ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE Fakulta agrobiologie, potravinových a přírodních zdrojů. katedra chemie



Podobné dokumenty
Vyjádření fotosyntézy základními rovnicemi

Fotosyntéza (2/34) = fotosyntetická asimilace

značné množství druhů a odrůd zeleniny ovocné dřeviny okrasné dřeviny květiny travní porosty.

FYZIOLOGIE ROSTLIN VÝŽIVA ROSTLIN 1) AUTOTROFNÍ VÝŽIVA ROSTLIN 2) HETEROTROFNÍ VÝŽIVA ROSTLIN

FOTOSYNTÉZA. Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_07_BI1

FOTOBIOLOGICKÉ POCHODY

FOTOSYNTÉZA. Princip, jednotlivé fáze

ení k tvorbě energeticky bohatých organických sloučenin


METABOLISMUS SACHARIDŮ

Abiotický stres - sucho

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Fotosyntéza světelná fáze. VY_32_INOVACE_Ch0214.

Speciální osevní postupy Střídání s běžnými plodinami. Variabilita plodin Volba stanoviště Obtížná volba systému hnojení

DÝCHÁNÍ. uložená v nich fotosyntézou, je z nich uvolňována) Rostliny tedy mohou po určitou dobu žít bez fotosyntézy

Autor: Katka Téma: fyziologie (fotosyntéza) Ročník: 1.

Ječmen setý. Ječmen setý

FOTOSYNTÉZA Správná odpověď:

Energetický metabolizmus buňky

Fotosyntéza ve dne Ch_054_Přírodní látky_fotosyntéza ve dne Autor: Ing. Mariana Mrázková

Odborná škola výroby a služeb, Plzeň, Vejprnická 56, Plzeň. Číslo materiálu 19. Bc. Lenka Radová. Vytvořeno dne

Brambory. Brambory. Význam. Potravina cca 80 kg osoba / rok. průmyslová surovina - výrobu škrobu, výroba lihu. příznivě působí v osevním postupu

ŘEPA CUKROVKA. Řepa cukrovka. Význam: výroba cukru (technická cukrovka) - má 14 16% sacharidů krmivářství - řízky, melasa.

Správná zemědělská praxe a zdravotní nezávadnost a kvalita potravin. Daniela Pavlíková Česká zemědělská univerzita v Praze

Fyziologie rostlin. 9. Fotosyntéza část 1. Primární fáze fotosyntézy. Alena Dostálová, Ph.D. Pedagogická fakulta ZČU, letní semestr 2013/2014

Úvod do biochemie. Vypracoval: RNDr. Milan Zimpl, Ph.D.

FYZIOLOGIE ROSTLIN. Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.:

Látky jako uhlík, dusík, kyslík a. z vnějšku a opět z něj vystupuje.

Fyziologie rostlin - maturitní otázka z biologie (3)

Chemické složení buňky

FOTOSYNTÉZA. soubor chemických reakcí,, probíhaj v rostlinách a sinicích. z CO2 a vody jediný zdroj kyslíku ku pro život na Zemi

Inovace profesní přípravy budoucích učitelů chemie

ROSTLINNÁ BUŇKA A JEJÍ ČÁSTI

AMINOKYSELINY REAKCE

Biochemie, Makroživiny. Chemie, 1.KŠPA

Obsah 5. Obsah. Úvod... 9

Energie fotonů je předávána molekulám chlorofylu A, který se zachyceným fotonem excituje (uvolní se energeticky bohatý elektron).

Významné skupiny organických sloučenin Vitamíny

Biosyntéza sacharidů 1

2) Povětrnostní činitelé studují se v ovzduší atmosféře (je to..) Meteorologie je to věda... Počasí. Meteorologické prvky. Zjišťují se měřením.

Kyslík a vodík. Bezbarvý plyn, bez chuti a zápachu, asi 14krát lehčí než vzduch. Běžně tvoří molekuly H2. hydridy (např.

Protimrazová ochrana rostlin

FOTOSYNTÉZA. CO 2 a vody. - soubor chemických reakcí. - probíhá v rostlinách a sinicích. - zachycení a využití světelné energie

Dlouhodobé monokultura Problémy zapravení hnojiv během růstu Ca, P, K

EU peníze středním školám

VLIV TECHNOLOGICKÉHO ZPRACOVÁNÍ NA OSUD NUTRIČNĚ VÝZNAMNÝCH LÁTEK OVOCE A ZELENINY

EXTRAKCE, CHROMATOGRAFICKÉ DĚLENÍ (C18, TLC) A STANOVENÍ LISTOVÝCH BARVIV

14. Fyziologie rostlin - fotosyntéza, respirace

Ředkvičky zdravá a nenáročná zelenina

Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Písek

V organismu se bílkoviny nedají nahradit žádnými jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.

6.6 GLYKEMICKÝ INDEX POTRAVIN UMĚLÁ SLADIDLA VLÁKNINA DEFINICE DRUHY VLÁKNINY VLASTNOSTI VLÁKNINY...

Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch

Střední odborná škola a Střední odborné učiliště Horky nad Jizerou 35. Obor: Zemědělec farmář H/01

Struktura lipidů. - testík na procvičení. Vladimíra Kvasnicová

5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku

Mendělejevova tabulka prvků

umožňují enzymatické systémy živé protoplazmy, nezbytný je kyslík,

Vliv pěstebních postupů na výživovou hodnotu potravin doc. Ing. Lenka Kouřimská, Ph.D.

Fotosyntéza Světelné reakce. Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni

Oligobiogenní prvky bývají běžnou součástí organismů, ale v těle jich již podstatně méně (do 1%) než prvků makrobiogenních.

DUM VY_52_INOVACE_12CH33

Možnosti hodnocení kvality hroznů. Doc. Ing. Pavel Pavloušek, Ph.D.

Minerální výživa na extrémních půdách. Půdy silně kyselé, alkalické, zasolené a s vysokou koncentrací těžkých kovů

aneb Fluorescence chlorofylu jako indikátor stresu

Vlastnosti. Pozor! H 3 C CH 3 H CH 3

1- Úvod do fotosyntézy

Vliv kulinární úpravy potravin na jejich nutriční hodnotu

Půdní úrodnost, výživa a hnojení

Karboxylové kyseliny a jejich funkční deriváty

Předmět: Ročník: třetí Téma: Vybrané zahradnické plodiny mrkev

Název: Fotosyntéza. Autor: Mgr. Jiří Vozka, Ph.D. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy

BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ

PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ PŮDA

Složky potravy a vitamíny

Hořčík. Příjem, metabolismus, funkce, projevy nedostatku

Projekt realizovaný na SPŠ Nové Město nad Metují

VLIV DÁVKY A FORMY DUSÍKATÉ VÝŽIVY NA VÝNOS A OBSAH DUSÍKATÝCH LÁTEK V ZRNU

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta

Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení

Ukázka knihy z internetového knihkupectví

Biologicky rozložitelné suroviny Znaky kvalitního kompostu

VYHLÁŠKA č. 450/2004 Sb. ze dne 21. července 2004, o označování výživové hodnoty potravin, ve znění vyhlášky č. 330/2009 Sb.

Pracovní list č. 3 téma: Povětrnostní a klimatičtí činitelé část 2

Fotosyntéza Ekofyziologie. Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni

Biochemie. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Platnost: od do

CHEMIE - Úvod do organické chemie

Fyziologie buňky. RNDr. Zdeňka Chocholoušková, Ph.D.

Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR

Chemické složení rybího těla

Název zkoušky Zkouška je: Forma Počet témat. Praxe povinná praktická zkouška 10. Chov zvířat povinná ústní zkouška 25

Renaissance Triple Set. Formula 3 KOMPLEX S ANTIOXIDANTY PRODLUŽTE SI MLÁDÍ!

Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách

Otázky a odpovědi. TIENS Kardi krillový olej s rakytníkem řešetlákovým

Odběr rostlinami. Amonný N (NH 4 )

Chemie 2018 CAUS strana 1 (celkem 5)

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ

Organické látky. Organická geochemie a rozpuštěný organický uhlík

1. ročník Počet hodin

ROZDĚLENÍ A POŽADAVKY NA KATEGORIE FUNKCE VÝROBKU, KATEGORIE SLOŽKOVÝCH MATERIÁLŮ. Jana Meitská Sekce zemědělských vstupů ÚKZÚZ Brno

HYCOL. Lis tová hno jiva. HYCOL-Zn kulturní rostliny. HYCOL-Cu kulturní rostliny. HYCOL-E OLEJNINA řepka, slunečnice, mák

Transkript:

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE Fakulta agrobiologie, potravinových a přírodních zdrojů katedra chemie Stanovení vlivu genotypových a agrotechnických faktorů na obsah a složení antioxidantů rajčat (Lycopersicon esculentum Mill.) doktorská disertační práce Autor: Školitel: Školitel specialista: Ing. Zora Kotíková Prof. Ing. Jaromír Lachman, CSc. Doc. Ing. Alena Hejtmánková, CSc. Praha 2011

Poděkování: Touto cestou bych chtěla poděkovat především Prof. Ing. Jaromíru Lachmanovi, CSc., který byl vedoucím mé disertační práce a paní Doc. Ing. Aleně Hejtmánkové, CSc., která mi byla nepostradatelnou a výbornou konzultantkou a školitelkou specialistkou. Dále bych chtěla poděkovat všem pracovníkům katedry chemie za odbornou pomoc a výborné zázemí a také svým rodičům, kteří mě podporovali po celou dobu mého studia na ČZU v Praze.

OBSAH 1. Úvod...1 2. Literární rešerše...3 2.1. Rajče jedlé (Lycopersicon esculentum Mill.)...3 2.1.1. Původ a historie...3 2.1.2. Botanická charakteristika...4 2.1.3. Odrůdy rajčat...6 2.1.4. Nároky na prostředí...7 2.1.5. Technologie pěstování...9 2.1.6. Chemické složení rajčat...11 2.2. Karotenoidy...13 2.2.1. Základní charakteristika...13 2.2.2. Chemická charakteristika...14 2.2.2.1. Karoteny...14 2.2.2.2. Xantofyly...15 2.2.3. Biosyntéza karotenoidů...17 2.2.4. Výskyt karotenoidů...19 2.2.5. Funkce karotenoidů...20 2.2.5.1. Účast při fotosyntéze...20 2.2.5.2. Ochranná funkce...23 2.2.5.2.1. Xantofylový cyklus...24 2.2.5.3. Antioxidační funkce...24 2.2.5.4. Karotenoidy jako prekurzory vitaminu A...26 2.2.6. Karotenoidy obsažené v plodech rajčat...29 2.2.6.1. Lykopen...29 2.2.6.2. Ostatní karotenoidy...30 2.3. Vitamin C...31 2.3.1. Chemická charakteristika...31 2.3.2. Biosyntéza vitaminu C...32 2.3.3. Fyziologie a výživa...33 2.3.4. Výskyt vitaminu C...35 2.3.5. Funkce vitaminu C...36 2.3.6. Vitamin C v plodech rajčat...38 3. Cíle práce...40

4. Materiál a metody...41 4.1. Metodika pokusů...41 4.1.1. Polní pokus...41 4.1.2. Skleníkový pokus...42 4.2. Charakteristika stanoviště...43 4.2.1. Meteorologická charakteristika stanoviště...43 4.3. Charakteristika pěstovaných odrůd rajčat...44 4.4. Chemická analýza...45 4.4.1. Přístroje a vybavení...45 4.4.2. Chemikálie...46 4.4.3. Standardy...47 4.4.4. Příprava vzorků k analýze...47 4.4.5. Stanovení celkového obsahu karotenoidů metodou molekulové absorpční UV-VIS spektrofotometrie...47 4.4.5.1. Princip metody...47 4.4.5.2. Příprava a měření vzorků...49 4.4.6. Chromatografická separace analytů...50 4.4.6.1. Princip metody...50 4.4.6.2. Chromatografická separace karotenoidů...51 4.4.6.2.1. Příprava vzorků...51 4.4.6.2.2. Příprava standardů...52 4.4.6.2.3. Chromatografické podmínky stanovení...52 4.4.6.3. Chromatografická separace vitaminu C...53 4.4.6.3.1. Příprava vzorků...54 4.4.6.3.2. Chromatografické podmínky stanovení...54 4.4.7. Stanovení antioxidační aktivity rajčat metodou ABTS...54 4.4.7.1. Princip metody...54 4.4.7.2. Příprava vzorků...55 4.4.7.3. Příprava standardu Troloxu...56 4.4.7.4. Měření vzorků metodou ABTS...56 4.4.8. Statistické zhodnocení naměřených dat...56 5. Výsledky a diskuze...58 5.1. Obsah a složení karotenoidů v rajčatech...58 5.1.1. Celkové karotenoidy...58 5.1.2. Jednotlivé karotenoidy...62

5.2. Obsah vitaminu C v rajčatech...66 5.3. Antioxidační aktivita rajčat...68 5.4. Vliv různé úrovně minerálního hnojení na obsah antioxidantů rajčat...74 5.4.1. Celkové karotenoidy...74 5.4.2. Jednotlivé karotenoidy...76 5.4.3. Vitamin C...79 5.4.4. Antioxidační aktivita...80 6. Závěr...83 7. Literatura...85 8. Přílohy...96

1. ÚVOD Rajčata patří k nejrozšířenějším druhům zeleniny na světě. Roční světová produkce rajčat činí přibližně 150 miliónů tun. Z toho je 50-60 miliónů tun ročně zpracováno na různé produkty. Průměrná roční spotřeba na osobu je 3,5 kg (v EU 14-15 kg, v Itálii a USA dokonce více než 30 kg). V České republice se spotřeba na osobu a rok pohybuje okolo 12 kg a v posledních několika letech stále mírně stoupá. Rajčata obsahují celou řadu látek příznivě působících na lidský organismus. Vedle vysokého obsahu vitaminů a minerálů jsou významným zdrojem antioxidačně aktivních látek. Důležitou skupinu antioxidantů rajčat, podílejících se na ochraně buněk před negativním působením volných radikálů, tvoří karotenoidy a vitamin C. Karotenoidy představují skupinu žlutých, oranžových a červených lipofilních barviv, vyskytujících se především v rostlinách. Živočichové si je neumějí sami syntetizovat, pouze je přijímají potravou. Z chemického hlediska patří karotenoidy mezi tetraterpeny, jejich molekula se skládá z osmi isoprenových jednotek. Rozdělují se na karoteny (uhlovodíky) a kyslík obsahující xantofyly. V rostlinných i živočišných organismech zastávají různé funkce. Mezi nejdůležitější z nich patří jejich antioxidační a provitaminová aktivita. Nepostradatelnou úlohu mají také v rostlinném organismu, kde se podílí na přenosech energie při fotosyntéze. V současnosti je známo okolo 800 různých karotenoidů, z nichž zhruba 50 sloučenin vykazuje aktivitu vitaminu A. Tyto sloučeniny se označují jako retinoidy. Z výsledků mnoha epidemiologických studií vyplývá, že karotenoidy působí jako velmi efektivní antioxidanty, čímž významně snižují rizika rozvoje srdečních onemocnění a některých typů rakoviny. Antioxidační aktivita karotenoidů je dána hydrofobním řetězcem, složeným z polyenových jednotek, který může zhášet singletový kyslík nebo neutralizovat volné radikály. Obecně lze říci, že čím má karotenoidní molekula delší řetězec konjugovaných dvojných vazeb, tím vykazuje vyšší antioxidační aktivitu. V rajčatech se celkový obsah karotenoidů pohybuje v rozmezí 70-200 µg.g -1 čerstvé hmotnosti plodů. Majoritním karotenoidem rajčat je lykopen., který tvoří až 90 % jejich celkového obsahu. Dalším důležitým karotenoidem obsaženým v rajčatech je β-karoten, spolu s lykopenem způsobují charakteristické zabarvení zralých plodů. Tyto karotenoidy se významně podílejí na vnímání kvality čerstvých plodů a produktů z nich vytvořených, protože spotřebitelé upřednostňují rajčata s intenzivním červeným zabarvením. 1

Vitamin C je důležitým antioxidantem hydrofilní frakce rajčat. Strukturou se řadí mezi deriváty sacharidů, jeho základní biologicky aktivní sloučeninou je L-askorbová kyselina. Funkce vitaminu C souvisí především s jeho redoxními vlastnostmi. U rostlin má určitou úlohu při fotosyntéze, kde reguluje množství aktivních forem kyslíku, uplatňuje se též při růstu a diferenciaci buněk. U živočichů se vitamin C podílí především na hydroxylačních reakcích probíhajících v organismu. Vitamin C je nezbytný pro správnou funkci kardiovaskulárního a imunitního systému. Účastní se na syntéze kolagenu, tím je nezbytný pro tvorbu pojivových tkání. Podporuje také absorpci a transport železa v těle. Velmi důležité je jeho antioxidační působení, reaguje s aktivními formami kyslíku a dusíku, resp. s volnými radikály. Důležité jsou také jeho reakce s oxidovanými formami vitaminu E, které zabezpečují ochranu vitaminu E a lipidů membrán před oxidací. Rostliny a většina živočichů si tento vitamin sami syntetizují. U člověka schopnost syntetizovat askorbovou kyselinu chybí v důsledku ztráty L-gulono-1,4-lakton oxidoreduktasy, enzymu nutného při finálním kroku biosyntézy askorbové kyseliny. Vitamin C nemůže být skladován v těle, proto musí být pravidelně přijímán potravou. Ovoce a zelenina představují hlavní zdroje vitaminu C v lidské výživě. V rajčatech se obsah vitaminu C podle různých autorů pohybuje v rozmezí 100-400 mg.kg -1 čerstvé hmotnosti. Doporučovaný denní příjem byl stanoven v rozmezí 60-120 mg na den, v případě oslabení organismu jeho potřeba ještě stoupá. Obsah a složení antioxidantů rajčat a s tím související antioxidační aktivita mohou být ovlivněny celou řadou faktorů, jako je odrůda, stupeň zralosti, způsob pěstování a klimatické podmínky růstu. Cílem této práce je vyhodnotit vliv ročníku, odrůdy, stupně zralosti a vliv různé úrovně minerální výživy na obsah a složení zmiňovaných antioxidantů rajčat. Dalším cílem je stanovit antioxidační aktivitu plodů a vyhodnotit do jaké míry se na této aktivitě podílejí právě karotenoidy a vitamin C. 2

2. LITERÁRNÍ REŠERŠE 2.1. Rajče jedlé (Lycopersicon esculentum Mill.) 2.1.1. Původ a historie Historie pěstování dnes celosvětově rozšířených rajčat je u nás poměrně krátká. Předpokládá se, že divoce rostoucí druh pochází z horských oblastí peruánských And, odkud se rozšířil do střední a severní Ameriky společně s kukuřicí v průběhu lidských migrací před zhruba 2000 lety. Když se s nimi evropští dobyvatelé poprvé setkali v Mexiku, pěstovali je už tamní obyvatelé po celá staletí pod jmény tomati, tomatl, tumatle a tomatas (Biggs et al., 2004). Do Evropy se rajčata dostala společně s bramborami až po Kolumbově objevení Ameriky. Jako řada jiných lilkovitých rostlin byla nejprve považována za jedovatá. Původní plané typy byly drobnoplodé a měly poléhavé stonky (Petříková a Malý, 2003). Zpočátku se rajče pěstovalo jako okrasná jedovatá rostlina (ve střední a západní Evropě se tento názor udržel až do konce XVIII. století), relativně později jako konzumní zelenina. Od 18. století už se v Evropě šlechtilo a používalo. Výjimku mezi evropskými zeměmi tvoří Itálie, kde se rajče pěstuje a používá již od roku 1560. V našich zemích se rajče na trhu objevilo teprve začátkem 20. století (Troníčková a Krejčová, 1985). Jako mnoho druhů zeleniny introdukovaných z Nového světa, i rajče bylo považováno za afrodisiakum. Italské jméno pommi dei mori převzali Francouzi - pomme d'amour znamená jablko lásky, neboť se věřilo, že povzbuzuje vášeň (Biggs et al., 2004). Na zlato a ráj upomínají názvy i v jiných jazycích: pomidor, paradajky apod. V dnešní době se v důsledku přenesení rajčete do jiných podmínek, přirozeného výběru a mnohaletého šlechtitelského úsilí vyšlechtily výnosné odrůdy s dobrými chuťovými vlastnostmi. Lze říci, že rajče, které se dnes pěstuje jen vzdáleně připomíná svého předka rostoucího planě v přírodě (Šapiro et al., 1988). 3

2.1.2. Botanická charakteristika Taxonomické zařazení (podle Cronquista, 1988): Říše: Podříše: Oddělení: Třída: Podtřída: Řád: Čeleď: Rod: Druh: rostliny (Plantae) vyšší rostliny (Cormobionta) krytosemenné (Magnoliophyta) dvouděložné (Magnoliopsida) asteridae (Asteridae) lilkotvaré (Solanales) lilkovité (Solanaceae) lilek (Solanum) rajče jedlé (Lycopersicon esculentum Mill.) Rod Solanum (Lycopersicon), rajče, zahrnuje celkem 12 původních druhů z oblasti Chile, Peru, Ekvádoru a Galapág, vesměs s počtem chromozomů 2n = 24. Rajče je rostlina původně víceletá, v našich podmínkách však jednoletá (Mareček, 1994). Druh Lycopersicon esculentum se dále dělí na čtyři základní poddruhy (Silva et al., 2008): Lycopersicon esculentum var. esculentum - K tomuto poddruhu se řadí většina komerčně pěstovaných odrůd. Odrůdy jsou charakteristické vysokou variabilitou tvaru, barvy a velikosti plodů. Lycopersicon esculentum var. cerasiforme - Odrůdy vycházející z tohoto poddruhu jsou známé jako třešňová rajčata tzv. "cherry tomato". Plody rajčat jsou malé, kulovité, obvykle 2-5 cm velké. Lycopersicon esculentum var. pyriforme - Plody těchto odrůd mají hruškovitý tvar o průměrné velikosti 4 cm. Lycopersicon esculentum var. grandifolium - Listy těchto odrůd jsou veliké a mají tvar bramborového listu Lycopersicon esculentum var. validium - Rostliny tohoto poddruhu jsou vzpřímené, kompaktní s krátkými internodii. Rajče patří k rostlinám s bohatým kořenovým systémem. Délka hlavního kořene závisí na způsobu pěstování a na vlastnostech půdy (pěstebního substrátu). Při pěstování rajčete z přímého výsevu dosahují kořeny až do hloubky 1,5 m. U rostlin vysazovaných se kořenový systém vyvíjí 4

převážně horizontálně a hlavní kořen proniká do hloubky 0,4-0,6 m. Na hypokotylu i na epikotylu se snadno vytvářejí adventivní kořeny, čehož se běžně využívá při výsadbě, kdy se rostliny pokládají šikmo do brázd. Rajče má mimořádnou zakořeňovací schopnost (Pekárková, 2000). Stonek je u mladých rostlin zpočátku bylinný, později dřevnatí. Na povrchu stonku, ale i listů jsou žláznaté trichomy, které vylučují látku na vzduchu tuhnoucí, dávající rostlinám typický zápach. Růst hlavního stonku může být neomezený - indeterminantní (tyčkové odrůdy), nebo ukončený květenstvím - determinantní (keříčkové odrůdy) (Petříková a Malý, 2003). Indeterminantní odrůdy zakládají květenství za každým třetím listem, zatímco determinantní za listem druhým. U obou typů rajčat se v paždí listů tvoří boční výhony, které se u indeterminantních odrůd vylamují (Pekárková, 2001). Listy rajčat jsou střídavé, řapíkaté, přetrhovaně lichozpeřené s lístky nepravidelně zubatými (viz, obrázek 1), jen u některých kultivarů téměř celistvé, laločnaté (Tomšovic, 1997). Skládají se z krátkého řapíku a rozšířené čepele. Čepel je rozdělena hlubokými výřezy na jednotlivé lístky různé velikosti (1. a 2. řádu). Lístky 1. řádu mohou mít ještě palístky. Mezi jednotlivými jařmy jsou u většiny odrůd vyvinuté úkrojky. Podle charakteru členění okraje čepele a jejího povrchu rozeznáváme 3 typy rajčatových listů: pravý rajčatový (nejčastější), bramborový a typ mikado (jednotlivé lístky nejsou vykrajované) (Štambera et al., 1984). Květenstvím je u rajčete rozmanitě členěný vijan ze 3-20 oboupohlavných kvítků. Vijan je jednoduchý nebo větvený, většinou mimoúžlabní, protistojný listům. Květy jsou složené, z pěti i více korunních plátků, mají sírově žlutě zbarvenou korunu. Kalich je hluboce členěný. Kališní lístky jsou pěticípé, šídlovité, bazálně srostlé. Tyčinky mají krátké nitky nebo mohou úplně chybět. Prašníky jsou protáhlé, dvoudílné a Obrázek 1. Rajče jedlé (Lycopersicon esculentum Mill.); 1. kvetoucí prýt, 2. typy plodů, 3. semeno. srostlé v kužel obklopující bliznu. Otevírají se podélnou vnitřní štěrbinou. Semeník je dvou-, troj- i vícepouzdrý (Mareček, 1994). Květy jsou samosprašné, přirozená partenokarpie je u rajčat 5

velmi nízká. Opylování a oplodnění zhoršuje nízká teplota, vzdušná vlhkost a nízká světelná intenzita (Petříková a Malý, 2003). Plodem rajčat je dvou až vícekomorová bobule různého tvaru a zabarvení. Barva nezralých plodů může být v závislosti na odrůdě různě intenzívně zelená se žíháním nebo bez něj. Plody bez tmavšího zabarvení v okolí kalichu při dozrávání lépe vybarvují, tj. netvoří v okolí kalichu světlejší lem. Oranžová barva plodu je výsledkem vzestupu karotenu, červená barva je výsledkem vzestupu lykopenu (Petříková a Malý, 2003). Semeno je různé velikosti, jeho povrch je pokryt chloupky. Žlutoplodé odrůdy mají semena bez chloupků (Pekárková, 2000). Semeno je umístěno na placentě. Obchodní osivo se v poslední době upravuje obrušováním. Hmotnost tisíce semen je 2,5-3,5 g (Malý et al., 1998). 2.1.3. Odrůdy rajčat Odrůdy rajčat se dělí na tyčkové (indeterminantní) a keříčkové (determinantní). V seznamu odrůd pro rok 2008 je ve státní odrůdové knize zapsáno celkem 76 odrůd rajčat. Celkové množství tvoří 46 odrůd tyčkových a 30 odrůd keříčkových (ÚKZÚZ, 2009). Odrůdy jsou registrovány na základě prováděných polních a laboratorních zkoušek ke zjištění odlišnosti, uniformity, stálosti a užitné hodnoty odrůd. Tyto zkoušky provádí Ústřední kontrolní a zkušební ústav zemědělský (ÚKZÚZ). Registrované odrůdy jsou zapsány ve Státní odrůdové knize ČR (Pulkrábek, 2005). Teprve zapsané odrůdy se stávají předmětem obchodu a právní ochrany (Pekárková, 2001). Rajčata mají ve svém sortimentu vysoké zastoupení F 1 hybridů. Využívání F 1 hybridů má jednoznačné přednosti, nazvané hybridní efekt, který se právě u plodových druhů projevuje ze všech zelenin nejvýrazněji. Spojuje především ranost a výnos, zkracuje vegetační dobu a zajišťuje kombinaci několika rezistencí k chorobám. Hybridní osivo je vždycky dražší než nehybridní, protože se každoročně získává novým křížením. Přesévání F 1 hybridů do generace F 2 se však nevyplatí, protože druhá generace je nejednotná a většinou v ní vyštěpí pěstitelsky nežádoucí typy rostlin (Pekárková, 2001). Rajče vyniká vysokou variabilitou v barvě i tvaru plodů. Nejoblíbenější jsou červenoplodé odrůdy, pro zajímavost se však pěstují i žluté, masově růžové, oranžové nebo bílé. Tvar plodů může být kulovitý, zploštělý, protáhlý nebo hruškovitý. Hmotnost plodů se pohybuje od 20 g u třešňových typů do více než 500 g u masitých odrůd (Pekárková, 2001). 6

Tyčkové odrůdy rajčat jsou určeny k přímému konzumu. Tento typ odrůd by se měl vyznačovat dobrými chuťovými vlastnostmi plodů, odolností vůči praskání a rychlému měknutí, schopností dobře snášet transport a rezistencí vůči houbovým chorobám (Petříková a Malý, 2003). U tyčkových rajčat pěstovaných především pod sklem nebo fólií se vyplatí dát přednost F 1 hybridům před staršími nehybridními odrůdami. Jsou rané, výnosné, vyrovnané a zdravější (Pekárková, 2001). K tyčkovým domácím odrůdám patří např. Start S, Tornádo, Toro, Tipo, Orkado, Tajfun (všechny F 1 hybridy). Keříčkové odrůdy se dělí na odrůdy k přímému konzumu, které se sklízí ručně, a na odrůdy pro průmyslové zpracování, které se sklízí mechanizovaně. U keříčkových odrůd určených k průmyslovému zpracování je kladen důraz na odolnost plodů vůči praskání, na pevnost, neopadavost, oddělitelnost plodu při sklizni v místě kalichu a na obsah refraktometrické sušiny (Petříková a Malý, 2003). Ke keříčkovým odrůdám určeným pro mechanizovanou sklizeň patří např. Odeon, Salus, Denár, Titan, Proton. Pro ruční sklizeň lze pěstovat z domácích odrůd např. odrůdy Hana, Aneta, Diana nebo žlutoplodou odrůdu Dulcia. 2.1.4. Nároky na prostředí Životní procesy rostlin závisí na řadě vnitřních a vnějších faktorů. Vnitřní faktory jsou především fytohormony, vliv druhu a odrůdy. K hlavním vnějším faktorům patří voda, světlo, teplo, ale také se k nim řadí vlastnosti půdy, pohyb vzduchu či spolupůsobení dalších rostlin, živočichů a člověka. Všechny tyto faktory se vzájemně ovlivňují (Tap, 2000). Voda je jeden z nejdůležitějších faktorů, který ovlivňuje růst všech rostlin. Voda ovlivňuje fyziologické funkce a tedy i výnosy pěstovaných plodin. Pro zeleninu je tedy optimalizace vodního režimu významným intenzifikačním faktorem (Malý et al., 1998). Potřeba vody u zelenin je závislá nejenom na rostlinném druhu, ale také na průběhu ontogeneze. Obecně lze konstatovat, že zeleniny se vyznačují spíše nehospodárným vodním provozem. Většinou mají relativně vysoký transpirační koeficient 1, který například u rajčete nabývá hodnot 500-600. Výkyvy ve vodních poměrech vedou ve svém důsledku především ke zhoršení kvality většiny zelenin, u rajčat např. k praskání plodů (Malý et al., 1998). 1 Hmotnost vody v gramech, kterou rostlina potřebuje na vytvoření 1 g sušiny. 7

Rajče je rovněž náročné na dostatek vláhy, i když v porovnání s ostatními druhy teplomilných zelenin z čeledi lilkovitých (paprika, baklažán), je vůči suchu odolnější, což způsobuje jeho hlubší a bohatý kořenový systém a velká schopnost vytvářet adventivní kořeny. S nedostatkem vláhy se lépe vyrovnávají rostliny z přímého výsevu než rostliny vysazované, jejichž kořenová soustava nedosahuje takové hloubky (Malý et al., 1998). V průběhu vegetace rajče potřebuje 450-500 mm vody. Rajčata se zavlažují dávkami 20 30 mm. První závlahovou dávku vyžadují po vysazení, další před začátkem kvetení. Nejvíce vody potřebují v době narůstání plodů, kdy by se mělo zavlažovat každých 8-12 dní. Závlaha se ukončí v době dozrávání plodů (Štambera et al., 1984). Světlo (sluneční záření) je další základní podmínkou tvorby biomasy. Z hlediska účinnosti na pěstované zeleniny je důležitá jeho intenzita, spektrální složení a délka fotoperiody (Duffek a Dolejší, 1998). Fotosyntetické pigmenty absorbují záření o vlnových délkách 400-700 nm. Toto záření se nazývá fotosynteticky aktivní radiace (FAR) a je prakticky shodné s viditelným zářením známým jako denní světlo (Dolejš, 2000). Infračervené záření s vlnovou délkou 720-1000 nm ovlivňuje vodní režim rostlin. Ultrafialové záření o vlnové délce 280-315 nm má velké formativní účinky, podmiňuje některé biosyntézy a podporuje tvorbu látek dusíkaté povahy (Pavlová, 1996). Podle fotoperiodické citlivosti patří rajče mezi krátkodenní rostliny, které vykvetou při délce dne pod 12 až 14 hodin. Gloser (1998) však rajče řadí k fotoperiodicky neutrálním druhům, které zakládají květy bez jakékoliv vazby na délku fotoperiody. Rajče je teplomilná, v našich podmínkách jednoletá rostlina. Vyžaduje teploty nad 20 C. Při poklesu teploty pod 10 C rostliny zastavují růst, při dlouhotrvajících teplotách pod 15 C rostliny nekvetou. Poruchy růstu nastávají i při vysokých teplotách nad 30 C. Nízké teploty vedou k opadávání květních poupat. Při teplotách pod 13 C je pyl neklíčivý. Minimální teplota pro klíčení semen je 9 C, optimální ale 22-25 C. Červené barvivo plodů lykopen se tvoří při teplotách nad 16 C a jeho tvorba přestává při teplotě nad 35 C (Petříková a Malý, 2003). Autoři Silva et al. (2008) uvádějí jako optimální teplotu pro tvorbu lykopenu 20-24 C v průběhu dne a kolem 18 C přes noc. Teploty nad 30 C inhibují tvorbu lykopenu a naopak podporují tvorbu ostatních karotenoidů zodpovědných za žluto-oranžové zbarvení plodů. 8

Rajče nesnáší pokles teplot pod bod mrazu, proto se vysazuje až v druhé polovině května. Rostliny pěstované z přímých výsevů jsou však otužilejší. Nepříznivý vliv na pěstování mají velké rozdíly mezi teplotou vzduchu a půdy, k čemuž se musí přihlížet především při rychlení. Naopak rozdíly mezi teplotami dne a noci jsou pro pěstování důležité (Štambera et al., 1984). Půdy pro pěstování rajčete mají být hluboké, úrodné, hlinité až hlinitopísčité. Rajče nesnáší půdy mokré a těžké. Na půdní reakci nejsou rajčata zvláště náročná, může být mírně kyselá, neutrální až mírně zásaditá. Náročná jsou však na obsah živin (Štambera et al., 1984). V osevním postupu se rajčata zařazují do první trati po vojtěšce nebo po jetelovinách, vhodné je i pěstování po zeleninách a jiných okopaninách, případně i po obilovinách. Velmi dobrými předplodinami jsou luskoviny, ale i kořenové zeleniny a cibuloviny. Zásadně se rajčata nepěstují po lilkovitých druzích zelenin, nebo po bramborách a tabáku. To proto, že hrozí nebezpečí přemnožení některých škůdců (mandelinka bramborová), ale také chorob, zejména houbových chorob a viróz (Štambera, 1986). Základní zpracování půdy se skládá z podmítky, zaorání chlévského hnoje střední orbou a z hluboké orby. Těžištěm podzimní přípravy půdy je hluboká orba, která musí být kvalitní, protože na ní závisí fyzikální vlastnosti půdy. Jarní příprava půdy se skládá z urovnání a prokypření povrchu, případně ze záhonování (Petříková a Malý, 1998). Fosforečná a draselná hnojiva se aplikují na podzim spolu s organickými. Protože jsou rajčata citlivá na chlór, používají se hnojiva síranového typu např. síran draselný. Vhodné je přihnojování během vegetace, protože rajče nesnáší příliš vysokou koncentraci živin v půdě. Přihnojuje se na počátku kvetení a v době tvorby plodů. Dusíkatá hnojiva se k rostlinám dodávají na jaře před výsadbou (popř. výsevem) ve formě nejlépe síranu amonného, močoviny nebo DAMu (Štambera et al., 1984). Rajčata jsou citlivá na čerstvé vápnění, na než reagují žloutnutím listů (Petříková a Malý, 1998). Mezi nejdůležitější choroby rajčat patří bakteriální vadnutí, plíseň bramborová, hnědá skvrnitost rajčat a septoriová skvrnitost rajčat. Ze škůdců se v polních podmínkách nejčastěji vyskytuje mandelinka bramborová a mšice. Z fyziologických poruch je nejzávažnější nedostatek vápníku a praskání plodů (Petříková a Malý, 1998). 2.1.5. Technologie pěstování Rajčatová sadba se pěstuje ve sklenících, fóliových krytech nebo v pařeništích z výsevu od poloviny března. Osivo mořené se vysévá do výsevních truhlíků s desinfikovanou zeminou nebo 9

přímo na záhon, či do minisadbovačů se 160 (keříčkové odrůdy) nebo 96 (tyčkové odrůdy) buňkami. Při předpěstování sazenic je potřebné dodržet kvalitu substrátu, rovnoměrnost závlahy a pravidelné přihnojování vodorozpustným hnojivem. Přihnojuje se třikrát po dobu předpěstování. Poprvé při tvorbě 1. pravého listu a dále po týdnu (Petříková a Malý, 2003). Hotové sazenice mají být kompaktní, tmavozelené, nikoli světlé a vytažené z nedostatku světla nebo nafialovělé z chladna či sucha. Na venkovní záhon se vysazují sazenice asi v polovině května. Delší sazenice se do půdy vysazují šikmo až po první listy. Na zahrnutém stonku se vytvoří přídatné kořeny (Pekárková, 2001). Keříčkové odrůdy z přímého výsevu - výsev je okolo 20. dubna, v závislosti na teplotě půdy, která má být alespoň 12 C. Mořené osivo se vysévá do dvouřádků na záhon o šířce 1,2 m nebo na rovný povrch. Hloubka výsevu je 30-40 mm. Výsevek je 0,5-1 kg.ha -1 (Petříková a Malý, 2003). Keříčkové odrůdy z předpěstované sadby - technologie vhodná pro odrůdy určené k přímému konzumu. Rajčata z předpěstované sadby se vysazují po 15. květnu. po nebezpečí ranních mrazíků. Na ranost sklizně i výšku výnosu má rozhodující význam včasný termín výsadby. Doporučuje se proto vysazovat již začátkem května a po výsadbě na rostliny položit netkanou textilii. Textilie se po okrajích bodově upevní zeminou. Odstraní se za dva až tři týdny, když nebezpečí ranních mrazíků pomine. Rostliny se vysazují sazečem do brázd, kde se využívá možnost kladení rostlin šikmo. Vysazují se na rovný povrch nebo na záhony do dvouřádků na vzdálenost 0,3 m. Pro lepší násadu v prvních vijanech a dřívější kvetení je vhodné rostliny po zakořenění asi dva týdny nezavlažovat (Petříková a Malý, 2003). Tyčkové odrůdy - se vysazují co nejdříve s již nasazeným květenstvím. Při výsadbě začátkem května se využívá (stejně jako u keříčkových odrůd) k nakrývání porostu netkaná textilie. Ta může zlepšit podmínky pro počáteční růst a vývoj a zabraňuje poškození rostlin květnovými mrazíky. Obvykle se pěstují 4 rostliny na 1 m 2. Po uplynutí nebezpečí mrazíků se textilie odstraní a do řad se instaluje opěrná konstrukce z drátu napnutého na kůly ve výšce 1,5 m. Rostliny se vyvazují k drátu a vedou se na jeden výhon. Postranní výhony je nutno odstraňovat včas, dokud nepřesáhnou 50 mm. Šířka meziřadí umožňuje mechanizaci prací. Jakmile rostliny dosáhnou nosného drátu, hlavní výhon se zaštípne. Obvykle je tomu po vytvoření 5-6 květenství, za kterým se ponechá jeden list. Zaštípnutím se urychlí dozrání plodů (Petříková a Malý, 2003). 10

Sklizeň rajčat začíná 8-10 týdnů po výsadbě. U rajčat konzumních (většinou odrůdy tyčkové) se sklízí v 4-6 denních intervalech. Sklizeň keříčkových druhů rajčat k průmyslovému zpracování začíná v srpnu a září. Měla by proběhnout do konce září, v opačném případě se zvyšují ztráty přezráním plodů, nebo je i riziko poškození mrazem. Po sklizni, která je většinou destruktivní, tj. s úplnou likvidací porostu, se plody oddělují na vytřasadle. Výnos stolních tyčkových odrůd dosahuje minimálně 40-50 t.ha -1, výnos u keříčkových odrůd 30-40 t.ha -1. Výnos u odrůd k průmyslovému zpracování je 25-35 t.ha -1 (Malý et al., 1998). Rajčata jsou jednou z hlavních komodit, které mají největší podíl na celkovém dovozu čerstvé zeleniny do ČR (Buchtová, 2004). V posledních letech, kdy sílí dovoz rajčat ze Španělska, Kanárských ostrovů apod., je zájem o pěstování odrůd z delší uchovatelností, přitom ale sklízených v červeném stavu, což zvyšuje jejich prodejnost a konkurenceschopnost. Jde o typ odrůd long life, které byly vyšlechtěny genovou manipulací. Lze je pěstovat v rychlírnách i v polních podmínkách. Plody po zčervenání na rostlině neměknou, nepraskají a mohou se sklízet až za 3 týdny. Obdobně po sklizni zůstávají 2-3 týdny pevné. Prodejnost rajčat lze dále zlepšit pěstováním odrůd se stejnoměrným vývinem plodů ve vijanech - tzv. hroznovitých rajčat. Sklízí se celé vijany s obvykle 5-7 plody, které se ukládají do obalů. Rovněž se přednostně využívají typy long life a semi long life. Lepší prodejnost hlavně v zimním období mají umožnit odrůdy cherry rajčat, která se prodávají v menším hmotnostním balení, obvykle 250 g (Petříková a Malý, 1998). 2.1.6. Chemické složení rajčat Rajčata obsahují značné množství vody, která představuje 93-95 % z celkové hmotnosti plodů. Zbývajících 5-7 % tvoří anorganické sloučeniny, organické kyseliny, cukry, sloučeniny nerozpustné v alkoholu (bílkoviny, polysacharidy, pektin), karotenoidy a lipidy. Obsah sušiny záleží na několika důležitých faktorech: odrůdě, charakteru půdy a zejména na zavlažování (Leoni, 2002). V tabulce 1 jsou uvedeny obsahy významných látek obsažených ve zralých plodech rajčat. 11

Tabulka 1. Chemické složení čerstvých rajčat (Mangels, 1993). Složka Obsah g.100 g -1 Voda 93,1-94,2 Bílkoviny 0,7-1,0 Tuky 0,2-0,3 Cukry 3,1-3,5 mg.100 g -1 Vitamin C 16,0-24,2 Vitamin E 0,80-1,22 Lykopen 0,90-9,30 β-karoten 0,30-0,52 Lutein 0,04-0,10 Fytoen 0,49-2,80 γ-karoten 0,04-1,61 µg.100 g -1 Železo 400-600 Zinek 100-240 Mangan 90-140 Měď 10-90 Z celkového obsahu cukrů převládají glukóza a fruktóza. Thakur et al. (1996) uvádí, že redukující cukry glukóza a fruktóza tvoří až 50 % sušiny plodů. Koncentrace cukrů v plodech rajčat velmi závisí na zvolené odrůdě a podmínkách pěstování. Podle Doraise et al. (2001) se může obsah cukrů měnit od 1,7 do 4 % celkové hmotnosti plodů v závislosti na odrůdě a podmínkách pěstování. Polysacharidy představují 0,7 % hmotnosti plodů (pektiny a arabinogalaktany 47 %, xylany a arabinoxylany 28 %, celulosa 25 %) (Leoni, 2002). Z organických kyselin je v rajčatech nejvíce zastoupená kyselina jablečná a kyselina citrónová. Ostatní kyseliny (vinná, octová, šťavelová) jsou přítomny pouze v nepatrném množství. V přezrálých plodech se také vyskytuje kyselina jantarová (Šapiro et al., 1988). Důležité jsou změny v poměrech kyseliny jablečné a kyseliny citrónové, které mění stupeň kyselosti plodů a tím významně ovlivňují jeho chuť (Silva et al., 2008). Bílkoviny jsou v rajčatech zastoupeny pouze v malém množství. V průběhu zpracování dochází k jejich denaturaci a k částečné hydrolýze, tím se zvyšuje obsah volných aminokyselin. V rajčatové šťávě je přítomno až 19 volných aminokyselin. V největším množství jsou obsaženy kyselina glutamová (tvoří více než 48 %) a kyselina asparagová. Při zpracování rajčat dochází k odštěpení amoniaku z asparaginu a glutaminu za vzniku příslušných aminokyselin (Leoni, 2002). Rajčata představují v lidské výživě významný zdroj vitaminů a minerálních látek. β- karoten (prekurzor vitaminu A) se v červenoplodých rajčatech vyskytuje pouze v menší míře. 12

Zbarvení červených plodů působí především karotenoid lykopen, který nemá provitaminovou aktivitu. V mnohem větší míře je β-karoten obsažen ve žlutých a oranžových plodech rajčat (Šapiro et al., 1988). Vedle karotenoidů jsou rajčata důležitým zdrojem vitaminů B 1 (thiaminu), B 2 (riboflavinu), B 3 (niacinu), B 5 (pantotenové kyseliny), B 6 (pyridoxinu), folacinu, vitaminu H (biotinu), vitaminu C (askorbové kyseliny) a vitaminu E (α-tokoferolu) (Silva et al., 2008). Vitamin C (kyselina askorbová) se vyskytuje ve velké míře v čerstvých plodech rajčat. V čerstvých rajčatech je přítomen převážně v redukované formě (dehydroaskorbová kyselina tvoří pouze 1-5 %). Podle Mangelse (1993) obsahují čerstvá rajčata přibližně 160-240 µg vit.c.g -1 čerstvé hmotnosti plodů. Při kulinárním zpracování dochází k jeho značným ztrátám a to zejména oxidací. Rozsah oxidace závisí na několika faktorech jako jsou: přístup vzduchu, přítomnost enzymů, některé kovové ionty (např. Cu), teplota aj. (Leoni, 2002). Podobně i obsah vitaminu E klesá v průběhu zpracování plodů. Vitamin E je obsažen převážně v semenech, která jsou během zpracování z většiny produktů odstraňována (Silva et al., 2008). Z minerálních látek je v rajčatech zastoupen hlavně, vápník, draslík, železo a hořčík (Petříková a Malý, 2003). Z mikroprvků jsou přítomny Cu, Mn a Zn, které jsou součástí několika antioxidačních enzymů (Leoni, 2002). Z fenolových sloučenin obsahují rajčata kyseliny chlorogenovou, kávovou, ferulovou a p- kumarovou. V plodech jsou obsaženy také flavonoly (kvercetin, kempferol a naringenin), v malém množství také antokyany (petunidin), β-sitosterol, cholin a triterpenové saponiny (Martinez-Valverde et al., 2002). Zelené části rostlin a nezralé plody obsahují glykoalkaloidy tomatin a dehydrotomatin. Jedná se o složité organické sloučeniny, které mají aktivní fyziologický účinek. Ve velkých dávkách mohou působit na organismus toxicky. Negativní účinek spočívá v inhibici cholinesterasy (enzym ovlivňující přenos nervových vzruchů) a ochromení nervové soustavy. Během dozrávání obsah glykoalkaloidů v plodech klesá, ve zralých plodech se glykoalkaloidy prakticky nevyskytují (Šapiro et al., 1988). 2.2. Karotenoidy 2.2.1. Základní charakteristika Karotenoidy jsou skupina žlutých, oranžových až červenofialových vysoce nenasycených alifatických a alicyklických uhlovodíků a jejich oxidačních produktů. Patří mezi nejvíce 13

rozšířená a důležitá lipofilní barviva. Nachází se ve vyšších rostlinách, řasách, houbách a bakteriích (Kodíček, 2007). Karotenoidy dostaly svůj název od hlavního zástupce skupiny, oranžového pigmentu β- karotenu, který byl poprvé izolován Wackenroderem v roce 1831 z mrkve karotky (Daucus carota) (Gross, 1991). V současné době je známo okolo 800 přirozeně se vyskytujících pigmentů. Z tohoto množství vykazuje asi 50 sloučenin aktivitu vitaminu A, a proto se označují jako retinoidy. Jejich roční produkce se v přírodě odhaduje na 1.10 8 tun (Velíšek, 2002). 2.2.2. Chemická charakteristika Z chemického hlediska patří karotenoidy do skupiny tetraterpenoidů. Jsou složeny z osmi isoprenových jednotek. Vlastní karotenoidy se vyznačují pouze několika variantami uhlíkového skeletu: mají buď ryze alifatický řetězec, nebo řetězec zakončený jedním či dvěma cykly (šestičlenným nebo pětičlenným). Dvojné vazby karotenoidů umožňují cis-trans-isomerii; většinou mají konfiguraci all-trans, konfigurace cis se vyskytuje jen ve dvojných vazbách nesubstituovaných methyly. Polohy základního skeletu se číslují symetricky, v jedné rovině prostě, v druhé s čárkovými indexy, přičemž číslem 1 začíná uhlík, který by byl podle běžné notace alifatického řetězce v pořadí druhý (Douša, 2009). Karotenoidy jsou nerozpustné ve vodě, jejich lipofilnost klesá zejména se vzrůstajícím počtem kyslíkových atomů v molekule. Za svoji barevnost vděčí řetězci konjugovaných dvojných vazeb, který se vyskytuje v několika základních strukturách a jejich kombinacích. Čím více konjugovaných dvojných vazeb, tím jsou absorpční maxima posunuta k delším vlnovým délkám (Šesták, 1985). Karotenoidy se dělí na dvě hlavní skupiny: karoteny - uhlovodíky xantofyly -kyslíkaté sloučeniny (alkoholy, ketony aj.) odvozené od karotenů 2.2.2.1. Karoteny Nejjednodušším prototypem karotenů je acyklický polynenasycený uhlovodík lykopen. Běžně rozšířené jsou i deriváty lykopenu, jako je 3,4-dehydrolykopen, a další sloučeniny (neurosporen, ζ-karoten, fytofluen, fytoen). 14

17 18 19 20 CH 3 CH 3 CH 3 CH 3 3 7 11 15 14' 12' 8' 6' 16' 10' 4' 2' CH 3 H 3 C 1 5 9 13 13' 9' 5' 1' 2 4 6 8 10 12 14 15' 11' 7' 3' 16 CH 3 CH 3 CH 3 CH 3 20' 19' 18' 17' lykopen Další karoteny vznikají enzymově katalyzovanou cyklizací z acyklických ψ-karotenů, kdy se tvoří β- nebo α- jononové struktury. Struktura s β-jononovým cyklem se nazývá β-karoten, struktura s α-jononovým cyklem je ε-karoten. Příkladem uhlovodíků s β-jononovým cyklem pouze na jednom konci molekuly je γ-karoten neboli β,ψ-karoten. Cyklizací na obou koncích molekuly vznikají struktury přítomné například v β-karotenu nebo α-karotenu. Sloučenina β- karoten se nazývá přesněji β,β-karoten, α-karoten je potom β,ε-karoten. 18' 17 16 H 3 C H 3 C CH 3 CH 3 CH 3 3 1 5 9 13 β karoten 13' 9' CH CH 3 CH 3 18 H 3 C H 3 C CH CH 3 3 CH 3 1' 3' H 3 C CH 3 16' 17' α karoten CH 3 CH 3 CH 3 H 3 C CH 3 Karoteny s β-jononovým cyklem, jako je β-karoten, α-karoten aj. karotenoidy, jsou prekurzory retinolu. Řadí se proto mezi retinoidy. 2.2.2.2. Xantofyly Xantofyly primárně vznikají jako produkty biochemické oxidace (hydroxylace) karotenů. Nejběžnějšími látkami jsou monohydroxysubstituované deriváty alicyklických karotenů nazývané kryptoxantiny. Většina rostlinných pletiv obsahuje malá množství α-kryptoxantinu (nazývá se také zeinoxantin, odvozen je od α-karotenu) a β-kryptoxantinu (odvozen je od β- karotenu), které jsou prekurzory xantofylů obsahujících dvě hydroxylové skupiny v molekule. Xantofyl β-kryptoxantin se řadí mezi retinoidy. H 3 C H 3 C CH CH 3 3 CH 3 HO α-kryptoxantin CH 3 CH 3 CH 3 H 3 C CH 3 15