Strana 1 (celkem 8) 12. Senzory pro měření tlaku Otázky k úloze (domácí příprava): Co je to piezo-rezistivní jev? Jaký je rozdíl mezi absolutním (absolute), relativním (gauge) a diferenčním (differential) tlakovým senzorem? Jak se z naměřené hodnoty výstupního napětí (např U = 5 V), znalosti napájení senzoru (např. 10 V), zesílení vyhodnocovacího obvodu A =100 a údaje o citlivosti senzoru např. 10mV/V.psi vypočte působící tlak p [psi]? Jaké výhody má senzor se snímacími elementy zapojenými do plného 4-ramenného můstku? Poznámka: Na cvičení si s sebou vezměte USB flash-disk Úkol měření 1. Zjistěte offset a citlivost relativního senzoru tlaku Honeywell 24PCCFA6G zapojeného v přípravku s manžetou pro měření krevního tlaku. 2. Pomocí osciloskopu a přípravku s tlakovou manžetou změřte krevní tlak a tepovou frekvenci vybraného dobrovolníka. Průběh z osciloskopu si zaznamenejte pro pozdější zpracování (uložte na Flash-disk). 3. K číslicovému multimetru přepnutému do režimu vyššího rozlišení připojte přípravek s absolutním senzorem tlaku. Změřte postupně atmosférický tlak v rozdílných výškách v rozsahu 0, 20, 40, 60, 80 a 100 cm nad referenční polohou. Měření proveďte pro oba typy dostupných absolutních senzorů tlaku (144SC0811BARO a CPC15A). Vypočítejte naměřený tlakový rozdíl v [Pa]. 4. K číslicovému multimetru připojte přípravek s diferenčním tlakovým snímačem, který v daném uspořádání měří průtok vzduchu trubicí. Změřte závislost tlakového rozdílu na průtoku vzduchu (součtu frekvencí otáček pohonných ventilátorů), alespoň v pěti bodech. Nepovinné 5. Zprovozněte demonstrační kit převodníku delta-sigma ADS1281 (Texas Instruments) v režimu MultiScope (vzorkuje a zobrazuje vstupní signál, počítá střední hodnotu napětí). 6. Na vstup AČ převodníku demonstračního kitu připojte výstup z absolutního senzoru tlaku 144SC0811BARO, nastavte režim jednorázového vzorkování rychlostí 250 Sa/s, počet vzorků např. 4096. Během 16 sekund měňte výškovou pozici senzoru a po zobrazení záznamu diskutujte zda odpovídá provedené manipulaci se senzorem. 7. Podívejte se na tři testovací režimy (MultiHistogram, MultiFFT, MultiScope), ve kterých je schopen demonstrační software ADCPro pracovat. Jaké veličiny charakterizují AČ převodník? Poznámky k měření: K bodu 1 a 2: Výstup z přípravku připojte k osciloskopu. Pro měření použijte dva paralelně propojené kanály osciloskopu. První kanál bude nastaven do režimu stejnosměrné vazby (DC) a bude indikovat stejnosměrnou složku signálu odpovídající tlaku v manžetě (citlivost přibližně 1V/dílek). Druhý kanál nastavený do režimu střídavé vazby (AC) indikuje tzv. Korotkovy zvuky impulzy (viz obrázek níže, citlivost zvolte 10 mv/dílek). Časovou základnu osciloskopu nastavte přibližně na hodnotu 1 až 2 sec/dílek).
Ch1 AC Ch2 DC OSC Obr. 1. Zapojení přípravku s relativním senzore tlaku Honeywell 24PCCFA6G a jeho připojení k osciloskopu K bodu 1: Při nulovém působícím tlaku (ventil u pumpovacího balónku plně otevřen) odečtěte offset výstupního napětí přípravku. Uzavřete ventil, přívod k tlakové manžetě přehněte a stlačte prsty (manžeta se nesmí nafukovat bez vloženého předmětu - paže), natlakujte opatrně na 200 mmhg (dle údaje deformačního tlakoměru) a odečtěte výstupní napětí. Z těchto údajů je možné určit lineární aproximaci závislosti tlaku na výstupním napětí přípravku. Zapojením senzoru v přípravku je dán nenulový výstupní offset pro nulový působící tlak. Ideální je proměřit převodní charakteristiku senzoru ve více bodech, ale pro požadovaný účel je dvoubodová kalibrace dostačující. Zjistíme U OFFSET (při p = 0) a U 200 (při p = 200 mmhg). Tlak pak odečteme z osciloskopu pro hodnotu napětí U jako: p OFFSET 200 200 OFFSET V mmhg ;, mmhg V Relativní tlakový senzor měří tlak ve vstupním tlakovém portu vůči okolní atmosféře (druhá strana membrány je otevřena do okolního prostoru). K bodu 2: Nasaďte manžetu na paži, natlakujte přibližně na 170 mmhg a jemným povolováním ventilu u balónku snižujte tlak. Sledujeme signál na osciloskopu. Při příliš vysokém tlaku v manžetě jsou na signálu vidět pouze menší pulsy. Při pomalém a plynulém snižování tlaku (cca 2-3 mmhg/s) se začínají objevovat Korotkovy pulsy, které jsou zřetelně viditelné i na osciloskopu. Při dalším snižování tlaku Korotkovy pulsy úplně vymizí. Měření ukončete (zastavte průběh na osciloskopu) až bude na stínítku zobrazen průběh dle obr. 2. Strana 2 (celkem 8) Obr. 2. Korotkovy pulsy Elektronický automatický tonometr zjišťuje maximální hodnotu amplitudy pulsů při snižování tlaku v manžetě. Definic pro určení systolického a diastolického tlaku je několik. Asi nejpoužívanější procentuální hodnoty jsou uvedeny na obrázku. Systolický tlak Ps je určen
jako nárůst amplitudy pulsů na 50 % maximální hodnoty, zatím co diastolický tlak je určen jako pokles amplitudy pulsů na 85 % maximální hodnoty. Po změření tlaku je možné aktuální stav displeje zmrazit pomocí tlačítka RUN/STOP a pomocí kurzorů je možné změřit důležité parametry signálu jako je tepová frekvence f. K bodu 3: K dispozici jsou dva absolutní senzory tlaku. Senzor Honeywell CPC15A má rozsah měření 0-15 psi (0 103421 Pa) a senzor Sensor_Technics 144SC0811BARO specificky určený pro měření atmosférického tlaku (rozsah měření 80 110 kpa). Výstup přípravku s absolutním senzorem tlaku připojte k multimetru nastavenému do režimu měření stejnosměrného napětí. Multimetr přepněte do režimu vysokého rozlišení (SHIFT+ 6 digit u DMM 34401). Zapněte napájecí zdroj (BK125 ±15V). Změřte výstupní napětí obou přípravků pro požadované výšky. p 1 Absolutní tlakový senzor NAPÁJECÍ ZDROJ ±15VDC Proudové napájení můstku a zesílení výstupního signálu DMM nebo ADS1281 Development Kit Strana 3 (celkem 8) Obr. 3. Zapojení pro měření atmosférického tlaku Měření absolutního tlaku zemské atmosféry se používá pro zjištění nadmořské výšky. Absolutní senzor obsahuje komůrku s referenčním tlakem (často různě kvalitní vakuum) vůči kterému působí přes membránu tlak měřený. Atmosférický tlak klesá s rostoucí výškou přibližně o 11,5 Pa na jeden metr. Výpočet tlakové diference z napětí naměřených přípravkem se senzorem CPC15A. Elektronické zapojení senzoru je zjednodušeno tak že není kompenzován offset senzoru. Bez dodatečné kalibrace není tedy možné určit absolutní velikost tlaku, ale pouze jeho změnu. Označme napětí změřené ve výškové hladině 0 cm jako U 0 a napětí změřené ve výšce např. 100 cm jako U 100. Napětí na měřící diagonále můstku senzoru je zesilováno přístrojovým zesilovačem se zesílením 25,7. Změna napětí na senzoru odpovídající dané změně tlaku je tedy: U 0 U 100 [V;V,V] 25,7 Senzor má nominální citlivost 90 mv na 103421 Pa (15 psi), při napájecím napětí můstku 12 V. Můstek je ale napájen zdrojem konstantního proudu I = 1,57 ma (odstraňuje vliv přívodních vodičů, teplotní kompenzace, viz katalogový list) a napájecí napětí můstku je tak jen 7,35 V. Změnu tlaku vypočteme tedy z U takto: U 103421 p U 1876118 [Pa; V] 7,35 0,09 12 Výpočet tlaku z výstupního napětí absolutního senzoru tlaku 144SC0811BARO Elektronické zapojení tlakového senzoru (obr. 4) obsahuje napěťový dělič, který umožňuje připojit výstup senzoru (0-5 V) k demonstračnímu kitu s AD převodníkem ADS1281 (vstupní rozsah ±2,5 V). Ve výpočtu zanedbáváme chybu způsobenou nenulovým výstupním odporem senzoru a konečným vstupním odporem připojeného voltmetru. Citlivost a offset
senzoru udává katalogový list. Působícímu tlaku 80 kpa odpovídá výstupní napětí 0 V. Plné výstupní napětí 5 V (2,5 V v našem zapojení) dostaneme při tlaku 110 kpa. p 30000 80000 [Pa; V] 2,5 Obr. 4. Zapojení absolutního senzoru tlaku 144SC0811BARO K bodu 4: Výstup přípravku s diferenčním senzorem připojte k napěťovým svorkám číslicového voltmetru. Zapněte napájecí zdroj pro pohonné ventilátory (~14 V, 3 A). BNC konektory A a B na přípravku ovládání ventilátoru připojte k osciloskopu jsou výstupem signálu, který indikuje rychlost otáčení ventilátorů (viz obr. 5). Změřte závislost tlakového rozdílu měřeného pomocí diferenčního snímače na průtoku vzduchu (otáčkách ventilátoru: A+B). Měření proveďte v pěti bodech v celém rozsahu nastavitelných otáček (nastavení potenciometrem na panelu přípravku pro ovládání ventilátorů). Co se stane, když výstup trubice ucpete dlaní (při nenulových otáčkách ventilátorů)? ZDROJ 14V DC 3A VÝSTUPY SNÍMAČŮ OTÁČENÍ RYCHLOST Ch1 Ch2 OTÁČENÍ OSC f 1 +f 2 =? Směr proudění vzduchu Diferenční tlakový senzor p 1 p 2 Přepážka (orifice) NAPÁJECÍ ZDROJ ±15VDC Proudové napájení můstku a zesílení výstupního signálu Voltmetr ADS1281 Development Kit Strana 4 (celkem 8) Obr. 5. Schéma zapojení pro měření průtoku vzduchu trubicí Diferenční senzor měří rozdíl dvou tlaků přivedených k senzoru dvěma vstupními porty. Výstup je nezávislý na absolutním tlaku média. Tento typ senzoru se v praxi používá například pro zde použité měření průtoku. Výhody senzoru průtoku s přepážkou (orifice): velmi robustní a jednoduché (žádné pohyblivé součásti), dobrá přesnost měření. Nevýhody: dochází k tlakové ztrátě (nutný výkonnější pohon ventilátor). Ventilátory jsou napájeny konstantním napětím (12 V), jejich výkon je řízen pomocí PWM (samostatný řídící vstup), ventilátory poskytují signál indikující rychlost otáčení (2 pulzy na 1 otáčku).
Výpočet tlakové diference z výst. napětí přípravku se senzorem Honeywell 24PCAF Senzor je napájen zdrojem konstantního proudu o velikosti 2,03 ma, který na napájecích vývodech můstku senzoru vytváří úbytek 10,31 V. Katalogová citlivost použitého senzoru je 45 mv/6894,7 Pa při napájení 10 V. Výstup senzoru je zesílen přístrojovým zesilovačem se zesílením 495. Použité zapojení nekompenzuje vlastní offset senzoru, který tak musíme od měřené hodnoty odečíst. 0 6984,7 p [Pa; V,V] 495 10,31 0,045 10 Obr. 6. Doporučené umístnění tlakových portů pro měření tlakové diference na přepážce Strana 5 (celkem 8) Obr. 7. Proudění a tlakový profil v trubici. (Obrázky převzaty z: ISO 5167-2 Measurement of fluid flow by means of pressure differential devices inserted in circular-cross section conduits running full)
K bodu 5: Zapněte Laptop (Student/Student), spusťte aplikaci ADCPro (na ploše). Zapněte napájecí zdroj pro demonstrační kit AČ převodníku (BK125, ±15 V, +5 V). V programu ADCPro aktivujte v menu EVM položku ADS1281DEVKIT. V menu TEST vyberte položku MultiScope. Měření spustíte stiskem tlačítka Acquire (Continuous). Obvod ADS1281 od Texas Instruments (obr. 8.) patří v současné době k nejlepším (běžně komerčně dostupným) integrovaným delta-sigma AČ převodníkům. Poskytuje výstupní slovo ve 32-bitovém formátu, efektivní rozlišení (ENOB Effective Number Of Bits) přibližně 22 až 23 bitů (závisí na vzorkovací frekvenci f S max 4kSa/s). Rozlišení 23 bitů přibližně odpovídá 6,5 místnému digitálnímu voltmetru. Obr. 8. Vnitřní struktura obvodu Texas Instruments ADS1281 Obr. 9. Program ADCPro, z menu EVM se spustí modul ADS1281EVM-PDK (viz obr. 10), z menu Test pak modul MultiScope. Strana 6 (celkem 8)
Obr. 10. Menu EVM, spuštění modulu ADS1281EVM-PDK K bodu 6: Připojte výstup z přípravku tlakového senzoru (BNC konektor) na vstup demonstračního kitu z AD převodníkem ADS1281. Nastavte doporučené parametry pro převod (250 Sa/s, délka záznamu 4096 vzorků) a spusťte jednorázový odměr. Prvních 5 sekund nechte senzor ve výškové hladině 0 cm, na dalších 5 sekund jej přesuňte o 100 cm výše a na zbytek času vraťte senzor do výchozí pozice. K bodu 7: Vyzkoušejte různé režimy ovládacího programu ADCPro přepnutí v menu TEST. Proveďte vzorkování výstupního signálu ze senzoru a zobrazte jeho FFT, je patrné rušení na síťové frekvenci? Vyzkoušejte odebrat stejný počet vzorků v situaci kdy bude na vstup kitu připojen BNC terminátor 50 Ω. Program ADCPro v režimu MultiFFT zobrazuje frekvenční spektrum měřeného signálu, lze z něj vyčíst důležitý parametr poměr signál šum, či poměr amplitudy šumu k rozsahu převodníku (Full Scale 5V). Režim MultiHistogram zobrazuje naměřená kódová slova ve formě sloupcového grafu. Rozložení kódových slov (binů), jejich rozptyl dále charakterizují AČ převodník. Časový průběh měřeného signálu je pozorovatelný v režimu MultiScope. Největší přesnosti dosáhneme nastavením vzorkovací frekvence na 250 Sa/s. Pokud nastavíme délku záznamu na 256 vzorků, bude údaj o střední hodnotě obnovován přibližně jednou za sekundu. V režimu MultiScope byl do programu dále přidán 16-ti stupňový FIR filtr, nakonfigurovaný jako tzv. klouzavý průměr (redukce šumu). Strana 7 (celkem 8)
Příloha: Senzory tlaku, rozdíl mezi absolutním, relativním a diferenčním senzorem tlaku. p[kpa] p A =169kPa p G =60kPa p D =-20kPa 100 p A =101kPa p G =20kPa atmosférický tlak p D =27kPa p A =64kPa (absolutní nula, 0 ideální vakuum) absolutní senzor relativní senzor p G =-68kPa p D =40kPa diferenční senzor p 1 vakuum (~0kPa) p 1 atmosféra (~101kPa) p 1 p 2 Zapojení použité pro buzení senzorů při měření diferenčního a absolutního tlaku (proudové napájení), zesílení výstupního signálu (reference REF5025 2.5V, operační zesilovač OPA277, přístrojový zesilovač AD8221). Výhody použití můstku se čtyřmi aktivními elementy (např. piezorezistory) lineární výstup pro napěťové i proudové buzení, čtyřnásobná citlivost oproti jednomu elementu, automatická kompenzace vlivu změny teploty měřících elementů při proudovém napájení můstku (kompenzace citlivosti). Můstkové zapojení oproti zapojení bez můstku - snazší zpracování (zesílení typicky 10x až 10000x) výstupního signálu (zesiluje se malý signál, ne malý signál na velkém offsetu). Piezorezistivní jev změna odporu polovodičového materiálu vlivem působení mechanického napětí. Narozdíl od piezoelektrického jevu nedochází ke generování nábojenapětí. Strana 8 (celkem 8)