHER STEELS

Transkript:

ŽÁRUPEVNOST ZÁKLADNÍHO MATERIÁLU A SVAROVÝCH SPOJŮ OCELI P23 CREEP RESISTANCE OF STEEL P23 AND WELDMENTS Tomáš Vlasák 1, Jan Hakl 1, Jozef Pecha 2 1 SVUM a.s., Areál VÚ Běchovice, 190 11 Praha, ČR, <hightempmat@svum.cz> 2 SES a.s., Továrenská 3, 935 28 Tlmače, SR, <jozef_pecha@ses.sk> Abstrakt Nízkolegovaná ocel 2,25%Cr-1,6%W-0,25%V označovaná P23 je používaná na potrubní systémy v energetice. Na základě zkoušek tečení v rozsahu teplot 500 až a napětí 5 320 MPa bylo provedeno vyhodnocení pevnosti při tečení. Pokračování této práce bylo stanovení podmínek svařování a sledování žárupevnosti svarových spojů P23-P23. Abstract Low-alloy steel 2,25%Cr-1,6%W-0,25%V marked P23 is used for pipe lines in power engineering. From creep tests, in temperature range 500 - and stress range 5 320 MPa, rupture strength was evaluated. Determination of welding condition was continuing of this work. Creep properties of P23-P23 were determined. 1. ÚVOD Snižování exhalace emisí a růst účinnosti uhelných tepelných elektráren jsou hnací silou vývoje nových žárupevných ocelí. Pro současnou energetiku byla charakteristická teplota páry na vstupu do turbiny 540-565 C. V posledních letech však dochází k růstu teplot až okolo. Při srovnání dosavadních parametrů páry 540 C/18 MPa lze v případě páry superkritických parametrů (6 C/30 MPa) dosáhnout zvýšení účinnosti asi o 8% při snížení emisí CO 2 o zhruba 20% [1,2]. Pro části provozované v creepové oblasti jsou klíčovými užitnými vlastnostmi odolnost proti tečení a odolnost proti vysokoteplotní korozi (oxidaci) v prostředí vodní páry. V průmyslově vyspělých zemích (zejména USA, Japonsko, země EU, ale i Indie a Čína) se věnuje velká pozornost vývoji a technologickému osvojení nových značek martenzitických ocelí na bázi (9-12) %Cr, modifikovaných dalšími prvky (Mo, W, Co, N, B, V). V EU probíhá tento vývoj v rámci projektů COST a je předpoklad, že tato skupina ocelí umožní aplikace při provozních teplotách až do 650 C [3-6]. Kromě toho existuje pokrok i v oblasti nízkolegovaných ocelí, kde je návaznost na původně vodíkuvzdorné ocele typu 3Cr-0,5Mo. Výsledkem japonského a německého výzkumu jsou trubkové ocele T23 (2,25Cr-0,18Mo- 0,25V-1,6W,Nb, B) a T24 (2,4Cr-1Mo-0,25V,Ti,B), určené pro vodní stěny a přehříváky. Užitné vlastnosti materiálu tenkostěnných trubek z T23 a T24 jsou již dobře známy. Pokračující výzkum je zaměřen na vlastnosti silnostěnných trubek z P23 [8,9,13]. Na tuto problematiku je zaměřena předkládaná práce. 1

2. ŽÁRUPEVNOST ZÁKLADNÍHO MATERIÁLU Zkušební materiál P23 byl vyroben hutí Vallourec and Mannesmann Tubes a dodán pod tavbovým označením 73 220 ve formě bezešvé trubky 219x30 mm ve stavu tepelně zpracovaném postupem 60 C/voda+760 C/2 h. Podle atestu [] je chemické složení uvedeno v tab.i a základní mechanické charakteristiky v tab.ii. Tab.I. Chemické složení tavby 73 220 (hm %) Tab.I Chemical composition of heat 73 200 (wt %) Prvek Tavba 73 220 Prvek Tavba 73 220 C 0,07 V 0,22 Mn 0,54 W 1,65 P 0,008 Nb 0,03 S 0,004 B 0,002 Si 0,28 N 0,011 Cr 2,08 Al 0,018 Mo 0,08 Fe Zákl. Tab.II Atestační hodnoty materiálových vlastností při pokojové teplotě. Tab.II Attest values of material properties at room temperature. Materiálová vlastnost R p0,2 (MPa) R m (MPa) A (%) KCV* (J) Atest 496 597 23,3 185 Požadavek 400 5 20 * Střední hodnota ze 3 měření ; vzorky orientovány ve směru podélné osy trubky Zkoušky žárupevnosti byly provedeny na vzduchu na tyčích s měrným průměrem a délkou 5x50 mm pro teploty 500, 550 a a napětí 320-5 MPa. Celkem bylo provedeno 19 zkoušek orientovaných ve směru podélné osy trubky. Pevnost při tečení byla vyhodnocována standardním postupem s použitím regresní závislosti [11,12] 1 1 1 1 log t= A1 + A2 log + C3 log[ sinh( A 6 σ T) ] + A4 log log[ sinh( A 6 σ T) ] (1) T A T A 5 kde σ je napětí, T je teplota, t je čas do lomu, A 1 -A 6 jsou materiálové konstanty, uvedené v tab.iii. Podrobnosti o této problematice lze nalézt v práci [13]. 5 00 0 50 150 200 250 300 350 Obr. 1 Pevnost při tečení oceli P23 Fig.1 Creep strength evaluation of P23 steel Tab.III Materiálové parametry modelu (1). Tab.III Material contants of model (1). Konst. Hodnota Konst. Hodnota A 1 1,427049E+02 A 4-2,968353E-01 A 2 4,590793E+01 A 5 1,612838E+04 A 3-7,919716E-02 A 6 9,898552E-04 platné pro σ[mpa], T[K], t r [h] 2

3. VÝROBA SVAROVÝCH SPOJŮ Svarové spoje byly zhotoveny ze stejného materiálu jako v předchozím případě, a to kombinací metod GTAW (kořen svaru) a SMAW (zbývající svarové housenky). Svary byly provedeny v SES a.s., Tlmače, Slovensko. Geometrie svaru (viz obr.2) byla zvolena s ohledem na konstrukční řešení obvodových svarových spojů ve smyslu EN ISO 9692-1. Vytváří optimální předpoklady pro vyplnění úkosu svarovým kovem, hlavně v oblasti kořene svaru. To je nevyhnutelnou podmínkou pevnostní únosnosti svarů. Po mechanickém opracování úkosů byly svarové plochy kontrolovány práškovou magnetickou zkouškou na přítomnost eventuelních defektů v základním materiálu. Defekty nebyly nalezeny. Kombinace metod GTAW a SMAW pro svařování potrubí tlakových částí je v praxi osvědčená. Svařování metodou TIG (GTAW) umožňuje dobrou tvorbu kořene svaru a tím minimalizovat povrchové a vnitřní defekty svaru. Výplň úkosu je možno z prostorových důvodů provést obalenou elektrodou. Dále se svařovalo s malým rozkyvem elektrod. Účelem této techniky bylo dosáhnout na jedné straně určité přežíhání vrstev a na druhé pak tvorbu co nejužšího hrubozrnného pásma tepelně ovlivněné zóny. Uplatňovaná technika spolu s precizním tepelným režimem svařování mají rozhodující vliv na velikost primárního zrna, které kontroluje houževnatost svaru. Předehřev před svařováním je potřebný bez ohledu a tloušťku materiálu a metodu svařování, protože se jedná o bainitický typ struktury. Teplota předehřevu při stehování svarových spojů byla 180-250 C. Předehřev byl udržován po dobu 30 min před začátkem svařování pro rovnoměrné rozložení teplot v celém průřezu. V průběhu svařování byl udržován předehřev v rozmezí 200-250 C, přičemž teplota mezivrstvy nepřekročila 300 C. Po svaření byly svary ochlazené na teplotu okolí. Tvorba svaru po jednotlivých vrstvách je zřejmé z obr.2 Vrstva Obr.2 Detaily svařování oceli P23 Fig.2 Details of steel P23 welding 1 2-3 4-6 7 Proces 141 (GTAW) 111 (SMAW) 111 (SMAW) 111 (SMAW) Přídavný materiál WZ CrWV22 Thermanit P23 Thermanit P23 Thermanit P23 Průměr [mm] Proud [A] Napětí [V] Tepelný příkon [KJ/mm] 2,5 125-140 15-22 0,8-1,1 2,5 75-90 20-25 0,9-1,3 3.2 1-135 20-25 1,1-1,5 4,0 150-180 20-25 1,2-1,7 Postupem doby byly touto technologií zhotoveny tři partie vzorků. Lišily se teplotou žíhání po svaření: - I alternativa žíhání 750-760 C/2h - II alternativa žíhání 740-750 C/2h - III alternativa žíhání 730-740 C/2h Přesné měření a registrace teplot tepelného zpracování se uskutečnilo prostřednictvím špičkové registrační a regulační techniky firem Yakogawa a Honywell. Metodiku měření vypracoval a realizoval Výzkumný ústav energetický Levice [14]. Ukázalo se, že ocel typu P23 je náročná na technologii svařování. Zvládnutí svařitelnosti vyžaduje striktní dodržování technologických zásad, zejména tepelného režimu po svaření. 3

4. VLIV TEPELNÉHO ZPRACOVÁNÍ NA CREEPOVÉ CHOVÁNÍ Ze svarů, zhotovených 60 popsaným způsobem, byly vyrobeny zkušební tyče podle obr.3. Tyče pak byly použity ke zkouškám žárupevnosti. Pro porovnání vlivu tepelného zpracování byl použit 4 R2 diagram žárupevnosti základního (1) materiálu P23. Tento diagram je charakterizován na obr. 4-5 Obr.3 Zkušební tyč svaru čarami žárupevnosti při teplotách Fig 3 Weld metal test 500, 550 a. Výsledky zkoušek svarů jednotlivých alternativ jsou pak zobrazeny experimentálními body. Ø9 Ø6 9 4 9 Ø16-0,05 a) alternativa I Je hodnoceno šest stavů, po dvou při každé teplotě. Z obr.4 je zřejmé, že doby do lomu představují zhruba 20% životnosti základního materiálu. 00 Alternativa I 0 375,75 1661 183,25 1982 744 697 475,25 94,25 181,75 1557 95,75 563 50 150 200 250 300 350 Obr.4 Žárupevnost svarových spojů alternativa I Fig. 4 Creep resistence of weldments alternative I b) alternativa II Je testováno šest stavů. Z obr.5 je patrné, že v tomto případě jsou výsledky mírně lepší, avšak opět jsou nevyhovující. Doby do lomu představují asi 30% životnosti základního materiálu. 4

00 0 Alternativa II 737,5 1661 197,75 744 660,75 1982 135,5 697 226 1557 135 563 50 150 200 250 300 350 Obr.5 Žárupevnost svarových spojů alternativa II Fig. 5 Creep resistence of weldments alternative II 00 Alternativa III 0 Obr.6 Fig. 6 50 150 200 250 300 350 Žárupevnost svarových spojů alternativa III Creep resistence of weldments alternative III 5

c) alternativa III Zdá se, že tato alternativa tepelného zpracování dává nejlepší výsledky. V obr.6 jsou uvedeny výsledky 11 vzorků, které jsou testovány v rozmezí teplot 500 až a napětí 90-270MPa. Nejdelší zkoušky zatím pokračují a jsou aktuální v době přípravy referátu. Na obr.7 je porovnána žárupevnost základního materiálu a svarových spojů v zavislosti na Larson-Millerově parametru. Je patrné, že žárupevnost svaru pro hodnotu LMP=20 800, která při teplotě 570 C (což je maximální teplota dlouhodobého použití [7]) odpovídá času 47 000h, je o cca 12% nižší než žárupevnost základního materiálu. Základní materiál LMP=20800 570 C 47000h 17000 17500 18000 18500 19000 19500 20000 20500 2 PLM=T.(log(t r )+20), (T[K], t r [h]) Obr.7 Fig. 7 Alternativa III Ukončené zkoušky Běžící zkoušky Porovnání žárupevnosti svarových spojů a základního materiálu Creep properties comparison of weldments and base material ZÁVĚR Provedené práce a jejich výsledky lze shrnout takto: a) Byla stanovena pevnost při tečení základního materiálu P23. b) Byla předběžně stanovena žárupevnost svarových spojů oceli P23. c) Provedenými experimenty byla zjištěna optimální alternativa tepelného zpracování po svaření. d) Pro optimalizovanou alternativu probíhají dlouhodobé experimenty za účelem stanovení poklesu pevnosti při tečení svarových spojů. 6

5. LITERATURA [1] MARLOW,B.A.: Advanced Steam Turbines. Proc.conf. Advances in Turbine Materials, Design and Manufacturing. p.36. Newcastle upon Tyne, 1997, Eds. A.Strang et al., IOM and IME, London 1997. [2] KEHLHOFER,R.: Power engineering, status and trends. Proc.conf. Materials for Advanced Power Engineering 1998. p.3. Eds. J.Lecomte-Becker et al., Forschungszentrum Jülich GmbH, 1998. [3] STAUBLI,M.E.-MAYER,K.H.-KERN,T.V.-VANSTONE,R.W.: COST 501/COST 522. The European Collaboration in advanced steam turbine materials for ultra efficient, low emission power plants. Proc.conf. PARSON 2000: Advanced materials for 21 st Century Turbines and power plants. p.98. Eds. A.Strang et al. IOM, London 2000. [4] VODÁREK,V.: Fyzikální metalurgie modifikovaných (9-12)%Cr ocelí. VŠB - Technická univerzita Ostrava. Ostrava 2003. [5] KERN,T.V.-SCARLIN,B.-VANSTONE,R.W.-MAYER,K.H.: High temperature forged components for advanced steam power plants. See /2/, p.53. [6] MAYER, K.H.-HANUS,R.-KERN,T.-STAUBLI,M.-THORTON,D.V.: High temperature cast components for advanced steam power plants. See /2/, p.71. [7] ARNDT,J.-HAARMANN,K.-KOTTMANN,G.-VAILLANT,J.CJ.-BENDICK,W.- KUBLA,G.-ARBAB,A.-DESHAYES,F.: The T23/T23 Book. New Grades for Waterwalls and Superheaters. Vallourec and Mannesmann Tubes. 2 nd Edition, October 2000. [8] STAUBLI,M.: Final summary report of turbine group. COST 522 steam power plant. Alstom Switzerland, Baden, 2003. [9] VAILLANT,J.C.-VANDENBERGHE,B.-HAHN,B.-HEUSER,H.-JOCHUM,C.: T/P23, 24,911 and 92: New Grades for Advanced Coal-Fired Power Plants-Properties and Experience. Creep and Fracture in High Temperature Components-Design and Life Assessment Issues, p.87. Ed. I.A.Shibli, S.R.Holdworth, G.Merckling, ECCC Creep Conference, Sept. 12-14,2005, London. [] Vallourec and Mannesmann Tubes. Inspection Certificate No.RO2392/02. [11] PECH,R.-KOUCKÝ,J.-BÍNA,V.: Matematizace hodnot pevnosti při tečení československých žáropevných ocelí pro výrobu trub. Strojírenství 29 (1979), č.7,s.389 [12] BÍNA,V.-HAKL,J.: Relation between creep strength and strength for specific creep strain at temperatures up to 1200 C, Materials Science and Engineering A234-236 (1997), pp.583-586. [13] HAKL,J.-VLASÁK,T.-BRZIAK,P.-ZIFČÁK,P.: Contribution to the Investigation of Advanced low-alloy P23 Steel Creep Behaviour Materials for Advanced Power Engineering, pp. 985-996, Liege, 2006, Belgie. [14] MACKO, M. et al: Modernozácia merania teplôt v žíhacích peciach, Technická správa 03/2006, Výskumný ústav energetických zariadení, Levice, 2006. Tato práce vznikla za podpory Ministerstva vzdělavání, mládeže a tělovýchovy České republiky COST 536 (1P05 OC020). 7