Hmotnostní analyzátory I

Podobné dokumenty
Hmotnostní analyzátory I

Hmotnostní detekce v separačních metodách IV.

MALDI, DESI, DAPPI, DART

Hmotnostní spektrometrie

Hmotnostní analyzátory a detektory iont

HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním

Hmotnostní spektrometrie. Historie MS. Schéma MS

Analyzátor doby letu. (Time-of-Flight, TOF)

MC230P83 Hmotnostní detekce v separačních metodách, Hmotnostní detekce v separačních metodách III.

MS analyzátory - II. Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253

LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) Použití GC-MS spektrometrie

Klinická a farmaceutická analýza. Petr Kozlík Katedra analytické chemie

Hmotnostní analyzátory

Theory Česky (Czech Republic)

INTERPRETACE HMOTNOSTNÍCH SPEKTER

zbytkové plyny (ve velmi vysokém vakuu: plyny vzniklé rozkladem těchto látek, nebo jejich syntézou Vakuová fyzika 1 1 / 43

Hmotnostní spektrometrie

Molekulární modelování a bioinformatika. Hmotnostní spektrometrie I

Hmotnostní spektrometrie ve spojení se separačními metodami

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec

MS analyzátory - I. Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253

Hmotnostní analyzátory Hmotnostní analyzátory

Metody povrchové analýzy založené na detekci iontů. Pavel Matějka

HMOTNOSTNÍ SPEKTROMETRIE

Mass Spectrometry (MS) Lenka Veverková 2012

HMOTNOSTNÍ SPEKTROMETRIE

HMOTNOSTNÍ SPEKTROMETRIE

HMOTNOSTNÍ SPEKTROMETRIE

INTERAKCE IONTŮ S POVRCHY II.

No. 1- určete MW, vysvětlení izotopů

Analytická technika HPLC-MS/MS a možnosti jejího využití v hygieně

Hmotnostní analyzátory II

10. Tandemová hmotnostní spektrometrie. Princip tandemové hmotnostní spektrometrie

Hmotnostní spektrometrie

Hmotnostní spektrometrie - Mass Spectrometry (MS)

Indentifikace molekul a kvantitativní analýza pomocí MS

Hmotnostní spektrometrie

Laboratoř ze speciální analýzy potravin II. Úloha 3 - Plynová chromatografie (GC-MS)

METODY ANALÝZY POVRCHŮ

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj

Hmotnostní analyzátory II

Iontové zdroje II. Iontový zdroj. Data. Vzorek. Hmotnostní analyzátor. Zdroj vakua. Iontové zdroje pracující za sníženého tlaku

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (Bl) (И) ČESKOSLOVENSKA SOCIALISTICKÁ REPUBLIKA ( 1S ) (SI) Int Cl* G 21 G 4/08

Metody spektrální. Metody hmotnostní spektrometrie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

ANORGANICKÁ HMOTNOSTNÍ SPEKTROMETRIE

Emise vyvolaná působením fotonů nebo částic

Pražské analytické centrum inovací Projekt CZ / /0002 spolufinancovaný ESF a Státním rozpočtem ČR

LC/MS a CE/MS v proteomické analýze

13. Spektroskopie základní pojmy

Metody analýzy povrchu

Urychlovače částic principy standardních urychlovačů částic

Metody analýzy povrchu

Stručná historie hmotnostní spektrometrie. Analytická chemie II: Úvod do hmotnostní spektrometrie. Stručná historie hmotnostní spektrometrie.

ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY

IONTOVÉ ZDROJE. Účel. Požadavky. Elektronové zdroje. Iontové zdroje. Princip:

Úvod do strukturní analýzy farmaceutických látek

Hmotnostní detekce v separačních metodách

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil

Úvod do spektrálních metod pro analýzu léčiv

Hmotnostní spektrometrie

Pondělí 10. září 2007

Optické spektroskopie 1 LS 2014/15

Autoři: Pavel Zachař, David Sýkora Ukázky spekter k procvičování na semináři: Tento soubor je pouze prvním ilustrativním seznámením se základními prin

Příklady Kosmické záření

Hmotnostně spektrometrické zobrazování malých molekul

Plazmové metody. Základní vlastnosti a parametry plazmatu

Fyzika II, FMMI. 1. Elektrostatické pole

Úvod do hmotnostní spektrometrie

2. FYZIKÁLNÍ ZÁKLADY ANALYTICKÉ METODY RBS

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky

Elektronová mikroskopie a mikroanalýza-2

Světlo jako elektromagnetické záření

Zdroje iont používané v hmotnostní spektrometrii. Miloslav Šanda

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu

Mikroskop atomárních sil: základní popis instrumentace

Hmotnostní spektrometrie.

MENÍ A INTERPRETACE SPEKTER BIOMOLEKUL. Miloslav Šanda

Ionizační manometry. Při ionizaci plynu o koncentraci n nejsou ionizovány všechny molekuly, ale jenom část z nich n i = γn ; γ < 1.

Analyzátory iontové pohyblivosti (iontová mobilita)

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru

Od kvantové mechaniky k chemii

3.1 Magnetické pole ve vakuu a v látkovén prostředí

Vysokoúčinná kapalinová chromatografie Kvalitativní analýza

Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace)

F MATURITNÍ ZKOUŠKA Z FYZIKY PROFILOVÁ ČÁST 2017/18

Zdroje optického záření

Určení molekulové hmotnosti: ESI a nanoesi

Fyzika 6. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. témata / učivo. očekávané výstupy RVP. očekávané výstupy ŠVP

Elektronový obal atomu

S P E K T R O M E T R I E 2. roník listopadu 2009

Spojení hmotové spektrometrie se separačními metodami

Techniky mikroskopie povrchů

Průtokové metody (Kontinuální měření v proudu kapaliny)

INSTRUMENTÁLNÍ METODY

Hydromechanické procesy Hydrostatika

Elektřina a magnetismus úlohy na porozumění

Iontové zdroje II. Iontový zdroj. Data. Vzorek. Hmotnostní analyzátor. Zdroj vakua. Iontové zdroje pracující za sníženého tlaku

Transkript:

Hmotnostní analyzátory I Analýza iontů Tandemová hmotnostní spektrometrie Typy analyzátorů Analyzátor doby letu Magnetický sektorový analyzátor Kvadrupólový analyzátor Iontová past Hmotnostní analyzátor Vzorek Data Iontový zdroj Hmotnostní analyzátor Detektor Zdroj vakua Hmotnostní analyzátor je zařízení, které využívá elektromagnetických polí k separaci iontů v plynné fázi podle jejich poměru hmotnost/náboj (m/z).

Hmotnostní analyzátory TOF B Q LIT IT OT ICR Analyzátor doby letu Magnetický sektorový analyzátor Lineární kvadrupól Lineární kvadrupólová iontová past Iontová past Orbitrap Iontová cyklotronová resonance Hmotnostní analyzátory se liší principem měření, a tedy i svými vlastnostmi. Vhodný typ analyzátoru volíme dle aplikace. doi:10.1016/0168-1176(87)80030-7 Parametry hmotnostních analyzátorů Hmotnostní rozsah nejnižší a nejvyšší hodnota m/z, kterou lze s daným analyzátorem měřit Rozlišovací schopnost schopnost poskytnout rozlišené signály pro ionty s malým rozdílem hmotností Přesnost určení hmotnosti přesnost, se kterou lze měřit m/z iontů (udává se pro vnitřní i vnější kalibraci) Dynamický rozsah - počet koncentračních řádů, v nichž je odezva závislá na koncentraci Rychlost rychlost záznamu spekter

Parametry hmotnostních analyzátorů Tandemová hmotnostní spektrometrie Tandemová hmotnostní spektrometrie (MS n ) Metody, při kterých je sledovaný ion vybrán (první MS), fragmentován a produkty sledovány analyzátorem (další MS) K fragmentaci může dojít: 1/ spontánně (metastabilní ionty); PSD / aktivací iontů (kolizemi s neutrálními částicemi, interakcemi s fotony či elektrony); CID, IRMPD, ECD, ETD Metastabilní ionty Ionty s velkou vnitřní energií (větší než threshold pro fragmentaci), které se nerozpadají ve zdroji, ale až v oblasti hmotnostního analyzátoru.

Tandemová hmotnostní spektrometrie Fragmentace za zdrojem (Post Source Decay, PSD) Fragmentace metastabilních iontů ve vakuovém MALDI-TOF. Prekurzory vytvořené ve zdroji (kinetická energie kev) se během letu v letové trubici rozpadají. Fragmenty mají stejnou rychlost jako prekurzor, ale různou kinetickou energii. V TOFu nemohou být rozlišeny (dopadají na detektor ve stejnou dobu), ale v reflektronu ano. Využívá se korelace mezi kinetickou energií fragmentů a jejich hmotností. Př: Tandemová hmotnostní spektrometrie Disociace vyvolaná srážkou (Collision Induced Dissociation, CID) Nejčastější způsob MS/MS analýzy. Fragmentace iontů založená na jejich srážkách iontů s neutrálními částicemi (He, Ar, N ). Po srážce dochází k rychlému převedení translační energie na energii vibrační a k její rychlé distribuci po všech kovalentních vazbách. Dochází ke štěpení nejslabších vazeb. CID se provádí v kolizní cele (srážkové komoře) Př.: CID v iontové pasti MS MS MS 3

Tandemová hmotnostní spektrometrie Disociace záchytem elektronu (Electron Capture Dissociation, ECD) Fragmentace vícenásobně nabitých iontů po jejich reakci s elektrony. Vícenásobně nabité ionty (vytvořené elektrosprejem) zachycené v ICR cele interagují s nízkoenergetickými (termálními; < 1 ev) elektrony. Tvoří se ionty s lichým počtem elektronů, který díky přebytku energie získaného touto reakcí fragmentují. [M + 3H] 3+ + e - [M + 3H] + fragmenty Vhodné pro strukturní analýzu peptidů včetně identifikace modifikujících skupin. Tvoří se zejména ionty typu c a z. Tandemová hmotnostní spektrometrie Disociace přenosem elektronu (Electron Transfer Dissociation, ETD) Fragmentace vícenásobně nabitých iontů po jejich reakci s radikál-anionty. Vícenásobně nabité ionty (vytvořené elektrosprejem) interagují s radikál-anionty s dostatečně nízkou elektronovou afinitou sloužícími jako donor elektronů. Tvoří se ionty s lichým počtem elektronů, které fragmentují obdobně jako v případě ECD. A - + [M + 3H] 3+ A + [M + 3H] + fragmenty ETD lze implementovat na IT nebo Q-TOF. Radikál-anionty se tvoří v CI zdroji. Př. reagentů: fluoranthen anthracen azobenzen, -bichinolin

Tandemová hmotnostní spektrometrie Technické řešení ETD na lineární iontové pasti Thermo Scientific Tandemová hmotnostní spektrometrie Multifotonová disociace infračerveným zářením (InfraRed MultiPhoton Dissociation, IRMPD) Fragmentace iontů po jejich interakci s fotony infračerveného záření. Paprsek IR laseru vstupuje do prostoru ICR cely nebo iontové pasti. Ionty absorbují energii fotonů a jsou excitovány do vyšších vibračních stavů až dojde k fragmentaci vazeb, obdobně jako u CID. Spektra jsou podobná CID. IRMPD -na iontových pastech není omezení v nízkých oblastech m/z (pod 1/3 m/z prekurzoru) CID

Analyzátor doby letu (TOF) Analyzátor doby letu Měření doby letu částic o známé kinetické energii v trubici o fixní délce. Nabité částice (ionty) s různým m/z jsou urychleny elektrickým polem. Získají tak stejnou energii, ale různou rychlost. Čas, který je potřebný k překonání letové dráhy je rozdílný - těžší ionty potřebují delší čas než lehčí ionty. potenciální energie udělená el. polem E p 1 kinetická energie iontu E k Příklad: Doba letu iontu o hmotnosti 1000 Da, napětí 0 kv, délka 1 m: t = 16 s

Lineární uspořádání TOF MS odpuzovací elektroda (repeller) 0 kv extrakční mřížka 18 kv mřížka 0 V ionty E = 0 urychlovací mřížka 0 V L detektor Zdroje iontů: - pulzní zdroje (doba pulzu ns), tvorba balíčků (obláčků) iontů - ideální zdroj: vytvoří všechny ionty ve stejném čase, ve stejném místě, se stejnou rychlostí ve směru k detektoru a s nulovými rychlostmi v ostatních směrech - reálné zdroje: disperze času a místa vzniku iontů, různé počáteční rychlosti a směry pohybu Tvorba iontů pro TOF MS: pulzní zdroje Extrakce konstantním elektrickým polem - pulzní ionizace (např. MALDI), konstantní elektrické pole Extrakce napěťovým pulzem - pulzní ionizace (např. MALDI), pulzní elektrické pole (pulsed extraction, delayed extraction, time-lag focusing) - kontinuální zavádění iontů v kolmém směru, pulzní elektrické pole (orthogonal extraction, orthogonal acceleration) pulzní ionizace laserem z ortogonální extrakce iontů

Reálné iontové zdroje pro TOF MS A1 A A3 Vliv počáteční prostorové distribuce iontů A1: odpuzovací elektroda; A: extrakční mřížka; A3: urychlovací mřížka Ionty vzniklé v různé vzdálenosti od odpuzovací elektrody stráví různě dlouhou dobu pod vlivem pole. Ionty tak získají různé rychlosti a kinetické energie (čím jsou dále od akcelerační mřížky, tím mají větší rychlost a energii). F V určitém místě rychlejší ionty doženou pomalejší (primární ohnisko). Primární ohnisko nelze využít k detekci, ionty o různém m/z nejsou ještě dostatečně rozděleny. Reálné iontové zdroje pro TOF MS Vliv počátečních rychlostí a směrů pohybu iontů Ionty s počáteční rychlostí směrem k detektoru dorazí dříve. Ionty s opačným směrem jsou nejdříve zpomaleny, otočeny, a tím se zpozdí. Počáteční rychlost v kolmém směru způsobuje drift iontu z osy letové trubice. - + Korekce směru iontů se provádí pomocí dvojice elektrod ( steering plates ). V reálných iontových zdrojích dochází ke snižování rozlišení.

Zlepšení rozlišení v TOF MS I. Vysoká urychlovací napětí II. Reflektron III. Opožděná extrakce iontů IV. Dlouhá letová dráha I. Vysoká urychlovací napětí 1 1 v: celková rychlost iontu; v 0 : počáteční rychlosti iontu Při vyšších urychlovacích napětích se snižuje relativní příspěvek počáteční rychlosti k celkové rychlosti iontu. II. Reflektron: elektrostatické iontové zrcadlo odpuzovací elektroda (repeller) extrakční mřížka reflektron, - ionty se stejným m/z v (E k ) > v (E k ) urychlovací mřížka detektor - reflektron: soustava elektrod s postupně se zvyšujícím potenciálem - ionty s větší E k pronikají hlouběji do elektrostatického pole, tím se prodlouží dráha a dojde k jejich zpoždění - hloubka průniku do elektrostatického pole nezávisí na m/z, pouze na E k - detektor je v oblasti sekundárního (reflektronového) ohniska Rozlišení se zvyšuje na úkor citlivosti a snížení hmotnostního rozsahu.

III. Opožděná extrakce iontů µs napětí na odpuzovací elektrodě (MALDI desce) t 0 odpuzovací elektroda extrakční mřížka urychlovací mřížka 18 kv 18 kv 0 V t 0 t Po vytvoření iontů pulzním zdrojem (např. MALDI) se urychlovací napětí vloží až po malé časové prodlevě (t ). Ionty se při E = 0 rozdělí podle rychlostí. t 0 kv 18 kv 0 V Po vložení napěťového pulsu (E > 0) získají pomalejší ionty více energie a rychlosti iontů se vyrovnají. t x 18 kv 18 kv 0 V Izobarické ionty se pohybují trubicí s užší distribucí rychlostí, zlepšuje se rozlišení. Brown, Lennon Anal. Chem. 67 (1995) 1998. IV. Letová dráha rozlišení v TOF MS: t - doba letu; Δt -časový interval detekce iontů se stejným poměrem m/z Vyšší rozlišení lze dosáhnout prodloužením dráhy letících iontů. Výrazné prodlužování letové trubice nepraktické: řešením je opakované použití stejné dráhy pro prodloužení doby letu iontů - technická řešení: 1/ bezmřížkové elektrostatické reflektrony TOF s vícenásobným odrazem iontového svazku / elektrostatické sektory TOF s vícenásobným otočením iontového svazku analyzátory s otevřenou nebo uzavřenou dráhou (uzavřená dráha: lehčí ionty mohou vykonat více otáček, nejednoznačná spektra).

Typy analyzátorů podle letové dráhy Lineární TOF TOF s vícenásobným odrazem iontového svazku TOF s vícenásobným otočením iontového svazku TOF s jedním odrazem iontového svazku (reflektron) uzavřená dráha uzavřená dráha otevřená dráha otevřená dráha Int. J. Mass Spectrom. 349 350 (013) 134 TOF s vícenásobným odrazem iontového svazku Folded Flight Path (FFP) Ionty ze zdroje jsou odráženy iontovými zrcadly a směrovány sérií fokusačních prvků umístěných v řadě uprostřed. Podle režimu měření ionty prochází různou trajektorií a s tím souvisí i dosažené rozlišení. Bezmřížková iontová zrcadla vysoká transmise (>50 % v High resolution módu) Délka analyzátoru 75 cm, maximálně 64 odrazů (celková dráha až 40 m) Rozlišení max. 100 000 FWHM, přesnost určení hmotnosti <1 ppm, Rychlost sběru dat do 00 spekter za sekundu LECO Corporation

TOF s vícenásobným otočením iontového svazku MULTUM: Konstrukční řada analyzátorů TOF z Univerzity v Osace původně vyvíjený pro projekt COSAC (ROSETTA space mission). - základem 4 válcovité elektrostatické sektory - R > 350 000 (po 500 cyklech) - nízké ztráty iontů (1- % na cyklus) - malé rozměry mobilní přístroje MULTUM-S II Anal. Chem. 010, 8, 8456 8463; J. Mass Spectrom. 003; 38: 115 114 TOF s vícenásobným otočením iontového svazku SpiralTOF ion optic system Konstrukční řešení: 4 toroidní elektrostatické sektory s otvory, iontový svazek se několikrát otočí celková dráha iontů ~ 17 m - refokusace iontového svazku během každého cyklu nedochází k disperzi vysoké rozlišení Parametry: -vysoké rozlišení 60 000-80 000 -vysoká přesnost určení m/z:1 ppm s vnitřní kalibrací, 10 ppm s vnější kalibrací -dobrá citlivost -malé rozměry ( benchtop přístroje) - součást MALDI-TOF/TOF Jeol

Fragmentace za zdrojem (post source decay, PSD) laser pulzní selektor (deflektor) rozpad metastabilního iontu v oblasti mezi deflektorem a reflektronem: PSD + m m 1 m - napěťový puls aplikovaný na selektor umožňuje výběr prekurzoru (okno až 1 Da) - prekurzory s vyšší energií se samovolně rozpadají v letové trubici - fragmenty mají stejnou rychlost jako prekurzor, ale jinou energii - reflektron se využije pro separaci iontů podle kinetické energie: těžší ion s vyšší E k pronikne hlouběji do reflektronu a tím se zpozdí - omezená schopnost lineárního reflektronu pokrýt velké rozdíly v E k : spektrum se skládá z více měření při různém potenciálu reflektronu - kvadratický reflektron umožňuje změřit celé PSD spektrum najednou TOF/TOF analýza Dvě odlišná řešení: TOF/TOF s CID kolizní celou TOF/TOF s CID kolizní celou: Po výběru prekurzoru selektorem jsou ionty fragmentovány v kolizní cele (CID). Produkty jsou následně akcelerovány do reflektronu. TOF/TOF s LIFT celou: Nedochází k CID, ale detekují se ionty vzniklé samovolným rozpadem prekurzorů za iontovým zdrojem (postsource decay, PSD). Prekurzory i PSD fragmenty mají stejnou rychlost (vznikly až po urychlení).v LIFT cele jsou ionty urychleny napěťovým pulsem a získají tak různé rychlosti. Dále procházejí reflektronem a jsou detekovány. TOF/TOF s LIFT celou

Hmotnostní analyzátory TOF: shrnutí - velký (teoreticky neomezený) hmotnostní rozsah - záznam celého spektra pro každý pulz (neskenující zařízení) - velká rychlost záznamu dat (možnost spojení s rychlými separacemi) - vysoká citlivost díky velké propustnosti iontů - lze dosáhnout vysokých rozlišení a přesností měření m/z Magnetický sektorový analyzátor

Magnetický sektorový analyzátor Ionty jsou urychleny vysokým napětím (4-8 kv) do magnetického pole vytvořeného elektromagnetem. Využívá se zakřivení dráhy iontů v magnetickém poli (poloměr dráhy iontů je úměrný poměru m/z). Při analýze iontů je detektor na fixní pozici, skenuje se buď magnetické pole nebo urychlovací napětí. Klasický typ analyzátoru používaný od počátků organické MS. Magnetický sektorový analyzátor Iontový zdroj udělí iontům kinetickou energii E k urychlovacím napětím U E k 1 v-rychlost iontu; m-hmotnost iontu; mv qzu ezu e-elementární náboj; z-nábojové číslo Na pohybující se ion v magnetickém poli působí Lorentzova síla F L, která způsobí zakřivení dráhy iontů F L qvb ezvb a zároveň síla dostředivá F c, které jsou v rovnováze FL F c ezvb mv r m r m -poloměr dráhy iontu Ionty se začnou pohybovat po kruhové dráze s poloměrem r m : r m miv ezb

Magnetický sektorový analyzátor Kombinací vztahů r m miv ezb a 1 mv ezu Získáme základní rovnici MS (dnes už se tak ale neoznačuje; z=1) m e i rm B U Magnetický sektorový analyzátor separuje ionty v prostoru na základě zakřivení dráhy iontů. Magnetický sektorový analyzátor lze skenovat buď změnou magnetické indukce B nebo napětí U. Sektorové analyzátory s dvojitou fokusací Analyzátory s dvojitou fokusací kromě magnetického sektoru obsahují ještě elektrostatický sektor, který kompenzuje energetickou disperzi iontů a tak zvyšuje rozlišení. Elektrostatický sektorový analyzátor vytváří radiální elektrické pole mezi dvěma opačně nabitými deskami. Ionty o stejném m/z s různou kinetickou energií jsou zaostřeny (fokusovány) do jednoho místa. Elektrostatický analyzátor neseparuje monoenergetické ionty!

Magnetické sektorové analyzátory Obecně: Klasický typ analyzátoru s vysokou rozlišovací schopností umožňující izolace při vysokém rozlišení, a vysokoenergetické MS/MS. Vysoký dynamický rozsah, avšak relativně pomalý. Typické aplikace stopová GC/MS dioxinů, furanů, bromovaných difenyletherů, polychlorovaných naftalenů (PCNs) apod. Rozlišení: do 100 000 (dvojitá fokusace) Přesnost určení hmotnosti: 5 ppm Hmotnostní rozsah: 0 000 Rychlost skenu: pomalý Kvadrupólový analyzátor (Q)

Kvadrupólový analyzátor Analyzátor tvořen 4 paralelními tyčemi kruhového nebo hyperbolického průřezu, na něž je vkládáno napětí. Vstupující ionty začnou oscilovat. Oscilace jsou stabilní pouze pro ionty s určitým poměrem m/z a jen tyto ionty kvadrupólem projdou. Ostatní jsou zachyceny na tyčích. Skenováním jsou propouštěny postupně všechny ionty z požadovaného rozsahu spektra ( hmotnostní filtr ). Kvadrupólový analyzátor d x dt e m r i 0 Vkládané napětí je složeno ze stejnosměrné (U) a střídavé složky (V): 0 U V cost Pohybové rovnice pro pohyb iontů v osách x a y (směrem k tyčím): d y e ( U V cost) x 0 ( U V cost) y 0 dt m r i 0 -úhlová frekvence Řešením rovnic je poloha iontu o dané hmotnosti v daném čase. Získáme parametry q (časově proměnné, střídavé pole) a a (časově neměnné, konstantní pole). q x q y ev m r i 0 a x a y 4eU m r i 0 r 0 -vzdálenost mezi tyčemi kvadrupólu, -frekvence radiofrekvenčního napětí * Émile Léonard Mathieu (1835-1890), francouzský matematik

Stabilitní diagram Závislost parametru a na q vymezuje oblasti, kde je ion o dané hmotnosti stabilní (projde kvadrupólem) nebo nestabilní (neprojde kvadrupólem) nestabilní ion - pohled v ose x nestabilní ion - pohled v ose y stabilní pohyb průchod kvadrupólem Skenování kvadrupólu Grafické znázornění stabilitního diagramu pro 3 ionty (m/z 8, 69 a 19). Při skenování se současně mění a a q tak, aby jejich poměr byl konstantní. Snížením poměru a/q se zvyšuje oblast m/z (iontů), které projdou analyzátorem. Současně se snižuje rozlišení. Při skenu pro jednotkové rozlišení všech m/z se mění a a q tak, aby sledovaly čárkovanou čáru. Každý ion se měří jen velmi krátkou dobu, ve zbylém čase končí na tyčích kvadrupólu. Pozn: Skenování do 1000 u, sken 1s, ion se měří 1/1000 s. Snížení rozsahu = zvýšení citlivosti.

Kvadrupólový analyzátor Obecně: Jednoduchý skenující hmotnostní analyzátor, který se používá v základních (levných) GC/MS a LC/MS přístrojích. Má nízké rozlišení a nízkou přesnost určení hmotnosti. Toleruje vyšší tlak v oblasti analyzátoru, používá se i jako fokusační prvek nebo kolizní cela. Typické aplikace základní analyzátor v běžných GC/MS a nejlevnějších LC/MS Rozlišení: jednotkové (lepší pro hyperbolické tyče) Přesnost určení hmotnosti: 0.1 u (až 5 ppm) Hmotnostní rozsah: 000 (4000 u) Rychlost skenu: max 5000 u/s RF-only kvadrupóly (hexapóly, oktapóly) Stejnosměrné napětí rovno nule, aplikuje se jen střídavé napětí. Propuští všechny ionty. Využití: iontová optika ( ion guides ), kolizní cely.

Trojitý kvadrupól QqQ Skeny trojitého kvadrupólu: Tři kvadrupóly spojeny za sebou, prostřední obsahuje plyn (Ar) a slouží jako kolizní cela, kde je možné ionty fragmentovat Standardní analyzátor pro MS/MS, kvantifikace Iontová past (IT) Sférická (3D) iontová past Lineární iontová past

Sférická iontová past Analyzátor tvořen prstencovou a dvěma koncovými elektrodami (trojrozměrný kvadrupól). Pomocí trojrozměrného RF pole je možno ionty uvnitř uchovávat a selektivně vypuzovat. Uvnitř pasti je helium (1 mtorr). Sférická iontová past uvažujeme elektrické pole ve 3 rozměrech: Napětí vkládané na prstencovou elektrodu (rovina xy) : Napětí vkládané na koncové elektrody: 0 0 Pole uvnitř pasti v z,r souřadnicích (r 0 je vnitřní poloměr pasti): Pohybové rovnice: 0 x, y, z ( r z ) r 0 d z 4e dt m r i 0 d r e ( U V cost) z 0 ( U V cost) r 0 dt m r i 0 a a 16eU q 8eV z r z r mir0 mir0 q f f= základní RF frekvence Řešením diferenciální rovnice je poloha iontu o dané hmotnosti v daném čase

Zachycení iontů v pasti Zavádění iontů do pasti ( nástřik ) je umožněno systémem iontové optiky, která funguje jako brána (-V otevřeno, +V zavřeno). Délka plnění pasti je řízena tak, aby nedošlo k její přeplnění. Ion zůstane v pasti zachycen, pokud se nachází uvnitř stabilitního diagramu. Jeho oscilace musí být stabilní jak v ose z, tak v ose r. Pohyb iontu v 3D pasti Stabilitní diagram - závislost parametru a na q vymezuje oblasti, kde je ion o dané hmotnosti stabilní (zůstane v pasti) nebo nestabilní (zanikne na elektrodách nebo je vypuzen). Zachycení iontů v pasti Přeplnění pasti: Pokud by se do pasti dostalo příliš mnoho iontů, tak by ty vnější stínily pole těm uvnitř a došlo by ke zhoršení rozlišení, snížení signálu a posunu m/z jak zabránit přeplnění pasti? předsken výpočet z předchozího skenu předsken (Thermo) před vlastním skenem se provede velmi krátký předsken, kdy se zjistí počet iontů přicházejících do pasti. Podle toho se upraví doba otevření brány. výpočet z předchozího skenu (Bruker) doba, po kterou je brána otevřena se počítá z množství iontů v předchozím skenu. Helium tlumící a kolizní plyn: Do pasti je kontinuálně zaváděno He. Slouží ke snížení kinetické energie iontů (zvýšení rozlišovací schopnosti a citlivosti) a jako kolizní plyn pro MS n experimenty.

Skenování iontové pasti Na prstencovou elektrodu se aplikuje tzv. fundamentální RF napětí. Frekvence je konstantní, mění se amplituda V. Stejnosměrné napětí se neaplikuje; a z =0). Postupně se zvyšuje amplituda napětí V. Tím roste q z pro všechny ionty až dosáhne limitu stability. Tím je ion vypuzen ve směru osy z (na detektor dopadne 50% iontů). Tandemová MS s iontovou pastí Iontové pasti umožňují izolaci iontů, jejich aktivaci, fragmentaci a skenování vzniklých fragmentů na jednom místě (v jednom zařízení) MS n až do~10 stupně pravidlo 30/70 ionty s hmotností 30% hmotnosti prekurzoru a nižší nemohou být v pasti stabilizovány Př. Reserpin Rauwolfia

Sférická iontová past Obecně: Poměrně levný analyzátor zadržující ionty vyznačující se vysokou rychlostí skenu a umožňující tandemovou MS (vhodný pro určování struktury). Horší rozlišení, omezený rozsah spektra. Typické aplikace analyzátor pro tandemovou MS, spojení s LC i GC, velmi široké použití, možnost kvantifikace Rozlišení: jednotkové (snížením rychlosti skenu může být zvýšeno) Přesnost určení hmotnosti: 0.1 u Hmotnostní rozsah: 000 (4000 u) Rychlost skenu: max 5000 u/s Lineární iontová past (D past, LIT) Lineární iontová past je v podstatě RF only multipól (kvadrupól), na jehož přední i zadní straně jsou umístěny elektrody na vyšším DC potenciálu. Uvnitř multipólu tak vzniká pole umožňující uchovávat a selektivně vypuzovat ionty. Ionty mohou být vypuzeny axiálně i radiálně.

LIT segmentovaný kvadrupól, radiální ejekce iontů Thermo Scientific Vlastnosti lineárních iontových pastí myoglobin Vysoká kapacita: (až 50x ve srovnání se sférickou pastí) minimalizace problémů s prostorovým nábojem, širší lineární dynamický rozsah Vysoká účinnost plnění a detekce iontů: (možnost dvou detektorů) vyšší citlivost (~ 10-0 x ve srovnání se sférickou pastí) Vyšší rozlišení