Univerzita Pardubice Fakulta chemicko-technologická Toxické účinky methanolu na lidský organismus Veronika Kratochvilová Bakalářská práce 2014
Prohlašuji: Tuto práci jsem vypracovala samostatně. Veškeré literární prameny a informace, které jsem v práci využila, jsou uvedeny v seznamu použité literatury. Byla jsem seznámena s tím, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb., autorský zákon, zejména se skutečností, že Univerzita Pardubice má právo na uzavření licenční smlouvy o užití této práce jako školního díla podle 60 odst. 1 autorského zákona, a s tím, že pokud dojde k užití této práce mnou nebo bude poskytnuta licence o užití jinému subjektu, je Univerzita Pardubice oprávněna ode mne požadovat přiměřený příspěvek na úhradu nákladů, které na vytvoření díla vynaložila, a to podle okolností až do jejich skutečné výše. Souhlasím s prezenčním zpřístupněním své práce v Univerzitní knihovně. V Pardubicích dne 24. 6. 2014 Veronika Kratochvilová
Poděkování Touto cestou bych chtěla poděkovat vedoucímu bakalářské práce doc. Mgr. Romanu Kanďárovi, Ph.D za spolupráci, konzultace a čas, který mi věnoval. Dále bych ráda poděkovala celému oddělení klinické biochemie ve Zlíně za poskytnutí informací k tomuto tématu.
ANOTACE Bakalářská práce se zabývá toxickými účinky methanolu a působením jeho metabolitů na lidský organismus. Zaměřuje se též na vlastnosti methanolu a na jeho přeměnu v těle. Dále se v práci nachází informace o nedávné methanolové kauze, která proběhla v České republice. Také se věnuje příznakům intoxikace a způsobu léčby otravy methanolem. KLÍČOVÁ SLOVA methanol, toxicita, metabolismus, formaldehyd, kyselina mravenčí, játra ANNOTATION The bachelor thesis deals with toxic effects of methanol and its metabolites effects on the human body. It target also the properties of methanol and its biotransformation in the human body. There are also information about a recent "methanol" cause in the Czech Republic. It also deals with the symptoms of intoxication and way of treatment of methanol poisoning. KEYWORDS methanol, toxicity, metabolism, formaldehyde, formic acid, liver
OBSAH 0 ÚVOD... 13 1 Methanol... 14 1.1 Chemické a fyzikální vlastnosti methanolu... 14 1.2 Toxické vlastnosti methanolu... 15 1.3 Zdroje, výskyt a využití methanolu... 15 2 Otrava methanolem... 16 2.1 Metabolismus methanolu... 17 2.1.1 Oxidace methanolu... 17 2.1.2 Oxidace formaldehydu... 18 2.1.3 Oxidace mravenčanu... 21 3 Patofyziologie toxicity methanolu... 24 3.1 Eliminace methanolu... 25 4 Příznaky otravy methanolem... 27 4.1 Akutní intoxikace methanolem... 27 4.2 Chronická intoxikace methanolem... 27 4.3 Trvalé následky po intoxikaci methanolem... 28 4.4 Vliv methanolu na centrální nervový systém... 28 4.5 Vliv methanolu na zrak... 29 4.6 Vliv methanolu na játra... 29 4.6.1 Volné radikály... 30 4.6.2 Mechanismy poškození jater... 31 4.6.3 Antioxidační ochrana... 34 4.6.4 Histologie jaterní tkáně... 34 4.6.5 Jaterní onemocnění... 35 5 Kinetika methanolu... 36
5.1 Distribuce... 36 5.2 První pomoc při otravě... 37 6 Vyšetření... 38 6.1 Plynová chromatografie... 38 6.2 Počítačová tomografie... 39 6.3 Stanovení kyseliny mravenčí... 39 7 Terapie... 40 7.1 Ethanol... 40 7.2 Fomepizol (4-methylpyrazol)... 41 7.3 Leukovorin (kyselina folinová)... 41 7.4 Hemodialýza... 42 8 Informace o otravě methanolem v České republice... 43 9 ZÁVĚR... 44 10 Seznam použité literatury... 45
Seznam ilustrací Obrázek 1 Strukturní vzorec methanolu.... 14 Obrázek 2 Inhibice přeměny methanolu ethanolem nebo fomepizolem.... 17 Obrázek 3 Metabolismus methanolu na formaldehyd... 18 Obrázek 4 Schéma přeměny methanolu na oxid uhličitý.... 20 Obrázek 5 Oxidace mravenčanu.... 21 Obrázek 6 Rozdíly v přeměně methanolu na oxid uhličitý u hlodavců a primátů.... 22 Obrázek 7 Mechanismus toxicity kyseliny mravenčí..... 24 Obrázek 8 Schéma eliminace methanolu.... 26 Obrázek 9 Vliv alkoholu na vznik zánětu jater.... 32 Obrázek 10 Účinky volných kyslíkových radikálů na strukturu proteinů... 33 Obrázek 11 Princip metody stanovení mravenčanu.... 39
Seznam tabulek Tabulka 1 Fyzikální vlastnosti methanolu.... 14 Tabulka 2 Odhady hladiny methanolu ve vybraných nápojích a potravinách.... 15
Seznam zkratek MTBE - terc-butylmethylether DMDC - dimethyldikarbonát CNS centrální nervový systém ADH - alkoholdehydrogenasa CYP2E1 - cytochrom P-450 2E1 MEOS - mikrosomální ethanolový oxidační systém FDH formaldehyddehydrogenasa ATP - adenosintrifosfát F-THF-S - 10-formyltetrahydrofolátsyntethasa NADPH nikotinamidadenindinukleotidfosfát, redukovaná forma GSH glutathion NAD + - nikotinamidadenindinukleotid, oxidovaná forma DNA - deoxyribonukleová kyselina RNA - ribonukleová kyselina AST aspartátaminotrasferasa ALT alaninaminotransferasa SAM - S-adenosylmethionin ROS - reaktivní sloučeniny kyslíku Na + /K + ATPasa - sodno-draselná pumpa RNS - reaktivní sloučeniny dusíku mtdna - mitochondriální DNA
NOX - nikotinamidadenindinukleotidfosfátoxidasa NOS - oxidu dusnatý synthasa TNFα - tumor nekrotizující faktor α LPS - lipopolysacharidy TLR-4 - Toll-like receptor 4 IL-6 interleukin 6 IL-1 - interleukin 1 IL-10 - interleukin 10 AMPK - adenosylmonofosfátproteinkinasa TGFβ - transformující růstový faktor β IL-1β interleukin 1β IL-17 interleukin 17 IL-8 - interleukin 8 OPN osteopontin AFLD alkoholická steatóza jater NF-κB - transkripční faktor CT - počítačová tomografie
0 ÚVOD Tématem bakalářské práce jsou toxické účinky methanolu na lidský organismus. Chemické, fyzikální a biologické vlastnosti jsou základem poznání jeho toxického účinku. Otrava, kterou methanol způsobuje, je dána hlavně jeho metabolity. Metabolity tedy hrají významnější úlohu v intoxikaci než samotný methanol. Seznámení se s jeho metabolismem napomáhá pochopit jeho nepříznivé účinky na různé orgány v těle. Znalosti první pomoci při intoxikaci methanolem mohou zachránit život mnoha lidem. V současné době je otrava methanolem velmi diskutovaným tématem vzhledem k nedávným událostem v České republice. Cílem práce je popsat toxické účinky methanolu na zrak, centrální nervový systém a játra a popsat mechanismy vedoucí k jejich poškození, informovat počtu obětí intoxikace methanolem v ČR a poukázat na možnosti terapie postižených jedinců. 13
1 Methanol Methanol je nejjednodušší sloučeninou ze skupiny alifatických alkoholů. Jeho racionální vzorec je CH 3 OH. Strukturní vzorec je uveden na obrázku 1. Obrázek 1 Strukturní vzorec methanolu. 1.1 Chemické a fyzikální vlastnosti methanolu Methanol je bezbarvá, těkavá, hořlavá a alkoholicky páchnoucí kapalina, která je neomezeně mísitelná s vodou, alkoholy a ketony. Bod varu je 64,65 C. Jeho páry tvoří se vzduchem výbušnou směs. Methanol dobře rozpouští tuky a je významným organickým rozpouštědlem. Jde o silně jedovatou látku, která je důvodem mnoha otrav kvůli časté záměně ethanolu za methanol. Jejich vůně jsou velmi podobné, proto je lze od sebe jen stěží rozlišit. V tabulce 1 jsou uvedeny další vlastnosti methanolu. [1, 2] Tabulka 1 Fyzikální vlastnosti methanolu. Upraveno podle [2, 3] Vlastnosti methanolu Hodnoty Molekulová hmotnost 32,04 g/mol Bod tání - 97,5 C Bod varu 64,7 C Vodivost 1 μs/cm Minimální zápalná energie 0,14 mj Hustota relativní 0,79 g/cm 3 Tenze par při 20 C 12,8 kpa Teplota samovznícení 455-470 C 14
1.2 Toxické vlastnosti methanolu Methanol se řadí podle zákona 356/2003 a vyhlášky 232/2004 do skupiny toxických látek. Jde tedy o jed, který se stává nebezpečným po jeho požití, nadýchání se, či po zasažení pokožky nebo očí. Sám o sobě není toxický, ale metabolizuje se na látky, které jsou pro organismus jedovaté. Neexistuje žádný přesvědčivý důkaz o tom, že by byl methanol genotoxický. [1, 2] Též není klasifikován ani jako karcinogen. [4] Smrtelná dávka methanolu pro člověka je asi 20 g. Jelikož je ale vůní i chutí podobný ethanolu, dochází jejich záměnou ke smrtelné otravě. Smrtelná dávka ethanolu po jednorázovém požití je 500 g. [5] 1.3 Zdroje, výskyt a využití methanolu V roce 2008 byla světová produkce methanolu asi 50 milionů tun za rok. Vyrábí se z něj formaldehyd, kyselina mravenčí, kyselina octová, terc-butylmethylether (MTBE), glykolether nebo slouží jako palivo. Také je složkou v mnoha průmyslových produktech, jako jsou barvy, čisticí prostředky, nebo jej nalezneme v ilegálně vyrobeném alkoholu. [2, 6, 7] Vyskytuje se i v rozpouštědlech, nemrznoucí směsi na autoskla, lepidlech, cigaretovém kouři (180 μg na jednu cigaretu) i kapalinách používaných do kopírek. [8, 9] Methanol produkují i některé mikroorganismy. V lidském těle se může vyskytovat přirozeně. Koncentrace methanolu v krvi se obvykle pohybuje okolo 1,0 až 2,5 mg/l. [2] Zdrojem methanolu, jak vidíme v tabulce 2, může být čerstvé ovoce, zelenina, ovocné džusy, piva, vína, destilované lihoviny nebo potravinářské přídatné látky, jako je aspartam a dimethyldikarbonát (DMDC). Aspartam je umělé sladidlo a DMDC je kvasinkový inhibitor používaný v čajích, sportovních nápojích nebo užíván jako náhražka ve víně. Obě přísady se po konzumaci metabolizují na methanol. [9] Tabulka 2 Odhady hladiny methanolu ve vybraných nápojích a potravinách. Upraveno podle [2, 9] Potraviny a nápoje Čerstvé ovocné džusy Pivo Víno Bourbon Fazole Koncentrace methanolu 12-640 mg/l 6-27 mg/l 96-329 mg/l 40-55 mg/l 1,5-7,9 mg/kg 15
2 Otrava methanolem Otrava methanolem je celosvětový problém. Alkohol je totiž návyková látka a jeho konzumace je odpovědná za některé zdravotní, sociální a hospodářské problémy. Mírné pití alkoholu obvykle nepřináší žádná zdravotní rizika, ale chronická spotřeba alkoholu vede k fyzickým i duševním poruchám a způsobuje poškození různých orgánů včetně mozku, srdce, jater, plic, kosterního svalstva i kostí. [10] Methanol může způsobit těžká onemocnění až smrt, zejména v rozvojových zemích. Jelikož jeho výroba je levná a snadná, stal se methanol běžnou složkou mnoha ilegálně vyrobených nápojů. Pití takovýchto alkoholických nápojů vede k těžkým otravám, které pokud se neléčí, jsou spojeny s významnou mortalitou a vizuálními deficity. [6, 11] Methanol se rychle absorbuje po požití, inhalaci nebo kontaktu s pokožkou a rychle se šíří do tkání. Přestože náhodná nebo úmyslná konzumace methanolu je nejběžnějším způsobem otravy, vdechování jeho par a kožní absorpce nesou také podíl na vzniku akutních toxických efektů. [7] Hromadění toxických metabolitů methanolu je hlavní příčinou vzniku patologických stavů. Metabolity jsou nebezpečné pro centrální nervový systém (CNS), gastrointestinální trakt a zrak. Vyvolávají metabolickou acidosu a buněčnou dysfunkci. [12] Toxické příznaky se objevují až po latentním období trvajícím 8 až 24 hodin po požití methanolu. [11] Příčinou tohoto zpoždění je tvorba toxických metabolitů. [13] Po latentním období obvykle nastává metabolická acidosa a útlum CNS doprovázený známkami zhoršeného vidění, slepoty až smrti. [14] Potenciální účinky vyplývají z inhibice cytochromoxidasy. Jde o mitochondriální enzym, který je nezbytný pro oxidativní fosforylaci. Jeho inhibicí dochází k nedostatečnému okysličení tkání, buněčnému edému až buněčné smrti. [13] Toxická a letální dávka není dosud jednoznačně stanovena. Individuální odlišnosti v citlivosti na množství požitého methanolu závisí na konzumaci ethanolu, hladině folátů nebo na odlišné aktivitě enzymů v metabolickém systému methanolu. [14] Otrava methanolem tedy vzniká po jeho biotransformaci na vysoce toxické metabolity, jako jsou formaldehyd a kyselina mravenčí. Míra oxidace methanolu je spojena s aktivitou alkoholdehydrogenasy (ADH), která je závislá na genetických faktorech a faktorech životního prostředí, jako jsou kouření, strava, předchozí konzumace alkoholu, atd. [6, 14] 16
2.1 Metabolismus methanolu Methanol se dostává do těla požitím, vdechnutím nebo rychlou absorpcí přes kůži. V těle je rozšířen krví do všech orgánů a tkání v závislosti na obsahu vody. Koncentrace methanolu v krvi je přímo úměrná jeho přijatého množství. Tedy míra toxického účinku methanolu na játra je přímo úměrná jeho koncentraci v krvi. Vstřebává se rychle ze zažívacího traktu (25 mg/kg za hodinu) a většina ho je metabolizována v játrech na oxid uhličitý. Míra přeměny methanolu je 7krát nižší než u ethanolu. Jen malá část odchází z těla močí nebo plícemi v nezměněné formě. Samotný methanol působí tlumivě na CNS. Toxicky působí až jeho metabolity, formaldehyd a kyselina mravenčí. [2, 9, 10, 14, 15] 2.1.1 Oxidace methanolu Oxidací methanolu v játrech, běžně za katalýzy enzymem ADH, vzniká formaldehyd. U lidí ale také existuje alternativní cesta, tzv. mikrosomální ethanolový oxidační systém (MEOS) závislý na cytochromu P-450 2E1 (CYP2E1), produktem je též formaldehyd. Alternativní cesta spočívá v oxidaci methanolu přes folátovou metabolickou dráhu, která je pomalejší a závislá na kyselině folinové. Jedná se o redukovanou formu kyseliny listové. Oxidace methanolu může být inhibována ethanolem, který je kompetitivním substrátem, jak lze vidět na obrázku 2. U lidí se methanol oxiduje jiným mechanismem, než u hlodavců. Transformace methanolu na formaldehyd je u hlodavců uskutečněna katalasa-peroxidasovým systémem v přítomnosti peroxidu vodíku. [2, 4, 14, 16] ADH FDH F-THF-S Methanol Formaldehyd Kyselina mravenčí CO 2 + H 2 O X Ethanol nebo Fomepizol Obrázek 2 Inhibice přeměny methanolu ethanolem nebo fomepizolem na oxid uhličitý a vodu za katalýzy enzymy alkoholdehydrogenasy (ADH), formaldehyddehydrogenasy (FDH) a 10-formyltetrahydrofolátsyntethasy (F-THF-S). Upraveno podle [17] 17
Přeměna methanolu na formaldehyd prochází jednou ze tří samostatných drah, jak je znázorněno na obrázku 3. První a druhá dráha zahrnuje společný meziprodukt peroxid vodíku. Ten může vycházet z nikotinamidadenindinukleotidfosfát (NADPH)-dependentního elektronového přenosu a může přispět k přímé oxidaci methanolu, která je katalyzovaná katalasou nebo Fentonovou reakcí. Fentonovou reakcí se tvoří hydroxylové radikály. Tyto radikály mohou spontánně reagovat s methanolem za vzniku formaldehydu. Třetí významná dráha zahrnuje oxidaci přes nikotinamidadenindinukleotid (NAD + ), katalyzovanou cytosolovým isoenzymem alkoholdehydrogenasou (ADH1). [7] NAD + NADH ADH1 NAD + NADH Katalasa Methanol Formaldehyd Kyselina mravenčí CH 3 OH HCHO ADH2 HCOOH H 2 O 2 H 2 O [ CH 2 OH] GSH (α-hydroxymethylradikál) Fe(II) / H 2 O 2 O 2 nebo CYP2E1 S-hydroxymethyl-GSH NAD+ ADH3 NADH S-formyl-GSH GSH S-formyl-GSH-hydrolasa Obrázek 3 Metabolismus methanolu na formaldehyd procházející jednou ze tří samostatných drah. Nikotinamidadenindinukleotid, oxidovaná forma (NAD + ), nikotinamidadenindinukleotid, redukovaná forma (NADH), alkoholdehydrogenasa (ADH), cytochrom P-450 2E1 (CYP2E1), glutathion (GSH). Upraveno podle [7] 2.1.2 Oxidace formaldehydu Formaldehyd, první meziprodukt v přeměně methanolu, je dále přeměněn na další produkty, jak je uvedeno na obrázku 4, nebo reaguje s buněčnými složkami. Formaldehyd se může redukovat na methanol za katalýzy ADH1 nebo oxidovat na kyselinu mravenčí v přítomnosti redukované formy glutathionu (GSH) za katalýzy glutathion-dependentní 18
alkoholdehydrogenasy (ADH5). Aktivita ADH1 může být detekována při malé koncentraci GSH nebo v jeho nepřítomnosti. Formaldehyd inhibuje glutathion-dependentní enzym ADH. Rychlou oxidací formaldehydu, za katalýzy formaldehyddehydrogenasy (FDH), vzniká mravenčan. Díky rychlosti této reakce nedochází k akumulaci formaldehydu v krevním řečišti. Formaldehyddehydrogenasa je NAD + -dependentní enzym, který je přítomen ve všech tkáních a v krvi. Lze jej izolovat z jater a biochemicky stanovit. Jeho aktivita je inhibována 1,10-fenantrolinem a vysokou koncentrací pyrazolu. Oxidace formaldehydu za katalýzy FDH začíná neenzymatickou reakcí s GSH (kofaktor FDH). Vzniklý S-hydroxymethylglutathion je substrátem pro enzym FDH v přítomnosti NAD +. Substrát je transformován na S- formylglutathion a thioester kyseliny mravenčí. S-formylglutathion je v játrech hydrolyzován na GSH a kyselinu mravenčí za katalýzy S-formylglutathionhydrolasy. Oxidace formaldehydu probíhá v mitochondriích a cytosolu hepatocytů. [2, 4, 7, 14, 16] Endogenní koncentrace formaldehydu v krvi je asi 2,60 μg/l. Je velmi reaktivní a často odpovídá za patologické změny zraku. Formaldehyd snadno reaguje s aminoskupinou a sulfhydrylovou skupinou peptidů, proteinů a nukleových kyselin, za vzniku thiazolidin-4-karboxylové kyseliny a hydroxymethylových derivátů. Padesát až osmdesát procent endogenního formaldehydu se vyskytuje ve formě sloučenin, které obsahují GSH. Nejen toxicita formaldehydu, ale i jeho metabolismus závisí na koncentraci GSH v hepatocytech. Glutathion je tedy zodpovědný za metabolismus formaldehydu. Během intoxikace methanolem, klesá v játrech koncentrace GSH, zatímco aktivita enzymu glutathiontransferasy v séru je beze změny. Tím je metabolismus formaldehydu pomalejší a jeho toxicita vyšší. Glutathiontransferasa katalyzuje tvorbu GSH sloučenin. [14] 19
Obrázek 4 Schéma přeměny methanolu na oxid uhličitý přes řadu meziproduktů. Formaldehyd může být oxidován na mravenčan v přítomnosti glutathionu (GSH) či formaldehyddehydrogenasy (FDH) nebo metabolizován přes tetrahydrofolátovou cestu. Dále nikotinamidadenindinukleotid, oxidovaná forma (NAD + ), nikotinamidadenindinukleotid, redukovaná forma (NADH), nikotinamidadenindinukleotidfosfát, oxidovaná forma (NADP + ), nikotinamidadenindinukleotidfosfát, redukovaná forma (NADPH), tetrahydrofolát (THF), adenosintrifosfát (ATP) a adenosindifosfát (ADP). Upraveno podle [16] Formaldehyd je známý karcinogen způsobující karcinom dlaždicových buněk v nosní tkáni u krys a nazofaryngeální karcinom u lidí. Je považován za mutagenní metabolit methanolu. Je velmi reaktivní sloučeninou, která poškozuje deoxyribonukleovou kyselinu 20
(DNA), ribonukleovou kyselinu (RNA), proteiny a lipidy tím, že s nimi tvoří kovalentní vazby. [4, 7] Methanol a formaldehyd snižují hladiny antioxidačních enzymů především u hlodavců a mohou přispívat k poškození jater, a tím se může zvýšit katalytická koncentrace aspartátaminotrasferasy (AST) a alaninaminotransferasy (ALT) v séru. Alkohol játra poškozují hlavně v části, která je vystavena nižší koncentraci kyslíku, jedná se o jaterní acinus. [7] 2.1.3 Oxidace mravenčanu Kyselina mravenčí disociuje na mravenčan a vodíkový ion. Mravenčan je dále oxidován, jak je ukázáno na obrázku 5, na oxid uhličitý a vodu za katalýzy enzymem formiátdehydrogenasa v přítomnosti tetrahydrofolátu a dalších dvou enzymů (10- formyltetrahydrofolátsyntethasy a 10-formyltetrahydrofolátdehydrogenasy). U lidí je tato reakce dvakrát pomalejší než u hlodavců, což je důvodem jeho akumulace, jak je znázorněno na obrázku 6. Tetrahydrofolát je odvozen od kyseliny listové. U hlodavců je přeměna methanolu na mravenčan rychlost omezující reakcí a může způsobit akumulaci methanolu. U lidí je rychlost omezující reakcí přeměna mravenčanu na CO 2. Pokud rychlost tvorby mravenčanu překročí rychlost přeměny mravenčanu na CO 2, může dojít k akumulaci mravenčanu, a tím k vývoji acidosy. Ta je u lidí zapříčiněna i nízkými hladinami tetrahydrofolátu a 10-formyltetrahydrofolátdehydrogenasy. [2, 4, 14] Kyselina mravenčí Dihydrofolát Tetrahydrofolát Mravenčan 10-formyltetrahydrofolát Oxid uhličitý 1 5,10 CH-H 4 folát 5,10 CH 2 -H 4 folát 2 5 CH 3 -H 4 folát SAM Vit. B 12 Obrázek 5 Oxidace mravenčanu za katalýzy 10-formyltetrahydrofolátsyntethasy (1) a 10- formyltetrahydrofolátdehydrogenasy (2) s využitím S-adenosylmethioninu (SAM) a vitamínu B 12. Upraveno podle [14] 21
Metabolismus mravenčanu je tedy závislý na folátu, který je u lidí v nízkých hladinách, proto se mravenčan hromadí v těle a rozvíjí toxicitu. [4, 17, 18] Kyselina mravenčí způsobuje hypoxii v mozku, ledvinách a srdci, tedy u orgánů, které potřebují velké množství kyslíku pro plnění své fyziologické funkce. Hromadění mravenčanu má za následek snížení hladiny kyseliny tetrahydrolistové v játrech, protože folát je kofaktorem enzymu 10- formyltetrahydrogenasy. Vznikající kyselina mravenčí tak nemůže být dále odbourávána. [1] U hlodavců je mravenčan metabolizován jak přes katalasa, tak také folát závislé dráhy, a tím je zabráněno jeho akumulaci. Katalasa poskytuje u všech živočichů ochranu buňky před reaktivními sloučeninami kyslíku (ROS). Hlodavci jsou odolní vůči akutní toxicitě methanolem, protože nedochází k hromadění kyseliny mravenčí. Methanol u hlodavců zvyšuje peroxidaci lipidů v lymfatických orgánech a v mozku, jakož i snižuje hladinu GSH a aktivitu antioxidačního enzymu superoxiddismutasy. Pro studie byli vybráni i králici, kteří podobně metabolizují methanol jako lidé, jelikož také využívají jaterní ADH. [19] Lidé alkoholdehydrogenasa nebo CYP2E1 CH 3 OH methanol HCHO formaldehyd Hlodavci katalasa formaldehyddehydrogenasa formaldehyddehydrogenasa HCOO - mravenčan omezený tetrahydrofolát hojný tetrahydrofolát nebo katalasa CO 2 oxid uhličitý + voda Obrázek 6 Rozdíly v přeměně methanolu na oxid uhličitý u hlodavců a primátů. U hlodavců je metabolismus rychlejší než u primátů díky velké zásobě tetrahydrofolátu. Oxidace mravenčanu folátem probíhá 2krát pomaleji u lidí než u hlodavců. Katalasa je užívaná všemi druhy živočichů v detoxikaci reaktivních sloučenin kyslíku (ROS). Cytochrom P-450 2E1 (CYP2E1). Upraveno podle [2, 19] 22
Část formaldehydu a mravenčanu může být navázána na endogenní molekuly nebo může vstupovat do endogenních syntetických drah. Endogenní metabolismus mravenčanu se zvyšuje v přítomnosti kyseliny listové. [2, 4, 14, 20] 23
3 Patofyziologie toxicity methanolu Patofyziologie toxicity methanolu je spojena s jeho přeměnou na kyselinu mravenčí. Tato přeměna má za následek vznik acidosy. Vzniklý mravenčanový aniont inhibuje mitochondriální cytochromoxidasu, jak lze vidět na obrázku 7, což vede k produkci laktátu. S rozvojem acidosy prochází kyselina mravenčí do CNS, a tím se snižuje její eliminace. Mravenčan způsobuje poškození myelinové pochvy zrakového nervu. Vlákna zrakové nervu jsou citlivější na nižší hladinu cytochromoxidasy. Též dochází k poškození bazálních ganglií. Částečná kompenzace acidosy je doprovázena zrychlenou dechovou frekvencí. [17] Kyselina mravenčí Inhibice aktivity cytochromoxidasy Poškození mitochondrií Laktátová acidosa Zvýšená tvorba O 2.-,. OH, HO 2 - Buňka a organely poškození buněčné membrány Vtékání Ca 2+ do buňky Obrázek 7 Mechanismus toxicity kyseliny mravenčí. Upraveno podle [14] Sám methanol má podíl ve změně struktury membránových proteinů a lipidů. Methanol snižuje hydrataci povrchu membrán, protože jeho molekuly tvoří vodíkovou vazbu mezi proteiny a lipidy, zatímco molekuly vody jsou spojeny s membránovými glykolipidy a NH + 3 skupinami receptorových proteinů. Tím molekula methanolu rozruší strukturu fosfolipidové dvouvrstvy. Volné radikály reagují s membránovými fosfolipidy za vzniku hydroperoxidů. Výrazný nárůst koncentrace dvou aldehydů, malondialdehydu a 4-24
hydroxynonenalu, způsobuje fragmentaci DNA, aktivaci poly(dna-riboso)transferasy a akumulaci proteinu p53. To vše přispívá k buněčné apoptóze. [14] Normální buněčné funkce závisí na vyrovnaném redoxním prostředí. Ischemie či hypoxie ukazuje na závažný reduktivní stres, což vede ke zvýšení hladiny NADH, který redukuje železité ionty ve feritinu. Vzniklé železnaté ionty tak mohou reagovat s peroxidem vodíku za vzniku cytotoxických radikálů při Fentonově reakci. [7] 3.1 Eliminace methanolu Rychlost eliminace methanolu z krve závisí na jeho koncentraci a je pomalejší než u ethanolu. K eliminaci methanolu z organismu dochází především přes metabolické procesy. Ovšem malá část se vyloučí v nezměněné formě močí nebo plícemi, jak můžeme vidět na obrázku 8. Methanol se v játrech oxiduje na oxid uhličitý a vodu. [14] Celková eliminace methanolu je pomalá a odpovídá 1/7 rychlosti odbourávání ethanolu. Jelikož má ethanol vyšší afinitu k ADH než methanol, je preferovanějším substrátem. Vylučování methanolu v nezměněné formě plícemi či močí se děje v důsledku zvýšené hladiny ethanolu, který mu brání v přeměně na toxické formy. [16] Při nízkých koncentracích mravenčanu je jeho poločas přeměny za 1 až 3 hodiny, ale se zvyšující se koncentrací může být prodloužen. Koncentrace methanolu v moči se zvyšuje, pokud dotyčný po požití zvýší svou fyzickou aktivitu (např. cvičením). Methanol je měřen z krve nebo z moči. [2] Výměna chloridových iontů s mravenčanovými iony v proximálním kanálu ledvin má za následek zpětnou resorpci kyseliny mravenčí do krevního oběhu. [14] 25
Vylučovaný produkt Clearance v procentech ledviny Methanol 0,6 METHANOL vychytávání a rozšíření plíce Methanol 2,5 játra CO 2 96,9 Mravenčan v moči Obrázek 8 Schéma eliminace methanolu. Methanol je oxidován na oxid uhličitý (96,6 %), eliminován močí (0,6 %) nebo vydýchán plícemi (2,5 %). Upraveno podle [14] 26
4 Příznaky otravy methanolem Tím, že methanol není toxický, ale až jeho metabolismem vznikají toxické produkty, dochází i k postupným projevům příznaků otravy. Příznaky intoxikace jsou většinou specifické. Vyvíjí se s časem a jsou často podceňovány. Řadíme sem např. světloplachost, pokles zrakové ostrosti i slepotu. Nespecifické klinické projevy otravy znesnadňují diagnózu. [11] Formaldehyd a kyselina mravenčí jsou metabolity methanolu zodpovědné za jeho toxicitu. Akumulace kyseliny mravenčí a v pozdější fázi i kyseliny mléčné, způsobuje metabolickou acidosu se zvýšením tzv. aniontového okna a snížením hladiny bikarbonátů. Acidosa je hlavním rizikem při otravě methanolem. Hromadění kyseliny mravenčí způsobuje křeče, kóma, útlum buněčného dýchání a vede k poškození zrakového nervu, což může způsobit nevidomost. Též vede k neurologickým poruchám. Akumuluje se totiž v očním nervu, sítnici a bazálních gangliích mozku, jejichž poškozením dochází k útlumu centrálního nervového systému. U intoxikace methanolem se objevuje i akutní selhání ledvin. [1, 16, 21] 4.1 Akutní intoxikace methanolem Postižený jedinec prožívá krátké období otravy s mírným útlumem CNS, po kterém následuje období, kde nejsou přítomny žádné známky intoxikace nebo toxicity (běžně 12 až 24 hodin). Následují fyzické symptomy lehké otravy projevující se bolestí hlavy, závratěmi, zmateností, ztrátou rovnováhy, horší artikulací a poruchami paměti. Mohou se přidat též zrakové poruchy, jako jsou mlhavé vidění, rozšířené zorničky či světloplachost. Z metabolických projevů lehké otravy se setkáváme s poklesem ph, hypoventilací a následným zvýšením osmolality a poté i aniontového okna. S otravou methanolem se mohou dostavit rovněž gastrointestinální symptomy s typickými projevy zvracení, průjmu, nevolnosti či bolesti břicha. [8, 9] Methanol prochází i placentou, čímž může poškodit plod. [17] 4.2 Chronická intoxikace methanolem Chronická otrava má symptomy podobné akutní otravě. Těžká otrava se projevuje hlavně v CNS. Má za následek vznik křečí, které se mohou objevit po edému mozku nebo plic. Edém mozku v závažných případech způsobuje záchvaty až kóma. Snižuje se ostrost 27
a ztráta barevného vidění, objevuje se mydriáza či destrukce retiny a degenerace zrakového nervu. Dochází k prohlubování acidosy a ke zvýšení osmolality následované zvýšením aniontového okna. Při těžké intoxikaci se často objevuje i renální selhání. Otravu doprovází též akutní pankreatitida a porucha jaterní funkce. V oběhovém systému se projevuje intoxikace cyanózou v důsledku sníženého množství kyslíku v krvi, dále sníženým krevním tlakem, zvýšenou tepovou frekvencí a možností srdečního selhání. [8, 17] Poruchy zraku, v podobě rozmazaného, flekatého vidění nebo úplné ztráty zraku, jsou velmi specifické pro intoxikaci methanolem. [17] 4.3 Trvalé následky po intoxikaci methanolem Při přežití příznaků mohou nastat nevratné trvalé změny, jako je porucha až úplná ztráta zraku (25 až 30 % otrav). Dále se zhorší neurologické poruchy, ke kterým řadíme třes, změny osobnosti či ztuhlost. [16] 4.4 Vliv methanolu na centrální nervový systém Methanol je pro CNS sedativum, které je potenciálně toxické a může se u každého pacienta projevit jinak (křečemi, strnulostí, apatií až kómatem). Otrava methanolem může poškodit tkáně v některých orgánech. V mozku může způsobit difúzní edém, nekrózu bílé a šedé hmoty, atrofii, mozkové a intraventrikulární krvácení nebo mozečkové a optické nervové léze. Charakteristickými nálezy u pacientů jsou bilaterální putaminální nekróza a subkortikální léze bílé hmoty. Bilaterální putaminální nekróza je vzácná, ale typická pro intoxikaci methanolem. Mechanismus zodpovědný za putaminální nekrózu není znám. Metabolické nároky bazálních ganglií jsou vyšší než u jiných částí mozku. Takto zvýšené poptávky v bazálních gangliích můžou způsobit zvýšenou akumulaci kyseliny mravenčí. Jeden z navrhovaných mechanismů je snížení průtoku krve v bazálních Rosenthalových žilách. Otrava methanolem a pulmonální nekróza může být spojena s Wilsonovou chorobou, Kearns-Sayreovým syndromem, Leighovou nemocí, striatální degenerací spojené s Leberovou optickou atrofií, inhalací oxidu uhelnatého, hypoxicko-ischemickým poškozením a akutní kyanidovou intoxikací. Rozložení patologických nálezů zahrnuje zapojení subkortikální bílé hmoty a centrální šedé hmoty. Účelem je ochrana periferní šedé hmoty. Rozložení je multifaktoriální a vyplývá z mozkové mikrovaskulární anatomie a přímých 28
toxických účinků metabolitů methanolu. Kyselina mravenčí inhibující cytochromoxidasu, přispívá k difúzním abnormalitám v mozku. Může způsobit anoxii a následné selhání sodnodraselné pumpy (Na + /K + ATPasy). [13, 15] 4.5 Vliv methanolu na zrak I malé množství požitého methanolu způsobuje vážné problémy očí až zničení části CNS nebo vede k trvalým neurologickým dysfunkcím či slepotě. Čtyři ml čistého methanolu vedou k oslepnutí. [12] Mechanismus účinku, kterým působí methanol na zrak, je dán toxickými účinky kyseliny mravenčí. Ta působí toxicky na sítnici a optický nerv, a tím přerušuje produkci mitochondriální energie. Inhibuje enzym cytochromoxidasu, který je součástí mitochondriálního elektronového transportního řetězce zapojeného do tvorby adenosintrifosfátu (ATP). Inhibicí dochází k navázání kyseliny mravenčí na trojmocné železo v molekule hemu cytochromoxidasy. Porušením mitochondriální funkce a snížením tvorby ATP dojde k narušení axoplasmatického toku, k otoku axonů v optickém disku a k edému sítnicového nervového vlákna. Inhibicí mitochondriální cytochromoxidasy mravenčanem se aktivuje anaerobní glykolýza, čímž dojde k rozvoji laktátové acidosy způsobené akumulací kyseliny mléčné. Acidosa má vliv na zvýšenou tvorbu superoxidových aniontů a hydroxylových radikálů, což vede k peroxidaci lipidů a k poškození mitochondrií, buněčných membrán a membrán buněčných organel, jak lze vidět na obrázku 7. Výsledné narušení sítnicového energetického metabolismu je základem vizuální dysfunkce. Sítnice má velmi omezenou metabolickou schopnost oxidovat mravenčan. Tím má tedy i nižší schopnost jej detoxikovat. [2, 14, 21] Dochází k zúžení zorného pole, ale i k úplné ztrátě zraku. Pro vizuální dysfunkci je typická dilatace zornice až ztráta jejího reflexu. Mezi známky poškození zraku patří prokrvení optického disku, bledost disku nebo jeho otok. Poškození sítnice způsobuje formaldehyd, který inhibuje enzym hexokinasu v oční sítnici. [12] 4.6 Vliv methanolu na játra Játra jsou hlavním orgánem, který metabolizuje alkohol. Poškození jater alkoholem je příčinou celé řady onemocnění. Ukládaní tuku v játrech, tzv. steatóza jater, vede k zánětlivému stavu, steatohepatitidě. Steatóza je jednou z nejběžnějších a nejčastějších reakcí objevující se v časné fázi poruchy jater, ať alkoholického či nealkoholického původu. 29