UNICORN COLLEGE BAKALÁŘSKÁ PRÁCE



Podobné dokumenty
MONITOR. Helena Kunertová

LCD displeje rozdělujeme na pasivní DSTN (Double Super Twisted Nematic) a aktivní TFT (Thin Film Transistors).

Zobrazovací jednotky. 1 z :53. LED technologie.

Gymnázium Vysoké Mýto nám. Vaňorného 163, Vysoké Mýto

Zobrazovací zařízení. Základní výstupní zařízení počítače, které slouží k zobrazování textových i grafických informací.

Číslo projektu: CZ.1.07/1.5.00/ III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Zdeněk Dostál Ročník: 2. Hardware.

5. Zobrazovací jednotky

LCD displeje. - MONOCHROMATICKÉ LCD DISPLEJE 1. s odrazem světla (pasivní)

Střední průmyslová škola strojnická Vsetín. Předmět Druh učebního materiálu monitory, jejich rozdělení a vlastnosti

Michal Bílek Karel Johanovský. Zobrazovací jednotky

Úloha č. 1: CD spektroskopie

Monitor EU peníze středním školám Didaktický učební materiál

TELEVIZNÍ ZÁZNAM A REPRODUKCE OBRAZU

Tento dokument vznikl v rámci projektu Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.38/

Zarovnávací vrstvy jsou z vnitřní strany zvrásněny

Optoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA)

DUM č. 18 v sadě. 31. Inf-7 Technické vybavení počítačů

Technologie LCD panelů. Jan Vrzal, verze 0.8

Vývoj počítačové grafiky. Tomáš Pastuch Pavel Skrbek

OBRAZOVKY, MONITORY, DISPLEJE A POLARIZOVANÉ SVĚTLOĚ. Podpora přednášky kurzu Mezioborové dimenze vědy

Zobrazovací technologie

Inovace a zkvalitnění výuky prostřednictvím ICT Technické vybavení Vizualizační technika Ing. Jakab Barnabáš

Monitory LCD. Obsah přednášky: Princip činnosti monitorů LCD. Struktura základní buňky. Aktivní v. pasivní matice. Přímé v. multiplexované řízení.

Maturitní otázka č.19: Zpobrazovací prvky a monitory

Monitory a grafické adaptéry

Monitory, televizory

monitor a grafická karta

MULTIMEDIÁLNÍ A HYPERMEDIÁLNÍ SYSTÉMY. 7. Zobrazovací zařízení

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH

ÚSPĚŠNÉ A NEÚSPĚŠNÉ INOVACE LED MODRÁ DIODA. Hana Šourková

Dotykové technologie dotkněte se budoucnosti...

(15) Výstupní zařízení

Úkoly pro úpravu textu

Popis výukového materiálu

Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm.

David Buchtela. Monitory Monitory. David Buchtela. enýrství lská univerzita v Praze

Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný

Zobrazovače. 36NM Lukáš Skřivánek (2006/2007)

Spektrální charakteristiky

2.12 Vstupní zařízení II.

Optoelektronické senzory. Optron Optický senzor Detektor spektrální koherence Senzory se CCD prvky Foveon systém

LCD (3) LCD (1) LCD(Liquid Crystal Display): zobrazovací jednotka, která přisvéčinnosti využívá technologii LCD (4) LCD (2)

Obrazovkový monitor. Antonín Daněk. semestrální práce předmětu Elektrotechnika pro informatiky. Téma č. 7: princip, blokově základní obvody

Komponenty a periferie počítačů

Program. Zobrazovací jednotky

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník

HISTORIE MONITORŮ. Vendula Burgrová 3iv1 2011/2012

Fyzika. 8. ročník. LÁTKY A TĚLESA měřené veličiny. značky a jednotky fyzikálních veličin

Televizní obrazovky a zobrazovače

Televizní obrazovky a zobrazovače

Vzdělávací program Základní počítačové dovednosti Téma č.5. Dotykové technologie

elektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA

SOU Valašské Klobouky. VY_32_INOVACE_3_01 IKT Pc grafika základní pojmy Mgr. Radomír Soural. Zkvalitnění výuky prostřednictvím ICT

Zobrazovací soustava. Přednáška 9 Prof. RNDr. Peter Mikulecký, PhD.

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/

Novinky v TV přijímačích

Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/ Vzdělávání v informačních a komunikačních technologií

ELEKTRICKÝ PROUD V PLYNECH

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz

Elektrodynamika, elektrický proud v polovodičích, elektromagnetické záření, energie a její přeměny, astronomie, světelné jevy

Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce

Zdroje optického záření

Obsah. Historický vývoj Jednotlivé technologie 3D technologie Zobracovací zařízení Budoucnost

Světlo 1) Světlo patří mezi elektromagnetické vlnění (jako rádiový signál, Tv signál) elmg. vlnění = elmg. záření

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

5.3.5 Ohyb světla na překážkách

Semestrální práce z předmětu Kartografická polygrafie a reprografie

VAKUOVÁ TECHNIKA NÁZEV PROJEKTU: VFD ZOBRAZOVAČE BC. DANIEL MITÁŠ

DataLab LCD. Panelové LCD monitory s dotykovou obrazovkou

Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký. Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený

Fotokroužek 2009/2010

DataLab LCD Panelové LCD monitory s dotykovou obrazovkou

Informační a komunikační technologie 1.2 Periferie

2.3 Elektrický proud v polovodičích

VY_32_INOVACE_ENI_2.MA_13_Nekoherentní zdroje záření

Moderní multimediální elektronika (U3V)

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/

Počítačová grafika Grafické karty a monitory (metodické materiály) dr. Josef Šedivý Centrum talentů UHK, 2010

Srovnání LCD displejů a LED panelů

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/ PŘEDMĚT VYUŽITÍ ELEKTRICKÉ ENERGIE

1. Typ a zobrazovací technologie: a. Monitory, displeje technologie CRT, LCD, plazma, OLED, EPD, EInk b. Projektory technologie DLP, LCD, LCoS

Elektronová mikroskopie SEM, TEM, AFM

Odraz světla na rozhraní dvou optických prostředí

2.1.6 Jak vidíme. Předpoklady: Pomůcky: sady čoček, další čočky, zdroje rovnoběžných paprsků, svíčka

Energeticky úsporné osvětlování v domácnostech přehled technologií a legislativy

Polohovací Zařízení. -By Mikuláš Hrdlička

Webinář displeje Winstar. Znakové a grafické moduly TFT displeje OLED moduly

Univerzita Tomáše Bati ve Zlíně

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II

materiál č. šablony/č. sady/č. materiálu: Autor: Karel Dvořák Vzdělávací oblast předmět: Informatika Ročník, cílová skupina: 7.

INTERAKTIVNÍ TABULE. 1 Obsluha. Interaktivní tabule je velká interaktivní plocha, ke které je připojen počítač a datový projektor,

Charakteristiky optického záření

Proč elektronový mikroskop?

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (40) Zveřejněno N

PREZENTACE S VYUŽITÍM POČÍTAČE

Charakteristiky optoelektronických součástek

Transkript:

UNICORN COLLEGE Katedra informačních technologií BAKALÁŘSKÁ PRÁCE Multikriteriální zhodnocení displejů Autor BP: Jakub Jech Vedoucí BP: Ing. Tomáš Kroček 2013 Praha

1 ZADÁNÍ ZÁVĚREČNÉ BAKALÁŘSKÉ PRÁCE Jméno a příjmení Jakub Jech Název bakalářské práce v češtině Název bakalářské práce v angličtině Studijní program Studijní obor Vedoucí bakalářské práce Multikriteriální zhodnocení displejů Multi-criteria analysis of displays Systémové inženýrství a informatika Management ICT projektů Ing. Tomáš Kroček 1.1 Cíl závěrečné bakalářské práce Práce se zaměřuje na multikriteriální hodnocení displejů. V úvodu se popisuje historii, současnost a budoucí vývoj technologií, které se používají pro výrobu displejů. Na jednotlivé technologie je nahlíženo z různých úhlů, které kromě principu zohledňují ekologickou i ekonomickou stránku. Cílem práce je srovnání jednotlivých technologií a zhodnocení jejich ekonomické efektivity. Dalším cílem práce je porovnání technologií z pohledu životního prostředí a legislativy EU. 1.2 Osnova 1. Rešerše technologií 2. Ekonomické zhodnocení 3. Ekologické zhodnocení 4. Diskuze 5. Závěr 1.3 Základní literatura -COMPTON Kenneth: Image Performance in CRT Displays. 1. vyd. Bellingham: SPIE Press, 2003. 118 s. ISBN 0-8194-4144-9. -KLAUK,Hagen: Oragnic Electronics. 1. vyd., New York: John Wiley & Sons, 2007. 446 s. ISBN 3-527-31264-1. -CASTELLANO,Jospeh A.: Handbook of Display Technology. 1. vyd., San Diego: Academic Press, Inc., 1992. 341 s. ISBN 0-12-163420-5. Internetové zdroje: -LG Electronics CZ, s.r.o, LG Life s Good[online]. Vystaveno 23.5.2012 [cit. 2012-05-23]. Dostupné z: < http://www.lg.com/cz/> -RCA Trademark Management S.A., RCA[online]. Vystaveno 23.5.2012 [cit. 2012-05-23]. Dostupné z: < http://www.rca.com/>... Ing. Tomáš Kroček vedoucí bakalářské práce

2 Prohlášení Prohlašuji, že jsem svou bakalářskou práci na téma multikriteriální zhodnocení displejů vypracoval samostatně pod vedením vedoucího bakalářské práce a s použitím výhradně odborné literatury a dalších informačních zdrojů, které jsou v práci citovány a jsou také uvedeny v seznamu literatury a použitých zdrojů. Jako autor této bakalářské práce dále prohlašuji, že v souvislosti s jejím vytvořením jsem neporušil autorská práva třetích osob a jsem si plně vědom následků porušení ustanovení 11 a následujících autorského zákona č. 121/2000 Sb. V Praze dne J akub Jech

3 Poděkování Děkuji vedoucímu bakalářské práce Ing. Tomáši Kročkovi za účinnou metodickou, pedagogickou a odbornou pomoc a další cenné rady při zpracování mé bakalářské práce.

Multikriteriální zhodnocení displejů Mutli-criteria analysis of displays - 5 -

4 Abstrakt Tato bakalářská práce se zabývá různými technologiemi displejů, které se v dnešní době používají. Dlouho na tomto poli panovala CRT technologie, ale za poslední roky ji vyrostli více než silní konkurenti. Proto je dobré vědět, na jaké bázi jednotlivé technologie fungují a jaké je jejich nejlepší využití. Práce má tři hlavní roviny. Za prvé vysvětlím, na jakém principu dané technologie fungují a jak historicky fungovaly. Objasním také, z jakých materiálů se displeje dané technologie vyrábí. Následně pak za pomoci těchto poznatků zveřejním jejich vlastnosti a doporučím jejich ideální využití. Další rovinou je rovina ekonomická. Demonstruji jak náročné je danou technologii pořídit a dále ji pak provozovat. Ve výsledku bude zahrnuta nákupní cena, spotřeba energie, ale i předpokládaná životnost. I na příkladu firmy předvedu, jak může firma různými variantami ušetřit. Poslední rovinou je pak ekologie. Uvedu příklad materiálů, které se k výrobě displejů používají, a představím jejich nebezpečnost životnímu prostředí. Také se budu zabývat spotřebou elektrické energie a jejímu vlivu na životní prostředí. Představím právní rámec, který je v platnosti na území České Republiky a Evropské unie a poukážu na to, jak je či není náročné jednotlivé materiály recyklovat. Klíčová slova: displej, monitor, LCD, CRT, plazma, LED, OLED, tekuté krystaly, TFT, ekologie, recyklace - 6 -

5 Abstract This bachelor thesis is concentrated around technologies used in modern displays. For a long time this field was dominated by CRT displays, but in the recent years many powerful competitors grew up. That is the reason, why it is good to know how each of them works and what is their best application. This thesis aims in three major areas. The first one is the theoretical background. How each technology works and how it worked in the past. I will explain from which materials are modern displays made. I will describe how we can compare the displays with each other and ultimately compare them. The second area is the economical dimension. I will demonstrate how expensive it is to run specified display. That includes the retail price, energy consumption and life expectancy. I will demonstrate it on a company, which wants to save money on the energy expenditures. I will offer them more possibilities to take and calculate how much they would spare with each one of them. The last area is ecology. I will explain how dangerous are the materials used to create a display. I will also consider the power consumption itself and calculate what the results of using the specified display are. I will introduce the current law framework in the Czech Republic and in the whole European Union and show how difficult it is to recycle used displays. Keywords: display, LCD, CRT, plasma, LED, OLED, liquid crystals, TFT, ecology, recycling - 7 -

6 Obsah 1 Zadání... Error! Bookmark not defined. 2 Prohlášení... 3 3 Poděkování... 4 4 Abstrakt... 6 5 Abstract... 7 6 Obsah... 8 7 Úvod... 11 8 Technologie displejů... 12 8.1 CRT... 12 8.1.1 Katodové záření... 12 8.1.2 Historie CRT... 13 8.1.3 Princip CRT... 14 8.2 LCD... 16 8.2.1 Tekuté krystaly... 16 8.2.2 Historie LCD... 18 8.2.3 Princip LCD... 20 8.2.4 Typy LCD... 20 8.3 Plazmová obrazovka... 23 8.3.1 Historie plazmových obrazovek... 23 8.3.2 Princip plazmových displejů... 24 8.4 LED Displeje... 26 8.4.1 Historie LED... 26 8.4.2 Princip LED... 26 8.4.3 Princip LED Displeje... 27 8.5 OLED... 29 8.5.1 Historie OLED... 29 8.5.2 Princip OLED... 29 8.6 Dotyková obrazovka... 31 8.6.1 Historie dotykových obrazovek... 31 8.6.2 Princip dotykových obrazovek... 32 9 Parametry obrazovek... 37 9.1 Velikost... 37 9.1.1 Definice... 37 9.1.2 Srovnání... 38-8 -

9.2 Rozlišení... 38 9.2.1 Definice... 38 9.2.2 Srovnání... 39 9.3 Barevná hloubka... 39 9.3.1 Definice... 39 9.3.2 Srovnání... 40 9.4 Kontrast a jas... 40 9.4.1 Definice... 40 9.4.2 Porovnání... 41 9.5 Reakční doba, obnovovací frekvence... 41 9.6 Pozorovací úhel... 41 10 Finanční náklady... 43 10.1 Pořízení... 43 10.2 Spotřeba... 43 10.3 Životnost... 45 10.4 Celkové náklady... 47 10.4.1 Velikost úhlopříčky 5-6 palců... 47 10.4.2 Velikost úhlopříčky 19 palců... 48 10.4.3 Velikost úhlopříčky 32-34 palců... 49 10.4.4 Velikost úhlopříčky 55 palců... 49 11 Ekologické náklady... 50 11.1 Běžně používané materiály... 50 11.1.1 Plast... 50 11.1.2 Sklo... 50 11.1.3 Měď... 51 11.1.4 Indium... 51 11.1.5 Rtuť... 51 11.1.6 Cesium... 51 11.1.7 Nikl... 52 11.1.8 Vápník... 52 11.1.9 Vzácné plyny... 52 11.1.10 Sulfidy... 52 11.1.11 Oxidy... 53 11.1.12 Zpomalovače hoření... 53 11.2 Materiály použité v jednotlivých technologiích... 53 11.3 Recyklace monitorů a právní rámec v ČR... 55 11.4 Vliv spotřeby elektrické energie na životní prostředí... 57-9 -

12 Případová studie... 58 12.1 Současný stav... 58 12.2 Budoucí řešení... 59 12.2.1 Pokračování ve stávající technologii... 59 12.2.2 Okamžité nahrazení všech monitorů... 60 12.2.3 Postupné nahrazování monitorů... 61 12.2.4 Zhodnocení postupů... 61 13 Shrnutí... 63 13.1 CRT... 63 13.2 LCD... 64 13.3 Plazmové monitory... 65 13.4 LED... 66 13.5 OLED... 67 13.6 Celkové shrnutí... 68 14 Diskuze... 69 15 Závěr... 71 16 Conclusion... 72 17 Seznam použitých internetových zdrojů... 73 18 Seznam ostatních zdrojů... 78 19 Seznam použitých symbolů a zkratek... 79 20 Seznam obrázků... 80 21 Seznam gafů... 81 22 Seznam tabulek... 82-10 -

7 Úvod Téma multikriteriální zhodnocení displejů jsem si vybral, protože se jedná o oblast, která se poslední dobou velmi mění a je potřeba shrnout co vlastně jednotlivé technologie nabízejí a v jakých případech je vhodné jejich použití. Dříve v této oblasti jednoznačně vládla technologie CRT. Dnes však její úlohu převzaly technologie nové a vývoj stále neustává. Zdokonalují se jak současné technologie, tak se i vyvíjí technologie zcela nové. Má práce se zaměřuje na multikriteriální hodnocení displejů. V úvodu se zaměřím na jednotlivé technologie, nastíním jejich minulost, složení a základní principy, na jejichž základě fungují. Dále popíši, jak jsou provoz, výroba a vyřazení jednotlivých monitorů náročné ekonomicky i ekologicky. Cílem mé práce je vypracovat srovnání jednotlivých technologií monitorů a zhodnocení jejich ekonomické efektivity jak krátkodobě tak i v dlouhém období. Kromě toho také popíši, jak se provoz daných technologií podepíše na životním prostředí. Své zkoumání poté implementuji na případové studii fiktivní firmy, na které přesně demonstruji, jak se nákup nových monitorů projeví jak na jejich nákladech na provoz, tak i na životním prostředí. - 11 -

8 Technologie displejů V této kapitole se budu zabývat jednotlivými technologiemi displejů, které se dnes komerčně vyrábějí. U každé z nich představím její historii i současnost. Dále popíši, jak obrazovka dané technologie vypadá, z čeho se skládá a v neposlední řadě také na jakém principu dokáže zobrazovat to, co se od ní očekává. Mezi vybranými technologiemi, o kterých se rozepíši, jsou CRT, LCD, LED, OLED a plazmová obrazovka. Mým cílem je, aby čtenář po přečtení těchto kapitol měl bližší představu o tom, jak jednotlivé technologie fungují a měl tak lepší představu o jejich výhodách a nevýhodách a tím i o nejvhodnějším způsobu jejich použití. 8.1 CRT Technologie CRT, což je zkratka anglického výrazu Cathode Ray Tube, česky trubice katodového záření, je jednou z nejstarších technologií pro elektronické zobrazování obrazu a je stále používaná i v dnešní době. Ve zkratce se jedná o urychlovač elektronů, který je uzavřen ve vakuu. Elektrony jsou během jejich letu ovlivněny elektrickým polem vytvářeným cívkami a tím se mění jejich dráha letu, a tedy i místo dopadu na stínítko. Při tomto kontaktu se rozsvítí daný bod. Jejich využití není jen v obrazovkách počítačových či televizních, nýbrž i radarových či slouží jako osciloskopy. 8.1.1 Katodové záření Poté co byla v 1656 vynalezena Ottem von Guerickem vakuová pumpa [1], začali vědci experimentovat s průchodem elektrického proudu vzduchem s menší hustotou. S postupným vylepšováním pump se zjistilo, že trubice, které byly naplněny stále řidším vzduchem, a kterými procházel elektrický proud, měly tendenci zářit. Tím byla objevena fluorescence, kterou popsal v roce 1857 Heinrich Geissler poté, co ji zpozoroval v jeho zkonstruovaných trubicích[2]. Jedná se o energii uvolněnou v podobě světla po srážkách elektronů s atomy plynu. Tento efekt je dnes využíván především v neonových trubicích. Takto podrobné vysvětlení ale tenkrát Geissler neměl, jelikož nejmenšími částicemi, které tenkrát věda znala, byly ony nedělitelné atomy. V sedmdesátých letech se již objevily pumpy, které dokázaly evakuovat vzduch z trubic až na 10-6 atmosféry. Trubice obsahující plyn o takovémto tlaku byly nazývány Crookovými trubicemi. Zjistilo se, že takzvaný Faradayův temný prostor nacházející se těsně u katody se začal zvětšovat. Jedná se o tmavé místo v trubici, kde fluorescence neprobíhá. Jeho zvětšení je logicky vysvětlitelné - 12 -

tím, že v tomto temném prostoru neprobíhaly srážky elektronů s plyny. Pokud je v prostoru méně atomů plynu, pak je i méně pravděpodobná jeho srážka s elektronem, tudíž elektron doletí dál, než se srazí. Postupným vývojem bylo docíleno rozšíření tohoto prostoru až k anodě. Elektrony tedy dokázaly urazit celou vzdálenost mezi katodou a anodou, aniž by kolidovaly s atomy plynu. Po své cestě ovšem nabraly obrovskou rychlost, dokonce takovou, že anoda již nedokázala velkou část z nich zachytit a tudíž elektrony kolidovaly až se zadní stěnou trubice. Tedy fluorescence byla patrná až na této skleněné vrstvě, kterou poté začali vědci natírat fluorescentními barvami, pro zvýraznění tohoto efektu. Ovšem co ve skutečnosti trubicí proudí, byla pro vědce té doby záhada. Eugen Goldstein tento proud nazval katodovým zářením [3]. Katodové záření poté výrazně pomohlo v uvědomění si, že atomy nejsou nejmenšími částicemi. J. J. Thomas v roce 1897 zjistil, že toto záření má nenulovou váhu, i když o několik řádů nižší než hmotnost atomu vodíku. Za tuto práci mu byla udělena v roce 1906 Nobelova cena [4]. 8.1.2 Historie CRT V roce 1897 sestrojil Ferdinand Braun první trubici katodového záření [5]. Jednalo se o Crookovu trubici vylepšenou o fluorescentní nátěr na vnitřní zadní straně trubice, známé jako Braunova trubice. Roku 1907 pak ruský vědec Boris Rosing poprvé využil CRT jako příjemce videosignálu, který tenkrát pocházel z mechanického zařízení, sestávajícího se z rotujících čoček a zrcadel [6]. Takováto technologie už uměla zobrazit například geometrické obrazce a ukázala cestu, jakou se může vývoj dále obírat. V roce 1922 byla vyrobena první CRT, která využívala termokatody. Elektrony jsou v této trubici vystřelovány z katody termionickou emisí. Ta probíhá, pokud se kus kovu zahřeje elektrickým proudem na vysokou teplotu, jak můžeme pozorovat například u obyčejné žárovky. Je ale vyplněna, na rozdíl od obrazovek inertním plynem, pro vyšší svítivost. Od té doby se tedy začaly obrazovky CRT vyrábět a nabízet veřejnosti. Období druhé světové války sice na chvíli přerušilo vývoj v této oblasti, ovšem po jejím skončení prodej CRT televizí dosáhl nebývalých rozměrů. Ze začátku byly obrazovky pouze monochromní, tedy kromě obvykle černé barvy pozadí nabízely jednu další barvu. Používaly se jako černobílé televize nebo osciloskopy. První komerční barevnou obrazovku vyvinuly laboratoře Radio Corporation of America (RCA) v roce 1954 [7]. Od té doby až do přelomu tisíciletí, kdy byla vytlačena technologií LCD, se jednalo o jednoznačně nejpoužívanější technologii televizních a později i počítačových obrazovek. - 13 -

Obrázek 1: Průřez CRT Displejem Dostupný na www: http://upload.wikimedia.org/wikipedia/commons/thumb/9/9b/crt_color_enhanced.png/25 0px-CRT_color_enhanced.png 8.1.3 Princip CRT Princip této technologie se za poslední desítky let téměř nezměnil. U barevných obrazovek se vždy nachází trubice katodového záření. Ta je evakuována, aby se dosáhlo vysoké rychlosti elektronů a zabránilo nechtěné fluorescenci jinde, než na požadovaném místě. Uvnitř samotné trubice se na nejvzdálenějším konci z pohledu uživatele nachází katoda. V dnešní době jsou tyto katody většinou 3, pro každou barvu základního spektra, tedy červenou, zelenou a modrou, jedna. Ty vytváří tři proudy katodového záření, jinak též elektronové paprsky. Přestože každý je zodpovědný za jednu barvu spektra, jediné, v čem se liší, je jejich intenzita záření. O barvě rozhoduje až barva stínítka. Ty jsou zaostřeny pomocí cívek, což jim dodá větší přesnost a intenzitu. Po zaostření vstoupí do vychylovacích cívek, které díky elektrickému poli, které produkují, dokáží vychýlit paprsky požadovaným směrem. Mohou tak dosáhnout jakéhokoliv místa na obrazovce. Poté, co proletí okolo anody, srazí se stínící maskou, kde každý proud poté zasáhne jedno políčko jemu přidělené barvy na luminoforové vrstvě nanesené na vnitřní stranu obrazovky. Kombinací různě velké intenzity světlosti těchto tří bodů, nazývaných triáda, pak lze docílit optické iluze, že se jedná o jeden bod té barvy, která se rovná součtu součinu barev a intenzity jednotlivých bodů triády. Zasáhne-li intenzivní proud například červený a zelený bod a modrý téměř vůbec, pak se bude uživateli zdát, že daný bod je žlutý. Vychylovací cívky poté začnou osvětlovat další triádu, a tak pokračují, dokud nejsou - 14 -

osvětleny všechny. Nevýhodou této technologie je ovšem, že daný bod nesvítí trvale a musí být stále obnovován. Tento nekonečný cyklus tedy obvykle začíná v rohu obrazovky a poté po řádcích či sloupcích postupně obnoví všechny triády, až se dostane do opačného rohu obrazovky. Doba, za kterou je obnoven libovolný bod obrazovky, se nazývá obnovovací frekvence. Pokud je obnovovací frekvence dostatečně vysoká, pak lidské oko vnímá obraz jako stálý, a blikání bodů v něm nerozpozná. Pokud si ovšem natočí CRT obrazovku na videokameru nebo ji vyfotí fotoaparátem, pak si tohoto efektu již všimnout může. - 15 -

8.2 LCD Zkratka LCD pochází z anglického Liquid Crystal Display. Do češtiny se dá přeložit jako displej z tekutých krystalů a jedná se o typ plochého zobrazovacího zařízení. Ke své funkci, jak je již z názvu patrné, využívá vlastnosti tekutých krystalů, které jsou umístěny mezi zdroj světla nebo reflektor a obrazovku. 8.2.1 Tekuté krystaly Tekuté nebo také kapalné krystaly, dále jen TK, se dají zjednodušeně definovat jako látky, jež dokáží měnit svůj stav mezi pevným a kapalným skupenstvím. Rozdělují se na 3 hlavní kategorie. Termotropické TK jsou organické látky, které se stanou TK při určité teplotě. Lyotropické TK sdílejí s předchozím typem tu samou vlastnost, ale ještě musí být přítomny v dostatečné koncentraci. Posledním typem jsou metalotropické TK, které již nemusejí být pouze látkami organickými. K jejich přechodu do TK musí být kromě předchozích dvou kritérií ještě dodržen správný poměr mezi organickými a anorganickými látkami v dané sloučenině. 8.2.1.1 Historie Tekutých krystalů Počátky historie tekutých krystalů se dají datovat na konec 19. století. Konkrétně do roku 1888, kdy Friedrich Reinitzer, který mimochodem toho času učil na Karlově Univerzitě, zjistil, že cholesterol, který extrahoval z mrkví, se chová podivně, pokud je zchlazen těsně nad teplotu tání [8]. Konkrétně se jednalo o zvláštní barevné efekty, které se vytvářely na hladině a předně o jakési dva různé body tání. Nejprve se pevná látka změnila v zakalenou tekutinu, a až při dosažení vyšší teploty se najednou stala čirou. Toto zjištění ho fascinovalo, a proto napsal dopis fyzikovi Otto Lehmannovi, ten se zajímal především o stav, kdy byla látka zakalenou tekutinou. V ní zpozoroval krystality a tuto fázi označil za krystalickou fázi. Později přišel s označením tekutý krystal a výsledky svého bádání vydal i v knize Flüssige Kristalle [9]. Toho času tedy již byly zjištěny všechny tři zásadní vlastnosti TK. Vlastnictví dvou teplot tání, schopnost měnit polarizaci světla a odrážet kruhově polarizované světlo. Danielu Vorländerovi se podařilo syntetizovat většinu známých TK [10]. Georges Friedel zase podrobně zdokumentoval strukturu a vlastnosti tekutých krystalů a zpozoroval různé fáze, kterými tyto látky procházejí. O těch pojednává následující kapitola. V roce 1927 Vsevolod Fredericks vypozoroval a jako první popsal fázový přechod v tekutých krystalech, který je dnes znám pod jeho jménem jako Fredericksův přechod. Jedná se o fenomén, kdy tekutý krystal mění fázi - 16 -

nejen dle teploty, ale také podle elektrického pole, které na něj působí. V těchto dobách však byly TK jen vědeckou zajímavostí bez jakéhokoliv reálného využití. Několik vědců jako George William Gray či Glenn H. Brown se jimi detailně zaobíralo. Jistý posun nastal v šedesátých letech, kdy zaměstnanec RCA Laboratories Richard Williams ustanovil, že po aplikování elektrického pole na tenkou vrstvu TK lze jasně zpozorovat formování pravidelných vzorů, které nazval doménami [12]. To vedlo několik jeho kolegů ke snaze vytvořit nový displej, který by nahradil starší CRT technologii. Na TK se váže i jedna Nobelova cena za fyziku, konkrétně se jedná o cenu z roku 1991 pro Francouze jménem Pierre-Gilles de Gennes.[13] 8.2.1.2 Fáze Tekutých krystalů Pro tekuté krystaly je charakteristické, že se vyskytují v několika fázích. Každá z nich má definovaný vzor, v jakém jsou uspořádány molekuly dané látky a jak jsou u sebe blízko. Budeme-li se zabývat termotropickými TK, pak většina z nich je v nízkých teplotách pevnými krystaly a v těch vysokých klasickými tekutinami. Nejběžnější fází TK je fáze nematická. Slovo pochází z řeckého slova pro vlákno a opravdu se jedná o vláknité struktury, které jsou k sobě paralelní. V takovémto stavu teče daná látka podobně jako voda, ovšem pomocí magnetického nebo elektrického pole je možné vlákna seřadit, čehož se využívá v technologii LCD. Při nižších teplotách nastává smetická fáze. Ta je podobná té předchozí, ale molekuly se formují do vrstev, které po sobě mohou snadno klouzat. Obrázek 2: Polarizované tekuté krystaly Dostupný na www: http://www.calpoly.edu/~jfernsle/research/liquid%20crystals/lcphases.jpg - 17 -

Následuje fáze chirální. Chiralita je jev, kdy je objekt totožný se svým zrcadlovým obrazem. Příkladem nám může být pravá a levá ruka člověka. Tato fáze byla poprvé objevena u cholesterických TK, tedy se také někdy nazývá cholesterickou fází. Jak v ní uspořádání molekul vypadá, můžeme již trochu vidět na předchozím obrázku č. 2 na příkladu scmetické fáze C. Každá vrstva molekul je orientována jiným směrem, ovšem molekuly v ní, jsou k sobě stále paralelní. Změna osy není v každé vrstvě náhodná, ale je dána trendem. Světlu, které prochází jednotlivými vrstvami, se tedy postupně mění jeho polarizace. U takovýchto látek lze definovat vzdálenost, dokončí plný obrat o 360. Toto se v angličtině nazývá slovem chiralpitch a mění se při změně teploty nebo například přimícháváním jiných látek. V dnešní době se stále ještě nacházejí nové fáze, jež je stále těžší stabilizovat, obzvláště při pokojových teplotách. V roce 2008 byl například vyvinut první displej využívající takzvanou modrou fázi TK.[14] Ta nastává jen v úzkém pásu několika stupňů Celsia, ale nabízí rychlejší změnu polohy molekul, než jiné fáze, tedy rychlejší odezvu monitorů. Obrázek 3: Depolarizované tekuté krystaly Dostupný na www: http://upload.wikimedia.org/wikipedia/commons/thumb/b/bf/liquidcrystal- MesogenOrder-ChiralPhases.jpg/220px-LiquidCrystal-MesogenOrder-ChiralPhases.jpg 8.2.2 Historie LCD První pokusy o vytvoření LCD se prováděly pod hlavičkou firmy RCA Laboratories, jak již bylo zmíněno. Šlo o pokusy nahradit technologii CRT jinou, levnější, úspornější. Poté, - 18 -

co v roce 1962 objevil Williams existenci domén, navázal jeho kolega George H. Heilmeiera jeho práci a o dva roky později přišel s prvním displejem, využívajícím TK. Jednalo se o displeje Dynamic Scattering Mode (DSM).[15] Ty ale nebyly zdaleka určeny pro zařízení napájené z baterií, vzhledem k potřebě vysokého napětí ke změně obrazu, ani bohužel pro domácí použití, jelikož látky používané v tomto displeji potřebovaly být ke svému provozu zahřáté na poměrně vysokou teplotu. Tuto druhou nevýhodu se jeho týmu podařilo brzy odstranit, když se jim povedlo syntetizovat sloučeninu, která byla v nematické fázi i při pokojové teplotě. To se povedlo i Hansi Kelkerovi, který vytvořil vědci velmi používanou substanci nazvanou MBBA. V roce 1970 byl vynalezen TN LCD, který využívá twisted nematc field effect. Ten okamžitě potlačil prodej DSM displejů, jelikož už nepoužíval tak vysokých napětí, což snížilo i jeho spotřebu energie. Od této doby tedy rozšiřování LCD nic nebránilo. Hitem se staly digitální hodinky, či kalkulačky. Nejednalo se však o obrazovky, jaké známe dnes, kde jsou pixely uspořádány do řad a sloupců. K vývoji těchto typů obrazovek, které by skutečně převzaly roli nejprodávanější technologie v oblasti televizí a IT, pomohly LCD s aktivními i pasivními maticemi. Pro druhý typ byla i vynalezená super-twisted nematic struktura (STN). Výrobci obrazovek se poté snažili potlačit nevýhody točivých nematických struktur, tedy TN a STN, a přišli na způsob zvaný In-Plane Switching (IPS). Firma Hitachi si v roce 1992 tuto strukturu ještě vylepšila a nazvala ji Super IPS. Poté se spojila s firmou NEC a spolu začaly produkovat LCD, které byly již reálnou alternativou CRT televizí. Použily k tomu kombinaci aktivní matrice a IPS, která je dominantní i v dnešní době. V roce 2007 poprvé celosvětové prodeje LCD televizí převýšily prodeje CRT televizorů.[16] Obrázek 4: Průřez LCD - 19 -

Dostupný na www: http://www.laptop-lcd-screen.co.uk/laptopparts/what-is- LCD_images/image002.gif 8.2.3 Princip LCD Samotné LCD se skládá z několika vrstev. Samo o sobě neprodukuje žádné světlo. Musí být tedy buďto podsvíceno nebo na něj musí být využito zrcadla, která odráží světlo dopadající na jeho plochu. V klasických LCD tedy nalezneme na zadní straně displeje zdroj světla. Obvykle se jedná o zářivku nebo u novějších modelů i o LED podsvícení. Před ním je umístěn polarizační filtr, ve kterém jsou paralelní drážky. Ten umožní projít jen světlu, které má filtrem daný směr. Další vrstvou je skleněný substrát s elektrodami, dále vrstva tekutých krystalů, další destička skleněného substrátu s elektrodami a nakonec polarizační filtr s drážkami ortogonálními k filtru na zadní straně. To vše je ukryto v ochranné krabici. Na předním skleněném substrátu je plocha rozdělena do několika políček. Vždy tři políčka, každé o jedné ze základních barev tvoří triádu, tedy jeden pixel. Když je obrazovka zapnutá, rozsvítí se zdroj světla. Světlo je polarizováno při průchodu prvním polarizačním filtrem. Podle toho, jak se má dané políčko osvětlit, či zda se vůbec má osvětlit, jsou pak pomocí změny napětí v elektrodách zformovány tekuté krystaly do takové podoby, jaká je vyžadována. Například pokud chceme bílý pixel, pak jsou všechny tři políčka osvícena naplno. Tekuté krystaly pod nimi musí tedy být zformovány tak, aby otočily polarizaci světla o 90 a umožnily mu projít druhým filtrem. Pokud se tak nestane, pak světlo neprojde druhým filtrem a políčko se nám bude jevit jako černé. 8.2.4 Typy LCD Všechny LCD se dají rozdělit na ty s aktivní (AMLCD) a pasivní matricí (PMLCD). 8.2.4.1 Pasivní matrice Pasivní matrice je velmi jednoduchá na výrobu. Elektrody, které se nacházejí ve skleněném substrátu, jsou rovnoběžné pruhy vodičů. Přičemž ty v přední desce a ty v té vzdálenější jsou k sobě ortogonální. Tím vznikne mřížka, ve které se dá pomocí kombinace sloupce a řádku operovat s každým jednotlivým tekutým krystalem. S tímto typem se setkáváme jen u jednoduchých obrazovek, kde není potřeba složité grafiky, obvykle jen zobrazující text. Hlavním důvodem je pomalá odezva a nepříliš ostrý obraz. Používají se obzvláště u přístrojů, které hledí na svou spotřebu. Často tedy tyto přístroje ani nemají vlastní zdroj - 20 -

podsvícení. Uživatel tedy potřebuje externí zdroj světla, jakým je například slunce. Ale díky jejich jednoduchosti, a tím i nižší výrobní ceně, se v přístrojích používají dodnes. Byly osazovány do prvních laptopů vedle plazmových displejů nebo například do původní herní konzole Game Boy. Nadějí pro tento typ LCD může být využití v zero-power technologii. Ta nespotřebovává energii, když se obraz nemění, jak je tomu například u čteček elektronických knih. 8.2.4.2 Aktivní matrice AMLCD jsou v dnešní době dominantní na trhu s LCD. Na rozdíl od PMLCD se nenachází elektrody v řadách a sloupcích. Místo toho se zde nachází vrstva, na které se vyskytuje pro každé políčko displeje thin film transistor TFT. Jedná se o unipolární tranzistor, který se využívá speciálně v této technologii a řídí, jaký proud poté buňkou protéká, a tedy do jakého tvaru se dané tekuté krystaly ohnou, čímž ovlivní průtok světla. TFT dokáže udržet napětí i po dobu, kdy se obnovují ostatní pixely, čímž nezpůsobuje blikání, jaké může nastat u pasivní matrice. Obraz je ostřejší a jasnější. Existuje několik typů TFT LCD. Twisted nematic (TN) je v dnešní době velmi používaný typ AMLCD. Jedná se totiž o jednoduchý, levný princip. Má ovšem své nevýhody. Mezi hlavní obzvláště v minulosti patřilo, že pixel jen pomalu měnil barvu a trvalo několik desítek milisekund, než bylo dosaženo barvy požadované. Na obrazovce byli viditelní duchové. To již bylo znatelně vylepšeno a dnes se tyto hodnoty pohybují v milisekundách. Dalšími nevýhodami je malý pozorovací úhel. Když se člověk dívá pod příliš ostrým úhlem, barvy již vypadají zcela jinak či jsou dokonce invertovány. Problémem může pro někoho být i hloubka barev, jež nedosahuje takových parametrů, jako u jiných technologií. In-Plane switching (IPS) je technologie vyvinutá firmou Hitachi. Vznikla především za účelem vylepšení pozorovacích úhlů a lepší reprodukci barev AMLCD. Od TN se liší tím, že obě elektrody se nacházejí na jednom skleněném substrátu. Tím se tedy mění osa, kolem které se které se tekuté krystaly otáčejí. Krystaly jsou tedy vždy paralelní k obrazovce. Nevýhodou je potřeba dvou tranzistorů na jeden bod. Před nástupem Enhanced IPS (E-IPS), se kterým přišla LG v roce 2009 bylo následkem nutnost většího odstínění těchto TFT, což vyžadovalo použití výkonnějšího podsvícení. To mělo za následek větší spotřebu a nevhodnost tohoto typu LCD do mobilních zařízení závislých na bateriích. Ovšem v dnešní době lze již IPS displeje i v těchto zařízeních najít, obzvláště v produktech firmy Apple. - 21 -

Advanced fringe field switching (AFFS) je velmi podobný IPS. Je patentován firmou Hydis Technologies a využívá se v high end obrazovkách. Mezi další typy AMLCD patří Vertical alignment (VA) a z něho odvozené Multi-domain VA (MVA) a Patterned VA (PVA), dále Advanced superview (ASV) či Plane line switching (PLS). - 22 -

8.3 Plazmová obrazovka Plazmová technologie se používá především u velkých plochých obrazovek. Svůj název získala díky využívání malých buněk, naplněných elektricky nabitými, ionizovanými plyny, tedy plazmou. Plazmové obrazovky v dnešní době soupeří o místo na slunci se svými konkurenty, ovšem zatím nedosahují takové rozšířenosti, jako LCD či CRT. 8.3.1 Historie plazmových obrazovek Ač plazmová technologie je záležitostí posledních 50 let, její principy popsal již v roce 1936 maďarský fyzik a inženýr Kálmán Tihanyi.[18] Jednalo se o vůbec první návrh ploché obrazovky. Tedy protikladu k CRT technologii, která vyžadovala značnou hloubku. Na konkrétní realizaci plazmové televize ale musel svět počkat ještě téměř 30 let. Až v roce 1964 sestrojili studenti z University of Illinois at Urbana-Champaign první monochromatickou plazmovou obrazovku pro systém PLATO V. Jednalo se o obrazovku schopnou vykreslovat obraz v jedné barvě, ovšem ne v klasickém černo-bílém spektru, nýbrž černo-oranžovém. Prodejům těchto obrazovek se dařilo dobře až do konce 70. let, kdy je vytlačila levnější CRT technologie. K dalším průkopníkům této technologie se může zařadit Burroughs Corporation s jejím produktem Panaplex. Tato firma se zaměřovala na výrobu kalkulaček a plochost displeje jim velmi vyhovovala, začala je tedy zahrnovat do svých výrobků. Displeje Panaplex si našly cestu do řady elektrických spotřebičů, jakými byly budíky, pokladny či pinball automaty a postupně v této oblasti začaly dominovat. Svoji nadvládu ztratily až v devadesátých letech, kdy přišel nástup LED. V osmdesátých letech se do produkce plazmových obrazovek pustila i IBM, když představila 19 palcovou černo-oranžovou obrazovku. V té době se také objevily první laptopy. Ty používaly plazmové obrazovky, jelikož LCD v té době ještě měly svoje mouchy. Na přelomu desetiletí, když už LCD své mouchy vychytaly, převálcovaly svou plazmovou konkurenci a vytlačily ji z trhu počítačových displejů. V roce 1992 vyvinula firma Fujitsu první barevnou plazmovou obrazovku, ačkoliv se jednalo spíše o hybrid technologií. Měla úhlopříčku 21 palců, na tehdejší poměry tedy velmi velkou, neboť to byl segment trhu, kde tato technologie měla své opodstatnění. Před olympijskými hrami v Naganu se již v obchodech objevily první plazmové televize, aby si diváci mohli vychutnat i doma sportovní souboje v HD kvalitě. Jejich cena ale byla v té době velmi vysoká, jednalo se o stovky tisíc korun. V 21. století ovšem i tento segment začaly pomalu přebírat LCD. Výrobci plazmových displejů věřili, že LCD zůstane pouze u menších - 23 -