Rozhraní mikrořadiče, SPI, IIC bus,..



Podobné dokumenty
Rozhraní mikrořadiče, SPI, IIC bus,..

A4B38NVS, 2011, kat. měření, J.Fischer, ČVUT - FEL. Rozhraní mikrořadiče, SPI, IIC bus,.. A438NVS, kat. měření, ČVUT - FEL, Praha. J.

Rozhraní mikrořadiče, SPI, IIC bus,.. Přednáška 11 (12)

Rozhraní mikrořadiče, SPI, IIC bus,.. Přednáška 11 (12) A4B38NVS, kat. měření, ČVUT - FEL, Praha. J. Fischer

Vestavné systémy BI-VES Přednáška 5

Rozhraní mikrořadiče, SPI, IIC bus,..

Rozhraní mikrořadiče, SPI, IIC bus,.. Přednáška 10 (11)

Rozhraní mikrořadiče, SPI, IIC bus,..

Vstupy, výstupy vestavných systémů

Přednáška A3B38MMP. Bloky mikropočítače vestavné aplikace, dohlížecí obvody. 2015, kat. měření, ČVUT - FEL, Praha J. Fischer

Praktické úlohy- 2.oblast zaměření

Architekura mikroprocesoru AVR ATMega ( Pokročilé architektury počítačů )

Mikrokontroléry. Doplňující text pro POS K. D. 2001

FVZ K13138-TACR-V004-G-TRIGGER_BOX

PK Design. MB-ATmega16/32 v2.0. Uživatelský manuál. Základová deska modulárního vývojového systému MVS. Verze dokumentu 1.0 (21.12.

Přednáška - Čítače. 2013, kat. měření, ČVUT - FEL, Praha J. Fischer. A3B38MMP, 2013, J.Fischer, ČVUT - FEL, kat. měření 1

Mikrokontrolery. Úvod do obvodů Atmega 328 a PIC16F88

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky NAIL028

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta informačních technologií

Procesory pro vestavné aplikace přehled

PŘÍLOHY. PRESTO USB programátor

Činnost CPU. IMTEE Přednáška č. 2. Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus

PRESTO. USB programátor. Uživatelská příručka

PK Design. MB-ATmega128 v2.0. Uživatelský manuál. Základová deska modulárního vývojového systému MVS. Verze dokumentu 1.0 (23.09.

Jízda po čáře pro reklamní robot

Přednáška , kat. měření, ČVUT - FEL, Praha J. Fischer. A4B38NVS, 2012, J.Fischer, kat. měření,, ČVUT - FEL 1

PERIFERNÍ OBVODY A ROZHRANÍ V MIKROPROCESOROVÝCH SYSTÉMECH

PK Design. MB-ATmega128 v4.0. Uživatelský manuál. Základová deska modulárního vývojového systému MVS. Verze dokumentu 1.0 (10.10.

FREESCALE KOMUNIKAČNÍ PROCESORY

Specifikace - SHARK. Projekt: procesorová deska s MPC 52000

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

Microchip. PICmicro Microcontrollers

Převodník Ethernet ARINC 429

Mikrořadiče fy ATMEL

Vestavné systémy BI-VES Přednáška 10

Zadání semestrálního projektu PAM

Základní principy konstrukce systémové sběrnice - shrnutí. Shrnout základní principy konstrukce a fungování systémových sběrnic.

Systém řízení sběrnice

Náplň přednášky

Sběrnice používané pro sběr dat

zení Koncepce připojení V/V zařízení POT POT ... V/V zařízení jsou připojena na sběrnici pomocí řadičů. Řadiče Připojení periferních zařízení

ATAVRDRAGON-návod k použití

Vývojové kity Mega48,

Metody připojování periferií BI-MPP Přednáška 1

MSP 430F1611. Jiří Kašpar. Charakteristika

Metody připojování periferií

Registrační teploměr

Použití programovatelného čítače 8253

MIKROPROCESOROVÁ TECHNIKA

Univerzita Pardubice. Fakulta Elektrotechniky a Informatiky. Monitoring rozhraní I2C Autor práce: Radek Šplíchal. Vedoucí práce: Ing.

A4B38NVS, 2011, kat. měření, J.Fischer, ČVUT - FEL. Přednáška , kat. měření, ČVUT - FEL, Praha J. Fischer

Miroslav Flídr Počítačové systémy LS /21- Západočeská univerzita v Plzni

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ /14

Paměti. Prezentace je určena jako pro studenty zapsané v předmětu A3B38MMP. ČVUT- FEL, katedra měření, Jan Fischer, 2013

Úloha Ohmetr zadání úlohy

Sériová rozhraní SPI, Microwire, I 2 C a CAN

Paměti Flash. Paměti Flash. Základní charakteristiky

PK Design. EVMS-mega128. Uživatelský manuál. v1.0. Výuková deska s mikrokontrolerem ATmega128. Obr. 1 - výuková deska s LCD displejem

Bakalářská práce Realizace jednoduchého uzlu RS485 s protokolem MODBUS

Maturitní témata - PRT 4M

Profilová část maturitní zkoušky 2014/2015

DESKA ANALOGOVÝCH VSTUPŮ ±24mA DC, 16 bitů

od jaké adresy bude program umístěn? Intel Hex soubor, co to je, z čeho a jak se získá, k čemu slouží? Pseudoinstrukce (direktivy) překladače ORG, SET

Boundary Scan JTAG (Joined Test Action Group) IEEE 1149.X Zápis do rozhraní

Profilová část maturitní zkoušky 2015/2016

Řádkové snímače CCD. zapsané v předmětu: Videometrie a bezdotykové měření, ČVUT- FEL, katedra měření, přednášející Jan Fischer

Operační paměti počítačů PC

ŘÍDÍCÍ ČLEN GCD 411. univerzální procesorový člen pro mikropočítačové systémy. charakteristika. technické údaje

Architektura počítače

ŘÍDÍCÍ DESKA SYSTÉMU ZAT-DV

ŠESTNÁCTIKANÁLOVÝ A/D PŘEVODNÍK ±30 mv až ±12 V DC, 16 bitů

Konfigurace portů u mikrokontrolérů

Autonomní snímací jednotky řady SU104*

PK Design. MB-ATmega16/32 v4.0. Uživatelský manuál. Základová deska modulárního vývojového systému MVS. Verze dokumentu 1.0 (01.01.

Simulace číslicových obvodů (MI-SIM) zimní semestr 2010/2011

A0M38SPP - Signálové procesory v praxi - přednáška 10 2

Projekt BROB B13. Jízda po čáře pro reklamní robot. Vedoucí projektu: Ing. Tomáš Florián

Procesory pro vestavné aplikace přehled, bloky

A/D a D/A PŘEVODNÍK 0(4) až 24 ma DC, 16 bitů

Pozice sběrnice v počítači

Z čeho se sběrnice skládá?

Obecné principy konstrukce systémové sběrnice

Procesory pro vestavné aplikace přehled, bloky

VETRONICS 760. Technická specifikace mobilní jednotky

Displej DT20-6. Update firmware řadiče. Simulační systémy Řídicí systémy Zpracování a přenos dat TM 2012_10_

Deska s STM32F103RBT6

ETC Embedded Technology Club setkání

Uživatelská příručka

Dělení pamětí Volatilní paměti Nevolatilní paměti. Miroslav Flídr Počítačové systémy LS /11- Západočeská univerzita v Plzni

velikosti vnitřních pamětí? Jaké periferní obvody má na čipu a k čemu slouží? Jaká je minimální sestava mikropočítače z řady 51 pro vestavnou aplikaci

5. A/Č převodník s postupnou aproximací

Paměti. Přednáška 7,8 - Paměti - tento materiál slouží pouze jako grafický podklad k přednášce a neposkytuje

Témata profilové maturitní zkoušky

Podstanice DESIGO PX Modulární řada s rozšiřujícím modulem

Semestrální práce z předmětu Speciální číslicové systémy X31SCS

Základní deska (1) Parametry procesoru (2) Parametry procesoru (1) Označována také jako mainboard, motherboard

Sběrnicová architektura POT POT. Jednotlivé subsystémy počítače jsou propojeny sběrnicí, po které se přenáší data oběma směry.

Mikrořadiče společnosti Atmel

Transkript:

Rozhraní mikrořadiče, SPI, IIC bus,.. Přednáška 14 - X38MIP -2009, kat. měření, ČVUT - FEL, Praha J. Fischer 1

Rozhraní SPI Rozhraní SPI ( Serial Peripheral Interface) - původ firma Motorola SPI není typ bus - sběrnice, ale pouze rozhraní (interface) typu bod - bod master - procesor, generace hod. sig. SCK, slave - podřízená jednotka, výstup ze SLAVE M ISO - třístavový pokud je u slave /ss = H, není aktivní výstup MISO MASTER SLAVE SPI hod. generátor MISO 8 bit pos. registr 8 bit pos. registr MISO MOSI - Master Output Slave Input MISO - Master Input Slave Output SCK - serial clock SS - slave select MOSI MOSI SCK SCK SS +5V SS 2

SPI, komunikace s nastavením fáze CPHA = 0 nastavení polarita a fáze hodin (4 kombinace) MOSI výstup MISO - vstup CPHA = 0 při čtení nevýhoda - slave musí poskytnout data (MSB) na vodiči MISO ihned po /ss (slave select), s první hranou SCK se data vzorkují, s další hranou SCK se vysouvá další bit dat nastavení - clock phase- CPHA = 0 SCK cyklus SCK (CPOL=0) 1 2 3 4 5 6 7 8 SCK (CPOL=1) MOSI (z master) MSB 6 5 4 3 2 1 LSB MISO (ze slave) MSB 6 5 4 3 2 1 LSB SS (do slave) 3

SPI, komunikace s nastavením fáze CPHA =1 Slave i master poskytnou první data (MSB) až po první hraně hodin SCK, master i slave čtou MSB s druhou hranou hodin SCK CYKLUS SCK (CPOL=0) nastavení - clock phase- CPHA = 1 1 2 3 4 5 6 7 8 SCK (CPOL=1) MOSI (z master) MSB 6 5 4 3 2 1 LSB MISO (ze slave) MSB 6 5 4 3 2 1 LSB SS (DO SLAVE) 4

SPI rozhraní, připojení jednotek slave Připojení více jednotek slave na jeden master, výběr pomocí vstupu /ss, aktivace jednotlivých /ss - programově řízenými výstupy (není součástí rozhraní SPI). Např. u AT89S8252 ovládání pomocí pinů brány P1, P3,.. Vstup /ss - u slave, obdoba funkce /CS - chip select jako pamětí. Určení, s kterou jednotkou slave se komunikuje MOSI MISO SCK SS Udd MOSI MISO SCK SS slave 1 master port 0 1 2 MOSI MISO SCK SS MOSI MISO SCK SS slave 2 slave 3 5

Programování paměti FLASH mikroprocesoru pomocí SPI Řada up, možnost naprogramování interní FLASH prostřednictvím SPI ISP - In - System Programming - programování paměti FLASH mikropočítače v obvodu Naprogramování mikropočítače v obvodu: aktuálním kódem - program ve FLASH, kalibrační data, specifická data - jazyková lokalizace přístroje (varianty hlášení a textů), sériové číslo, Data v EEPROM - kalibrační data,... Možnost výrobní diagnostiky - naprogramování diagnostických programů, s ISP uvažovat při návrhu obvodu a desek plošných spojů a konektorů 6

Programování paměti FLASH AT89S8252 pomocí SPI Držet reset na Ucc, SPI je v slave módu, - nutný krystal nebo vnější hodinový sig. na vstup XTAL1 ( 3 až 24 M Hz) MOSI ( na P1.5) je vstupem, M ISO (na P1.6) je výstupem, SCK ( na P1.7) je vstupem, Signály MOSI, MISO, SCK v master a slave módu zůstávají na stejných pinech, pouze se mění jejich funkce z hlediska směru toku signálu - změna výstup signálu na vstup signálu Možnost programovat FLASH (code) i EEPROM (xdata) SERIAL CLOCK INPUT SCK/P1.7 7 6 5 4 3 2 1 0 SERIAL D ATA INPUT MOSI/P1.5 MSB LSB SERIAL D ATA OUTPUT MISO/P1.6 MSB LSB 7

Příkazy ISP programování AT89S8252 pomocí SPI Code memory- paměť programu CODE, data memory - paměť EEPROM ISP pomocí SPI - programování nového i již naprogramovaného čipu Pozor na lock bity - u některých up - možnost totálně zamknout procesor pro ISP, řešení - pouze paralelní programování???(plošný spoj)!!! 8

ISP pomocí SPI rozhraní v mikropočítačích ISP funkce, u up firmy Atmel, v označení písmeno S AT89S8252, AT89S8253, AT89S2051, SPI rozhraní AT90S8515 - řada AVR možnost ISP, i když není použito S např. - AT89C51RC2, ATmega32 u některých up- možnost programování doplňkové informace - User Signature u AT89S2051-32 Byte pro doplňkové uživatelské informace - označení uživatele, možnost naprogramování výrobního čísla přístroje, informace pro sledování výrobku, Obdoba funkce User Signature i u jiných up 9

Programování typu -ISP s využitím funkce BOOT loader U některých up možnost programování ISP využitím UART a programu BOOT loader ( AT89C51 RC2, ), Aktivaced programu Boot loader na čipu spec. sekvencí, program - boot loader aktivně komunikuje s rozhraním ( UART,..) a programuje vnitřní paměť Aktivace boot mode - u AT89C51RC2,. ADuC843,, signál ALE přes rezistor na GND, reset, uvolnit ALE, spec. program pro PC ( Atmel Flip, ) up řady ARM - STR750, STM32, LPC2105, LPC2148,.. AT91SAM7S64 - interní boot loader, možnost boot pomocí UART, někdy CAN, USB, Funkce boot - možnost začít práci s up bez specializovaného vybavení (emulátor, vývojový modul,..) pouze s vlastním procesorem - viz použití AT89C51RC2 předmětu X38PRM a procesoru STM32 v předmětu X38PMM na kat. měření ČVUT - FEL Další způsoby programování paměti FLASH- sériové rozhraní JTAG rozhraní Signály TDI, TDO, TCK, TMS, funkce ladění - On-chip Debug system JTAG obsahují ATmega 16, 32,..), C8051F020 ( Silabs),všechny procesory s jádrem ARM, STM32,. a většina nových up, alternativy JTAG - dvou vodičové ladicí rozhraní ( různé firemní varianty) 10

SPI rozhraní - implementace SPI rozhraní vysílání MSB typicky první, případně možnost volby LSB první 8 bitů dat ( typicky), v některých up možnost i 16 bitů dat) rychlosti komunikace, frekvence SCK - programovatelná, 1 MHz, u některých up frekvence SCK až 10 - ky MHz Možnost programové implementace rozhraní SPI u up, které nemají rozhraní SPI integrováno na čipu - emulace funkce SPI master - programově ovládanými piny brány, při programové implementaci signál SCK nemusí být synchronní ( nemusí mít konstantní periodou). Použití SPI - připojení vstupů. výstupů s posuvnými registry ( 595), specializovaných obvodů, pamětí, připojení AD, DA převodníků s SPI, budiče LED, budiče relé, řadiče LCD,. Paměti FLASH s rozhraním SPI např. M25P32-4 MByte, jako paměť dat, záznam, černá skříňka, Karty MMC, SD - možnost komnikace s rozhraním SPI, použití karet jako vnější paměti dat, adresace po sektorech 512 byte, 11

Připojení řadiče emulovaným rozhraním sběrnice Připojení programovatelných řadičů PPI 8255, 8253,. řadič Ethernet, řadič CAN,.standardně na sběrnici mikropočítače? je možno použít čítače / časovače 8253 s obvodem AT89C2051, který nemá vyvedenu sběrnici? ANO Programová emulace sběrnice pomocí brány P1 a pinů z brány P3, programová emulace funkce signálu /RD, /WR, adresy A1, A0 pomocí pinů brány Jeden cyklus zápisu nebo čtení - potřeba více instrukcí, pozor- změna směru brány- vstupní- výstupní mód Pozn. pozor AT89C2051 na P1.0 a P1.1 přidat pull up rezistory Příklad - připojení ext. řadiče Ethernet k ARM7 typu LPC2114, viz, aplik. nota firmy NXP 12

Rozhraní IIC bus Rozhraní - IIC bus, Inter Integrated Circuit Bus, původce, patent, firma Philips ( nyní NXP), označení také I2CBus, původní určení - spotřební elektronika (radio, TV, video, ) Typ sběrnice- otevřený kolektor, připojení více obvodů, master - slave, možnost - multimaster. R P R P VDD +5V SDA SCL SCL 1 výst. DATA 1 výst. SCL 2 výst. DATA 2 výst. SDA sériová data SCL vstup DATA vstup SCLK VST. DATA VST. SCL sériové hodiny 13

Rozhraní IIC bus - signály SCL - hodinový signál, generuje maste SDA - data, generuje master nebo slave Změna stavu SDA při přenosu dat možná pouze při SCL = L Frekvence SCL - max. 100 khz, standard, 400 KHz fast, signál SCL nemusí být synchronní, není určen minimální frekvence (možnost asynchronní signál) SDA data platná při SCL = 1 SCL změna dat při SCL = 0 data stabilní změna dat data stabilní 0 1 přenos bitů 0 a 1 SDA SCL 14

Rozhraní IIC bus- start, stop začátek a konec přenosu zprávy určuje master začátek přenosu - start, SDA spádová hrana při SCL = H konec přenosu - stop, SDA náběžná hrana při SCL = H SDA start stop SCL S P 15

Rozhraní IIC bus - potvrzení Příklad - přenos dat ACh z master do slave s adresou 50h adresace slave (7 bitů + příznak čtení/ zápis, ACK - potvrzení od slave, přenos dat 8 bitů, ACK - slave, stop - master obvykle - přenosy více Byte potvrzení - ACK přijímajícím ( master, nebo slave) start S SDA A 6 A 5 A 4 A 3 A 2 A 1 A 0 zápis 1 0 1 0 0 0 0 0 R W A C K MSB LSB stop D 5 D 4 D 3 D 2 P D 7 D 6 D 1 D 0 1 0 1 0 1 1 0 0 A C K SCL ACK ze slave adresace data 16

Přenos vícebajtové zprávy po rozhraní IIC Po start a vyslání adresy obvodu - možný přenos dat pouze jedním směrem, čtení nebo zápis Kombinovaný přenos - start - zápis, nový start (bez stop) čtení, konec- stop. master zapisuje do slave master S adr. W data data data P slave ACK ACK ACK ACK master čte ze slave master NOT S adr. R ACK ACK ACK P slave ACK data data data 17

Rozhraní IIC Bus, implementace Rozhraní IIC bus implementováno v řadě up, i pod jinými názvy, např. TWI (Two Wire Interface) a další- z důvodu patentové ochrany. Možnost programové emulace rozhraní IIC Bus v up, které nemají IIC Bus, využití vstupně výstupních bran - úprava na režim emulace funkce otevřený kolektor - přepínání výstup - stav L, nebo vstup. U AT89S8252 možno využít piny přímo - standardní funkce otevřený kolektor. 18

Rozhraní IIC Bus, použití Rozšíření a specifikace komunikace - SMBus - System Management Bus (firmy -Intel, Duracel,.) je nyní v každém PC. Použití IICBus, mnoho integrovaných obvodů, obvodově nenáročné, pouze dva vodiče SCL, SDA, Příklad paměť 24C02, snímače teploty, obvody pro dohled v PC, obvody spotřební elektroniky, IO expandery, obvody RTC ( Real Time clock), IIC Busnastavení CMOS obrazových senzorů, viz senzory firem Kodak, Micron - Aptina,.) Další informace: IIC bus, princip funkce, použití http://www.standardics.nxp.com/literature/presentations/i2c/pdf/interface.solutions.pdf SM Bus specifikace http://www.standardics.nxp.com/literature/books/i2c/pdf/smbus.specification.pdf 19

Převodníky A/D, D/A Dle folií a výkladu na přednášce a monografie: Vedral, Fischer: Elektronické obvody v měřicí technice Rozhraní RS232, úrovně Sběrnicově kompatibilní převodníky A/D a D/A Převodníky s dvojnásobným bufferováním, použítí ve vícebitových převodnících D/A a ve vícekanálových převodnících D/A. Zarovnání dat doleva, zarovnání dat doprava u převodníku A/D http://measure.feld.cvut.cz/cs/vyuka/predmety/x38mip Informace ke zkoušce http://measure.feld.cvut.cz/vyuka/predmety/x38mip/zkouska 20