A constitutive model for non-reacting binary mixtures

Podobné dokumenty
USING VIDEO IN PRE-SET AND IN-SET TEACHER TRAINING

Aplikace matematiky. Dana Lauerová A note to the theory of periodic solutions of a parabolic equation

PHYSICAL QUANTITIES AND UNITS

Gymnázium, Brno, Slovanské nám. 7, SCHEME OF WORK Mathematics SCHEME OF WORK. cz

Základy teorie front III

Thermodynamics and Stability of Non-Equilibrium Steady States in Open Systems

Effect of temperature. transport properties J. FOŘT, Z. PAVLÍK, J. ŽUMÁR,, M. PAVLÍKOVA & R. ČERNÝ Č CTU PRAGUE, CZECH REPUBLIC

WORKSHEET 1: LINEAR EQUATION 1

DC circuits with a single source

Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Teacher: Student:

Bc. Martin Novák. Generace vířivosti rychlostního pole gradientem entropie Generation of vorticity in velocity field by entropy gradient MASTER THESIS

DATA SHEET. BC516 PNP Darlington transistor. technický list DISCRETE SEMICONDUCTORS Apr 23. Product specification Supersedes data of 1997 Apr 16

GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA

Introduction to MS Dynamics NAV

On large rigid sets of monounary algebras. D. Jakubíková-Studenovská P. J. Šafárik University, Košice, Slovakia

Department of Mathematical Analysis and Applications of Mathematics Faculty of Science, Palacký University Olomouc Czech Republic

SIC1602A20. Komunikační protokol

Maturitní témata z fyziky

PART 2 - SPECIAL WHOLESALE OFFER OF PLANTS SPRING 2016 NEWS MAY 2016 SUCCULENT SPECIAL WHOLESALE ASSORTMENT

Summary. Mr. Andreas Molin

Melting the ash from biomass

Czech Republic. EDUCAnet. Střední odborná škola Pardubice, s.r.o.

Klepnutím lze upravit styl Click to edit Master title style předlohy nadpisů.

Výukový materiál zpracován v rámci projektu EU peníze školám

Akademie věd České republiky. Disertace k získání vědeckého titulu "doktor věd" ve skupině věd fyzikálně-matematických

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

BTS and Development of Confidence Indicators

PRODEJNÍ EAUKCE A JEJICH ROSTOUCÍ SEX-APPEAL SELLING EAUCTIONS AND THEIR GROWING APPEAL

Digitální učební materiál

On the Structure of Constituent Negation in Czech

='L 'C\ znacky Primossa + /Z / N&~m T" ' - -"" '" S/)e/"kE)' :" 7. El m. fp '

SOIL ECOLOGY the general patterns, and the particular

CARBONACEOUS PARTICLES IN THE AIR MORAVIAN-SILESIAN REGION

Postup objednávky Microsoft Action Pack Subscription

Enabling Intelligent Buildings via Smart Sensor Network & Smart Lighting

VY_32_INOVACE_06_Předpřítomný čas_03. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace

Compression of a Dictionary

SPECIAL THEORY OF RELATIVITY

ActiPack rozšířil výrobu i své prostory EMBAX Od ledna 2015 jsme vyrobili přes lahviček či kelímků. Děkujeme za Vaši důvěru!

Air Quality Improvement Plans 2019 update Analytical part. Ondřej Vlček, Jana Ďoubalová, Zdeňka Chromcová, Hana Škáchová

Čtvrtý Pentagram The fourth Pentagram

Teorie her pro FJFI ČVUT řešené úlohy

AIC ČESKÁ REPUBLIKA CZECH REPUBLIC

Translation Model Interpolation for Domain Adaptation in TectoMT

PÁSOVÉ PILY NA KOV - BAND SAWS MACHINE - ЛЕНТОЧНЫЕ ПИЛЫ SCIES Á BANDE - BANDSAEGEMASCHINEN - PRZECINARKI TAŚMOWE NA KOV SCIES A RUBAN - SIERRAS DE


ESPD & e-certis support on the way o once-only principle in e-procurement

Potřebujete mít vaše IS ve shodě s legislativou? Bc. Stanislava Birnerová

SEZNAM PŘÍLOH. Příloha 1 Dotazník Tartu, Estonsko (anglická verze) Příloha 2 Dotazník Praha, ČR (česká verze)... 91

ZKUŠENOSTI Z eaukcí NA LÉKY EXPERIENCE WITH PHARMACEUTICALS IN eauctions. Bc. Jana Opavská PharmDr. Robert Bartas, Ph.D., MBA Ostrava

Global Properties of A-A Collisions II

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015

Uni- and multi-dimensional parametric tests for comparison of sample results

Veritas Information Governance získejte zpět kontrolu nad vašimi daty

Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT

where NANOSPIDERTM was born cxi.tul.cz

Jakub Zavodny (University of Oxford, UK)

Extrakce nezávislé komponenty

Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Inovace a individualizace výuky

Vliv rozdílného využívání lučního porostu na teplotu půdy

CHLADÍCÍ ZAŘÍZENÍ. Obr. č. VIII-1 Kompresorový chladící oběh

pánská peněženka / men s wallet size: 13,5 x 11 cm pánská peněženka / men s wallet size: 15 x 9,5 cm

Matematická rozcvička pro KMA/MAT1 a KMA/MT1

Zjistit, jak žáci zvládli učivo prvního pololetí. Pomůcky: Psací potřeby Zdroje: vlastní. III_2-05_54 Half term test, 6yr - řešení

EURAXESS pomáhá vědcům

EEA and Norway Grants. Norské fondy a fondy EHP

Šperky. značky Primossa

PRAVIDLA ZPRACOVÁNÍ STANDARDNÍCH ELEKTRONICKÝCH ZAHRANIČNÍCH PLATEBNÍCH PŘÍKAZŮ STANDARD ELECTRONIC FOREIGN PAYMENT ORDERS PROCESSING RULES


Name: Class: Date: RELATIONSHIPS and FAMILY PART A

Základy stavby výrobních strojů Tvářecí stroje I KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ

MASTER TL-D 90 De Luxe

Biotechnology in the Czech Republic where we are?

CZ.1.07/1.5.00/ Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT

The Military Technical Institute

Převod prostorových dat katastru nemovitostí do formátu shapefile

Agile leadership in Czech Rep. Agilia Conference 2011 Brno

1, Žáci dostanou 5 klíčových slov a snaží se na jejich základě odhadnout, o čem bude následující cvičení.

Theme 6. Money Grammar: word order; questions

1-AYKY. Instalační kabely s Al jádrem. Standard TP-KK-133/01, PNE Konstrukce. Použití. Vlastnosti. Installation cables with Al conductor

2 OUTBOUND: 178 RETURN: 179

POSLECH. Cinema or TV tonight (a dialogue between Susan and David about their plans for tonight)

Stabilizace břehů Bank Stabilization

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Drags imun. Innovations

These connections are divided into: a) with a form-contact b) with a force-contact

Aktivita CLIL Chemie III.

IS THERE NECESSARY TO RECALCULATE VLTAVA CASCADE PURPOSES??

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

CASTING HAND PRODUCTION USING MOULDS

Caroline Glendinning Jenni Brooks Kate Gridley. Social Policy Research Unit University of York

VELKÁ CENA HRADCE KRÁLOVÉ A KRÁLOVÉHRADECKÉHO KRAJE V PLAVÁNÍ 2. ročník ČESKÝ POHÁR V PLAVÁNÍ 1. kolo:

Database systems. Normal forms

Národní informační den společných technologických iniciativ ARTEMIS a ENIAC

VZDĚLÁVACÍ MATERIÁL. Závěrečná písemná práce pro 5. ročník z anglického jazyka Mgr. Iveta Milostná VY_32_INOVACE_A19 Pořadové číslo: 19.

Matematická rozcvička pro KMA/MAT1 a KMA/MT1

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Consistent Interpolation of the Equation of State in Hydrodynamic Simulations

ON DETERMINATION OF THE DIFFUSION LAYER AND PENETRATION OF SUBSTITUTIVE ELEMENT IN WELDED JOINT OF TWO DIFFERENT STEELS

Transkript:

A constitutive model for non-reacting binary mixtures Ondřej Souček ondrej.soucek@mff.cuni.cz Joint work with Vít Průša Mathematical Institute Charles University 31 March 2012 Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 1 / 21

Double diffusive convection Huppert & Turner 1981) Ondr ej Souc ek Charles University) Non-reacting binary mixtures 31 March 2012 2 / 21

Mixture theory Truesdell Idea of co-occupancy: v s v w ρ s ρ w θ s, e s θ w, e w velocity velocity density density temperature/internal energy temperature/internal energy Table: Unknowns in problems for binary mixtures. Eckart1940), Truesdell 1957), Samohýl 1987), Rajagopal & Tao 1995) Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 3 / 21

Governing equations Governing equations for components - non-reacting binary mixture of non-polar constituents d s ρ s = ρ s div v s, d w ρ w = ρ w div v w, ρ s d s v s = div T s + ρ s b + π, d w v w ρ w = div T w + ρ w b π d s ρ s e s + 12 ) v s 2 = div T s v s ) div q s + q s + e i + ρ s b s v s d w ρ w e w + 12 ) v w 2 = div T w v w ) div q w + q w e i + ρ w b w v w Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 4 / 21

Governing equations Governing equations for components - non-reacting binary mixture of non-polar constituents d s ρ s d w ρ w ρ s d s v s ρ w d w v w ρ s d s e s ρ w d w e w = ρ s div v s, = ρ w div v w, = div T s + ρ s b + π, = div T w + ρ w b π = T s : v s div q s + q s + e i π v s + ρ s b s v s = T w : v w div q w + q w e i + π v w + ρ w b w v w Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 4 / 21

Single-component form We formulate balance laws for the mixture as a whole, rewrite them in a single-component form in terms of mixture properties and identify additional balances for complementary quantities. Mixture components properties ρ s, ρ w, v s, v w, e s, e w Mixture properties ρ := ρ s + ρ w ρv := ρ s v s + ρ w v w ρe := ρ s e s + ρ w e w + 1 2 ρ su s u s + 1 2 ρ wu w u w where u s := v s v, u w := v w v. Complementary properties only c and, same temperature e s e w not needed) c := ρ s ρ := ρ s v s v) Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 5 / 21

Governing equations in new variables dρ ρ dc ρ dv d ρ de = ρ div v = div = div T + ρb 1 1 = v div v) I) div ρ c 1 ) ) 1 c + div 1 c) T s ct w ) + T c + π = div q + T : Dv) + q Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 6 / 21

Governing equations in new variables with dρ ρ dc ρ dv d ρ de = ρ div v = div = div T + ρb 1 1 = v div v) I) div ρ c 1 ) ) 1 c + div 1 c) T s ct w ) + T c + π = div q + T : Dv) + q T := T s + T w ρ s u s u s ρ w u w u w Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 6 / 21

Governing equations in new variables dρ ρ dc ρ dv d ρ de = ρ div v = div = div T + ρb 1 1 = v div v) I) div ρ c 1 ) ) 1 c + div 1 c) T s ct w ) + T c + π = div q + T : Dv) + q with T := T s + T w 1 ρc 1 c) Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 6 / 21

Governing equations in new variables ρ de = div q + T : Dv) + q where q := J e + J ek + J q + J T J e := ρ s e s u s + ρ w e w u w J ek := 1 2 ρ s u s 2 u s + 1 2 ρ w u w 2 u w J q := q s + q w J T := T s u s T w u w q := q s + q w Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 7 / 21

Governing equations in new variables where ρ de = div q + T : Dv) + q q := J e + J ek + J q + J T J e := e s e w ) J ek := 1 1 2c 2 ρ 2 c1 c)) 2 ) J q := q s + q w ) J T := 1 c)t s ct w ) q := q s + q w Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 7 / 21

Entropy balance ρ s d s η s + div J ηs = ξ s + ζ ρ w d w η w + div J ηw = ξ w ζ ρ dη + div J η = ξ provided we define ρη := ρ s η s + ρ w η w J η := J ηs + J ηw + η s η w ) ξ := ξ s + ξ w. Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 8 / 21

The minimal constitutive model From the energy and entropy balance ρe = ρ s e s + ρ w e w + 1 2 ρ su s u s + 1 2 ρ wu w u w ρη := ρ s η s + ρ w η w Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 9 / 21

The minimal constitutive model From the energy and entropy balance ρe = ρce s + ρ1 c)e w + 1 2 2 ρη := ρcη s + ρ1 c)η w Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 9 / 21

The minimal constitutive model From the energy and entropy balance ρe = ρce s + ρ1 c)e w + 1 2 2 ρη := ρcη s + ρ1 c)η w Constitutive assumption: ρeρ, c, η, ) = ρce s ρ, c, η) + ρ1 c)e w ρ, c, η) + 1 2 2 ρηρ, c, e) := ρ s η s ρ, c, e) + ρ w η w ρ, c, e) Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 9 / 21

The minimal constitutive model - Helmholz potential Defining absolute temperature ϑ := ê η Defining the Helmholz potential our constitutive assumptions imply c,ρ,js Ψ s := e s ϑη s Ψ w := e w ϑη w Ψ := e ϑη Ψρ, c, ϑ, ) = cψ s ρ, c, ϑ) + 1 c)ψ w ρ, c, ϑ) + 1 2 2 ρ 2 c1 c) This is one of the results of theory of fluid mixtures of Müller 1968). Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 10 / 21

The minimal constitutive model Using µ := Ψ c ρ,ϑ,js ) p := ρ 2 Ψ ρ c,ϑ,js ) Ψ ϑ ρ,c,js ) = η We may now express ρϑ dη = ρ de Ψ ρ dρ ρ + Ψ c dc + Ψ dj ) s = div q + T : Dv) + p div v + µ div d, Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 11 / 21

ρϑ dη = p + 4 2 3 + 1 ) ) ) δ 3 trt div v + T δ Js + : D δ v) + 1 c)t s ct w ) J s 1 ρ c 1 )) ) : 1 c ) π + µ + T c) div J q + J e µ J ek ) Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 12 / 21

ρϑ dη = p + 4 2 3 + 1 ) ) ) δ 3 trt div v + T δ Js + : D δ v) + 1 c)t s ct w ) J s 1 ρ c 1 )) ) : 1 c ) π + µ + T c) div J q + J e µ J ek ) ) ) ) µ µ = µ ρ ρ + µ c,ϑ, Js c c + ρc1 c) ρ,ϑ, Js ϑ ϑ ρc1 c) c,ρ, Js ρc1 c) ) + µ J s ρc1 c) c,ρ,ϑ Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 12 / 21

ρϑ dη = p + 4 2 3 + 1 ) ) ) δ 3 trt div v + T δ Js + : D δ v) + 1 c)t s ct w ) J s 1 ρ c 1 )) ) : 1 c ) π + µ + T c) div J q + J e µ J ek ) ) ) ) µ µ = µ ρ ρ + µ c,ϑ, Js c c + ρc1 c) ρ,ϑ, Js ϑ ϑ ρc1 c) c,ρ, Js ρc1 c) ) 1 2c Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 12 / 21

Our model thus suggests to identify ϑξ = p + 4 2 3 + 1 ) 3 trt div v + T δ + ) + 1 c)t s ct w ) : D ) µ µ π + ρ + ρ c c + T c ) Jq + J e µ J ek ) ϑ, ϑ ) ) δ Js : D δ v) ) ) and J η = J q + J e µ J ek ϑ. Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 13 / 21

Our model thus suggests to identify ϑξ = p + 4 2 3 + 1 ) 3 trt div v + T s + T w ) δ : D δ v) + 1 c)t s ct w ) : Du s u w ) ) ) µ µ π + ρ + ρ c c + T c u s u w ) Jq + J e µ J ek ) + µ ) ϑ, ϑ ϑ and J η = J q + J e µ J ek ϑ. Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 13 / 21

Our model thus suggests to identify ϑξ = p + 4 2 3 + 1 ) 3 trt div v + T s + T w ) δ : D δ v) ) + 1 c)t s ct w ) : D ) ) ) µ µ π + ρ + ρ c c + T c Jq + J e µ J ek ) + µ ) ϑ, ϑ ϑ and J η = J q + J e µ J ek ϑ. Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 13 / 21

Our model thus suggests to identify ϑξ = p + 4 2 3 + 1 ) 3 trt div v + T s + T w ) δ : D δ v) ) + 1 c)t s ct w ) : D ) µ µ µ π + ρ + c + ρ c ϑ ϑ ) Jq + J e µ J ek ) ϑ, ϑ ) + T c ) and J η = J q + J e µ J ek ϑ. Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 13 / 21

Our model thus suggests to identify ϑξ = p + 4 2 3 + 1 ) 3 trt div v + T s + T w ) δ : D δ v) ) + 1 c)t s ct w ) : D ) ) µ µ π + ρ + c + α µ ρ c ϑ ϑ + T c Jq + J e µ J ek ) + 1 α) µ ϑ ϑ ) ϑ, ) and J η = J q + J e µ J ek ϑ. Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 13 / 21

Let us postulate the rate of entropy production as 2ν + 3λ ϑξ = div v) 2 3 ) + 2νD d v) : D d v) + 2 νd ) + k for ν, ν 0, 2ν + 3λ 0, k 0, κ 0. : D ) + κ ϑ ϑ 0 ϑ Let us employ the postulate of maximization of rate of entropy production with respect to the thermodynamic ) affinities see ) e.g. Rajagopal & Srinivasa 2004)) div v, D d J v), D s J ρc1 c), s ρc1 c), ϑ ) Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 14 / 21

Final constitutive relations µ π + ρ J q +J e µ J ek ) ϑ p + 4 2 3 + 1 2ν + 3λ trt = div v 3 3 ) δ T δ Js + = 2νD δ v) ) 1 c)t s ct w ) = 2 νd ) + T c = k µ ρ + c + α µ c ϑ ϑ + 1 α) µ ϑ = κ ϑ ϑ Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 15 / 21

Final constitutive relations µ π + ρ J q +J e µ J ek ) ϑ p + 4 2 3 + 1 2ν + 3λ trt = 3 3 µ ρ + c + α µ c ϑ ϑ T δ s + T δ w = 2νD δ v) div v 1 c)t s ct w ) ) = 2 νd u s u w ) + T c = k + 1 α) µ ϑ = κ ϑ ϑ Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 15 / 21

Heat and entropy fluxes Let us inspect the final form of heat flux q and entropy flux J η q = κ ϑ + J e + J ek + J T + c e s c + 1 c) e w c αϑ ) c cη s + 1 c)η w ) J η = 1 ϑ q 2J e k J T µ ) = κ ϑ 1 α) µ ϑ ϑ Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 16 / 21

Heat and entropy fluxes Let us inspect the final form of heat flux q and entropy flux J η q = κ ϑ + J e + J ek + J T + c e s c + 1 c) e w c αϑ ) c cη s + 1 c)η w ) J η = 1 ϑ q 2J e k J T µ ) = κ ϑ ϑ + 1 α) c cη s + 1 c)η w ) Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 16 / 21

Heat and entropy fluxes Let us inspect the final form of heat flux q and entropy flux J η q = κ ϑ + J e + J ek + J T + c e s c + 1 c) e w c αϑ ) c cη s + 1 c)η w ) J η = 1 ϑ q 2J e k J T µ ) = κ ϑ ϑ + 1 α) c cη s + 1 c)η w ) Choice of α?: α = 0 Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 16 / 21

Heat and entropy fluxes Let us inspect the final form of heat flux q and entropy flux J η q = κ ϑ + J e + J ek + J T + c e ) s c + 1 c) e w c J η = 1 ϑ q 2J e k J T µ ) = κ ϑ ϑ + η s η w ) + c η ) s c + 1 c) η w c Choice of α?: α = 0 satisfactory - no entropy contribution in heat flux q + correct diffusive term present in entropy flux J η Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 16 / 21

Heat and entropy fluxes Let us inspect the final form of heat flux q and entropy flux J η q = κ ϑ + J e + J ek + J T + c e ) s c + 1 c) e w c J η = 1 ϑ q 2J e k J T µ ) = κ ϑ ϑ + η s η w ) + c η ) s c + 1 c) η w c Of particular interest is the quantity ϑj η q Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 16 / 21

Comparison ϑj η q Our result ϑj η q = J ek J T c cψ s + 1 c)ψ w ) Fluid Mixture theory of Bowen 1976) entropy flux postulated) ϑj η q = J ek J T Ψ s Ψ w ) Müller 1984) theory for mixtures of non-viscous fluids entropy flux derived) ϑj η q = J ek J T Ψ s Ψ w ) Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 17 / 21

Evolution equation for d 1 1 = v div v) I) div ρ c 1 ) ) 1 c + div 1 c) T s ct w ) + T c + π Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 18 / 21

Evolution equation for d 1 1 = v div v) I) div ρ c 1 ) ) 1 c + div 1 c) T s ct w ) + T c + π Using the constitutive relations for π + T c and 1 c)t s ct w : d 1 1 = v div v) I) + div ρ c 1 ) ) 1 c )) ) µ µ + div 2 ν sym ρ + ρ c c k Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 18 / 21

Evolution equation for d 1 1 = v div v) I) div ρ c 1 ) ) 1 c + div 1 c) T s ct w ) + T c + π Using the constitutive relations for π + T c and 1 c)t s ct w : d 1 1 = v div v) I) + div ρ c 1 ) ) 1 c )) ) µ µ + div 2 ν sym ρ + ρ c c k Provided fast relaxation djs 0 and neglecting non-linear terms in v,, and assuming ν 0, one obtains ) µ µ k ρ + ρ c c Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 18 / 21

Conclusions Key features of the presented model: reformulation in traditional variables ρ, c, v, ϑ and also, for all of them evolution equations are available - equivalent to 2 mass balances, 2 momentum balances and single energy balance class II mixtures Hutter)) Minimal scenario for Helmholz potential implied by balance eq. Ψρ, c, ϑ, ) = cψ s ρ, c, ϑ) + 1 c)ψ w ρ, c, ϑ) + 1 2 2 ρ 2 c1 c) fits well the framework of earlier mixture theories. Choice of rate of entropy production - satisfaction of 2nd law of thermodynamics Maximization of r.e.p. constitutive equations Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 19 / 21

Conclusions II Classical viscous-fluid relations for fluid part T s + T w Dv) Additional relation for 1 c)t s ct w Du s u w ) Interaction force π contains all relevant for diffusion) mechanisms. Energy and entropy flux consistent extensions of theories of Müller and Bowen. Physical limit of evolution eq. for diff. flux yields classical Fick s diffusion. Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 20 / 21

Thank you for your attention! Ondřej Souček Charles University) Non-reacting binary mixtures 31 March 2012 21 / 21