COMPARISON OF ELECTROCHEMICAL CORROSION PROPERTIES OF SELECTED LEAD-FREE SOLDERS

Podobné dokumenty
SMĚROVÁ KRYSTALIZACE EUTEKTIK SYSTÉMU Ti-Al-Si DIRECTIONAL CRYSTALLIZATION OF Ti-Al-Si EUTECTICS

DUPLEXNÍ POVLAKOVÁNÍ PM NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM DUPLEX COATING OF THE NIOBIUM-ALLOYED PM TOOL STEEL

DETERMINATION OF MECHANICAL AND ELASTO-PLASTIC PROPERTIES OF MATERIALS BY NANOINDENTATION METHODS

KOVOHUTE PRIBRAM NASTUPNICKA, a.s. INTEGRATED RECYCLING OF WASTES CONTAINING HEAVY- AND PRECIOUS- METALS

Melting the ash from biomass

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

MOŽNOSTI TVÁŘENÍ MONOKRYSTALŮ VYSOKOTAVITELNÝCH KOVŮ V OCHRANNÉM OBALU FORMING OF SINGLE CRYSTALS REFRACTORY METALS IN THE PROTECTIVE COVER

The Over-Head Cam (OHC) Valve Train Computer Model

ELECTROCHEMICAL HYDRIDING OF MAGNESIUM-BASED ALLOYS

CARBONACEOUS PARTICLES IN THE AIR MORAVIAN-SILESIAN REGION

SPECIFICATION FOR ALDER LED

Introduction to MS Dynamics NAV

SLEDOVÁNÍ AKTIVITY KYSLÍKU PŘI VÝROBĚ LITINY S KULIČKOVÝM GRAFITEM

OPTIMALIZACE REŽIMU TEPELNÉHO ZPRACOVÁNÍ PRO ZVÝŠENÍ MECHANICKÝCH VLASTNOSTÍ SLITINY ALSI9Cu2Mg

THE IMPACT OF PROCESSING STEEL GRADE ON CORROSIVE DEGRADATION VLIV TEPELNÉHO ZPRACOVÁNÍ OCELI NA KOROZNÍ DEGRADACI

Litosil - application

výrobce VOSS Fluid GmbH + Co. KG

CHOVÁNÍ ALUMINIDU ŽELEZA V KAPALNÝCH PROSTREDÍCH BEHAVIOUR OF IRON ALUMINIDES IN LIQUID ENVIRONMENTS

HODNOCENÍ MIKROSTRUKTURY A VLASTNOSTÍ ODLITKŮ ZE SLITINY AZ91HP EVALUATION OF MICROSTRUCTURE AND PROPERTIES OF SAND CAST AZ91HP MAGNESIUM ALLOY

SOIL ECOLOGY the general patterns, and the particular

ELEKTROCHEMIE NA SYSTÉMECH S TENKÝMI VRSTVAMI ELECTRO-CHEMICAL ANALYSIS ON SYSTEMS THIN FILM SUBSTRATE

Influence of Pre-Oxidation on Mechanical Properties of Zr1Nb Alloy

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

SEMI-PRODUCTS. 2. The basic classification of semi-products is: standardized semi-products non-standardized semi-products

STUDIUM ELEKTROCHEMICKÝCH KOROZNÍCH JEVŮ DVOUFÁZOVÝCH OCELÍ ZA POUŽITÍ METODY SRET.

POVRCHOVÉ VYTVRZENÍ PM NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM PLAZMOVOU NITRIDACÍ SURFACE HARDENING OF NIOBIUM-CONTAINING PM TOOL STEEL BY PLASMA NITRIDING

CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA

POROVNÁNÍ ODOLNOSTI SVAROVÝCH SPOJU POTRUBÍ Z OCELÍ TYPU CrNiMo PROTI BODOVÉ KOROZI

VYSOKÁ ŠKOLA HOTELOVÁ V PRAZE 8, SPOL. S R. O.

Effect of temperature. transport properties J. FOŘT, Z. PAVLÍK, J. ŽUMÁR,, M. PAVLÍKOVA & R. ČERNÝ Č CTU PRAGUE, CZECH REPUBLIC

KULOVÝ STEREOTEPLOMĚR NOVÝ přístroj pro měření a hodnocení NEROVNOMĚRNÉ TEPELNÉ ZÁTĚŽE

CREEP AUSTENITICKÉ LITINY S KULIČKOVÝM GRAFITEM CREEP OF AUSTENITIC DUCTILE CAST IRON

PLÁN NÁRODNÍCH PRACÍ NATIONAL WORK PROGRAMME

T E S T R E P O R T No. 18/440/P124

TESTOVÁNÍ VLIVU INDIKAČNÍCH KAPALIN NA KŘEHKOLOMOVÉ VLASTNOSTI SKLOVITÝCH SMALTOVÝCH POVLAKŮ

OXIDAČNÍ ODOLNOST A TEPELNÁ STABILITA SLITIN Ti-Al-Si VYROBENÝCH REAKTIVNÍ SINTRACÍ

ZKOUŠENÍ KOROZNÍ ODOLNOSTI PLAZMOVĚ NANÁŠENÝCH NITRIDICKÝCH VRSTEV NA OCELÍCH CORROSION RESISTANCE TESTING OF PLASMA NITRIDATION LAYERS ON STEELS

Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Teacher: Student:

Electrochemistry of Selected Phosphorus Oxoacids on a Bulk Pt Electrode. Tomas Bystron Martin Prokop Karel Bouzek

STUDIUM VLASTNOSTÍ BEZOLOVNATÝCH PÁJEK PRO VYSOKOTEPLOTNÍ APLIKACE STUDY OF PROPERTIES OF LEAD-FREE SOLDERS FOR HIGH-TEMPERATURE APPLICATION

PLÁN NÁRODNÍCH PRACÍ NATIONAL WORK PROGRAMME

Czech Republic. EDUCAnet. Střední odborná škola Pardubice, s.r.o.

UPM3 Hybrid Návod na ovládání Čerpadlo UPM3 Hybrid 2-5 Instruction Manual UPM3 Hybrid Circulation Pump 6-9

GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA

THE PREDICTION PHYSICAL AND MECHANICAL BEHAVIOR OF FLOWING LIQUID IN THE TECHNICAL ELEMENT

Vliv metody vyšetřování tvaru brusného kotouče na výslednou přesnost obrobku

Voltametrické stanovení stopových množství 2-aminofluorenu pomocí adsorpční rozpouštěcí voltametrie na uhlíkové pastové elektrodě

DATA SHEET. BC516 PNP Darlington transistor. technický list DISCRETE SEMICONDUCTORS Apr 23. Product specification Supersedes data of 1997 Apr 16

, Hradec nad Moravicí POLYKOMPONENTNÍ SLITINY HOŘČÍKU MODIFIKOVANÉ SODÍKEM

INFLUENCE OF CONSTRUCTION OF TRANSMISSION ON ECONOMIC PARAMETERS OF TRACTOR SET TRANSPORT

ACOUSTIC EMISSION SIGNAL USED FOR EVALUATION OF FAILURES FROM SCRATCH INDENTATION

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2006, ročník LII, řada strojní článek č.

VLIV ZMĚNY DRSNOSTI POVRCHU NA PŘILNAVOST ORGANICKÝCH POVLAKŮ INFLUENCE OF THE CHANGE OF THE SURFACE ROUGHNESS ON ADHESION OF ORGANIC COATINGS

Characterization of soil organic carbon and its fraction labile carbon in ecosystems Ľ. Pospíšilová, V. Petrášová, J. Foukalová, E.

EFFECT OF MALTING BARLEY STEEPING TECHNOLOGY ON WATER CONTENT

KOROZNÍ VLASTNOSTI VÝVOJOVÝCH SLITIN TITANU PRO STOMATOLOGII CORROSION BEHAVIOUR OF THE NEW TITANIUM ALLOYS FOR DENTISTRY

X-RAY EXAMINATION OF THE FATIGUE PROCESS RENTGENOGRAFICKÉ ZKOUMÁNÍ ÚNAVOVÉHO PROCESU

VY_32_INOVACE_06_Předpřítomný čas_03. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost

Outline of options for waste liquidation through gasification

Biosensors and Medical Devices Development at VSB Technical University of Ostrava

HODNOCENÍ VLASTNOSTÍ VÝKOVKŮ ROTORŮ Z OCELI 26NiCrMoV115

Compression of a Dictionary

EXACT DS OFFICE. The best lens for office work

VLASTNOSTI KOVOVÝCH VRSTEV DEPONOVANÝCH MAGNETRONOVÝM NAPRAŠOVÁNÍM NA SKLENENÝ SUBSTRÁT

Air Quality Improvement Plans 2019 update Analytical part. Ondřej Vlček, Jana Ďoubalová, Zdeňka Chromcová, Hana Škáchová

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

MÉNĚ ZNÁMÉ DRUHY JETELOVIN PRO POTENCIÁLNÍ PĚSTOVÁNÍ V PODMÍNKÁCH ARIDNÍHO KLIMATU

TKGA3. Pera a klíny. Projekt "Podpora výuky v cizích jazycích na SPŠT"

glass radiators GLASS RADIATORS skleněné radiátory

Ventil zpětný Z15.1 DN 10 50, PN Piston check valve Z15.1 DN 10 50, PN

VLIV OBSAHU NIKLU NA VLASTNOSTI LKG PO FERITIZAČNÍM ŽÍHÁNÍ EFFECT OF THE CONTENT OF NICKEL ON DI PROPERTIES AFTER FERRITIZATION ANNEALING

STLAČITELNOST. σ σ. během zatížení

Transfer inovácií 20/

CREEP INTERMETALICKÉ SLITINY TiAl PRI VELMI MALÝCH RYCHLOSTECH DEFORMACE. CREEP OF INTERMETALLIC ALLOY TiAl AT VERY LOW STRAIN RATES

BIOLOGICKÉ LOUŽENÍ KAMÍNKU Z VÝROBY OLOVA

Vysoká škola báňská Technická univerzita Ostrava,

Zelené potraviny v nových obalech Green foods in a new packaging

INTERMETALICKÉ FÁZE NA BÁZI Ti-Al-Si PŘIPRAVENÉ METODOU PRÁŠKOVÉ METALURGIE. INTERMETALLIC PHASES BASED ON Ti-Al-Si PREPARED BY POWDER METALLURGY

ANTICORROSIVE RESISTANCE OF WATER DILUTES SINGLE-LAYER ANTICORROSIVE ENAMELS KOROZNÍ ODOLNOST JEDNOVRSTVÝCH VODOUŘEDITENÝCH NÁTĚROVÝCH HMOT

MOŽNOSTI VYUŽITÍ MIKROLEGOVANÝCH OCELÍ. Tomáš Schellong Kamil Pětroš Václav Foldyna. JINPO PLUS a.s., Křišťanova 2, Ostrava, ČR

VLASTNOSTI KOMPOZITNÍCH POVLAKŮ S KATODICKY VYLUČOVANOU MATRICÍ

Wear with respect to load and to abrasive sand under Dry Sand/Steel Wheel abrasion condition

SPECIAL FORMING METHODS. Use: It is used for the production of cylindrical and conical parts of exact shapes, which needn t be further machined.

Název společnosti: VPK, s.r.o. Vypracováno kým: Ing. Michal Troščak Telefon: Datum:

TEPELNÉ ZPRACOVÁNÍ NIKLOVÝCH SUPERSLITIN HEAT TREATMENT OF HIGH-TEMPERATURE NICKEL ALLOYS. Božena Podhorná a Jiří Kudrman a Karel Hrbáček b

2D A 3D SNÍMACÍ SYSTÉMY PRŮMĚRU A DÉLKY KULATINY ROZDÍLY VE VLASTNOSTECH A VÝSLEDCÍCH MĚŘENÍ

MODELOVÁNÍ A MĚŘENÍ DEFORMACE V TAHOKOVU

POČET ROČNÍKŮ JEHLIC POPULACÍ BOROVICE LESNÍ. Needle year classes of Scots pine progenies. Jarmila Nárovcová. Abstract

Silicified stems of upper Paleozoic plants from the Intra Sudetic and Krkonoše Piedmont basins

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ DISERTAČNÍ PRÁCE

VLIV OBSAHU HLINÍKU NA VLASTNOSTI HOŘČÍKOVÝCH SLITIN PŘI ODLÉVÁNÍ DO BENTONITOVÝCH A FURANOVÝCH FOREM

Aplikace matematiky. Dana Lauerová A note to the theory of periodic solutions of a parabolic equation

Fytomineral. Inovace Innovations. Energy News 04/2008

Dobrovolná bezdětnost v evropských zemích Estonsku, Polsku a ČR

nkt instal CYKY 450/750 V Instalační kabely Standard PN-KV Konstrukce Použití Vlastnosti Installation cables Construction

VÝZKUM MOŽNOSTÍ ZVÝŠENÍ ŽIVOTNOSTI LOŽISEK CESTOU POVRCHOVÝCH ÚPRAV

AIC ČESKÁ REPUBLIKA CZECH REPUBLIC

STUDY EDITS FOR BETTER TRANSPORT IN THE CENTRE OF NÁCHOD

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost

Transkript:

Acta Metallurgica Slovaca, 11, 2005, 3 (369-374) 369 COMPARISON OF ELECTROCHEMICAL CORROSION PROPERTIES OF SELECTED LEAD-FREE SOLDERS Lasek S. 1, Drápala J. 2, Urbaníková Ž. 2, Blahetová M. 1 1 Department of Materials Engineering, 2 Department of Non-ferrous Metals, Refining and Recycling, Faculty of Metallurgy and Materials Engineering, VSB-Technical University of Ostrava, 17. listopadu 15, Ostrava-Poruba, 70833, Czech Republic, Stanislav.Lasek@vsb.cz POROVNÁNÍ KOROZNĚ ELEKTROCHEMICKÝCH VLASTNOSTÍ VYBRANÝCH BEZOLOVNATÝCH PÁJEK Lasek S. 1, Drápala J. 2, Urbaníková Ž. 2, Blahetová, M. 1 1 Katedra materiálového inženýrství, 2 Katedra neželezných kovů, rafinace a recyklace, Fakulta metalurgie a materiálového inženýrství, VŠB-Technická univerzita Ostrava, 17. listopadu 15/2172,Ostrava-Poruba, 70833, Česká republika, Stanislav.Lasek@vsb.cz Abstrakt Korozně elektrochemické vlastnosti vybraných bezolovnatých pájek (Sn99Cu1; Sn95Sb3,5Cu1,5; Sn95Sb5; Sn95,5Ag3,8Cu0,7; Sn96Ag4) a téměř eutektické Sn67Pb37 slitiny jsou porovnány na základě potenciodynamické polarizační metody (voltammetrie) s použitím vodného roztoku 0,1 mol/l KOH za normální teploty. Uvedené slitiny byly zkoušeny ve tvaru dodaných drátů anebo tyčí. Poměrně malé rozdíly byly zjištěny mezi bezolovnatými pájkami v hodnotách korozních potenciálů, pasivačních proudových hustot a v šířce aktivní oblasti. Všechny tyto pájky vykazovaly aktivně-pasivní přechod. Značné rozdíly byly zjištěny mezi anodickými polarizačními křivkami bezolovnatých pájek a pájkou Sn63Pb37. Více anodických píků bylo zaznamenáno na polarizačních křivkách Sn-Pb pájky, kde přechod do transpasivní oblasti probíhal při nižších hodnotách potenciálu, než u bezolovnatých pájek. Rychlost koroze (podle proudové hustoty) v aktivním stavu byla vyšší na pájkách s obsahem antimonu, zatímco v pasivní oblasti tato rychlost byla významně vyšší pro pájku Sn-Pb. Měď a stříbro v malém množství se prakticky neprojevily na korozních vlastnostech v aktivní oblasti, avšak v transpasivní oblasti způsobily zvýšení proudové hustoty a vznik menších píků. Po provedených elektrochemických zkouškách byla pozorována na povrchu pájek rovnoměrná koroze. V příspěvku jsou také uvedeny výsledky chemické mikroanalýzy zkoušených pájek, včetně jejich minoritních fází a oblasti hranic zrn. Rovněž jsou porovnány základní vlastnosti zkoušených pájek (rozmezí teplot tavení, povrchové napětí, tvrdost, hustota). Abstract Electrochemical corrosion properties of lead-free solder alloys (Sn99Cu1; Sn95Sb3,5Cu1,5; Sn95Sb5; Sn95,5Ag3,8Cu0,7 and Sn96Ag4) and near eutectic Sn67Pb37 one are compared in the 0,1 mol/l KOH water solution at room temperature on the base of potentiodynamic polarization method (voltammetry). These tin alloys were tested in the form of as-received wires and rods. Relative small differences were found out in corrosion potential values, passivation current densities and active peak width among these lead-free alloys. All these solders exhibit active passive transition. There were registered significant differences between anodic polarization curves of lead-free and Sn-Pb solders. More anodic peaks were

Acta Metallurgica Slovaca, 11, 2005, 3 (369-374) 370 measured on the Sn63Pb37 solder, where transition to the transpassive region started at lower potential values in comparison with lead-free solders. Corrosion rate (according to current density and peak) was higher on Sb containing solders in the active state, on the other hand in the passive range the corrosion was higher for Sn-Pb one. The corrosion properties were not influenced by copper and silver in small quantity in the activity area, but in the transpassivity area they caused small peaks and current density increasing. The uniform corrosion was observed after potentiodynamic polarization tests. The results of chemical microanalysis of solders, including secondary phases and grain boundary areas are also given in the contribution. The main properties of tested tin solders (melting temperature range, surface stress, hardness, density) are compared too. Key words: Tin alloys, lead-free solders, electrochemical corrosion, potentiodynamic polarization method. 1. Introduction Tin is widely used as a protective coating for steel plates and for mild solders. The new types of lead-free solders have been developed and recommended for replacing Sn-Pb solders mainly for health and ecological requirements. Anodic behaviour and corrosion of tin base alloys under different conditions has been studied by electrochemical methods. The formation and chemical composition of passivation layers on Sn and Sn-Cu alloys have been systematically studied in 0,1M KOH with potentiodynamic method and X-ray photoectron spectroscopy (XPS) [1]. The potentiodynamic polarization curve of pure tin has two anodic peaks at potential E = -1,05V and E = -0,75V (SCE), which agree reasonably well with the formation of soluble HSnO 2 - and SnO 3 2-. A large passive range (with film or layer thickness 5 nm) follows between -0,5 and 1,2V with lower current density J = 0,02mA.cm -2 and a secondary passive range up to 1,9 V with an increased current density 0,2mA.cm -2. At E >1,9 V follows a steep current increase attributed to oxygen evolution. The cathodic peak at E = -1,25 V is comparatively small which allows two explanations: only a very small amount oxide has been formed on the electrode or the reduction of the passive layer at this peak is not complete. The passive layer on tin consists of SnO/Sn(OH) 2 film in contact with the electrolyte followed by inner part of SnO 2 /Sn(OH) 4 and Sn(II) fraction at the oxide/metal interface. The electrochemical behaviour, microstructure and corrosive products of Sn-Zn9-Agx lead-free solders were investigated in study [2]. The Sn63-Pb37 and Sn-Ag3,5 solder alloys were also tested for comparison. The Sn-Ag3,5 solder alloy had higher equilibrium potential (- 0,44 V SCE) than the ones Sn63-Pb37 (-1,10 V) and Sn-Zn9 (-1,43 V). The Ag addition enhanced the corrosion resistance of the Sn-Zn9 solder alloy. Passivation behaviour occurred in the solder alloys used [2], except the Sn63-Pb37 one. X-ray diffraction patterns showed that the Zn segregated in the Sn-Zn9 solder alloy as solidified, but it dissolved when 0,5% wt Ag was added to the solder alloy. The AgZn 3 and Ag 5 Zn 8 were found in the Sn-Zn9-Ag1,5 solder alloy but they were substituted by Ag 3 Sn when the Ag content in the solder was above 2,5 % wt. However, they are the initial sites for pitting. The corroded product of SnCl 2 was observed in all solder alloys tested. The potentiodynamic polarization method is applied for the corrosion study of lead-free solders in further studies [3,4]. The Sn-Pb base solders are used for the comparison purposes. The aim of this contribution is the comparison of corrosion electrochemical properties of selected lead-free solders on the base potentiodynamic polarization method.

Acta Metallurgica Slovaca, 11, 2005, 3 (369-374) 371 2. Experimental The chemical composition of tested solders is given in Tab.1. The microanalysis results of their selected phases and grain boundary segregations are documented in the work [5] as well as structures. The solders were made in KOVO Příbram and in Department of Nonferrous Materials, Refining and Recycling, VSB-TUO by technology of casting and forming into rods and wires. Table 1 Chemical composition of tested soft solder alloys [weight % ] solder / element Ag As Bi Cu Fe Pb Sb Sn 1 Sn99Cu1 0,0004 0,015 0,004 0,75 0,006 0,04 0,02 rest 2 Sn95Sb3,5Cu1,5 0,0025 0,005 0,007 1,40 0,022 0,060 3,3 rest 3 Sn95Sb5 0,0002 0,001 0,012 0,017 0,014 0,029 4,9 rest 4 Sn95Ag3,8Cu0,7 3,75 0,001 0,007 0,74 0,010 0,03 0,02 rest 5 Sn96Ag4 3,73 0,007 0,007 0,005 0,009 0,028 0,01 rest 6 Sn63Pb37 0,0003 0,001 0,009 0,001 0,003 rest 0,008 62,9 The content of other elements: Al <0,001, Cd < 0,001, In <0,01, Ni 0,001, Zn < 0,001 %. The properties of tested solders are compared in Tab. 2, where T h is high melting temperature at heating, T c low temperature of solidification at cooling, HV Vickers hardness, ρ density, σ surface energy. The melting temperature interval is given by the temperature T c and T h. Some results of phase and grain boundary area microanalysis are also given in Tab. 2. The phases rich in Au and/or Cu can form micro-galvanic cells (cathodes) in the Sn base matrix (anode) and can cause pitting corrosion. The standard potential (E o ) of the main elements has values: Sn -0,14V, Pb -0,13V, Sb +0,15V, Cu +0,34, Au + 0,80 V. The Sn and Pb have near the same value of standard potential. Table 2 Propertiess of selected solders [5] property T h T c HB ρ σ No. solder C C Mg/m 3 mn/m phases or areas 1 Sn99Cu1 231 210 10 9,51 509 Sn90Cu10 2 Sn95Sb3,5Cu1,5 237 222 16 9,06 507 Cu50Sb35 3 Sn95Sb5 245 225 12 8,84 494 Sn90Sb9 4 Sn95,5Ag3,8Cu0,7 222 206 17 7,54 428 Ag 3 Sn 2 5 Sn96Ag4 222 208 15 8,93 564 Ag 3 Sn 2 6 Sn63Pb37 188 169 8,5 10,68 425 Pb91Sn9 The working electrode were wires (Ø3mm, solder no. 1-3) with exposed area about 1,5 cm 2 and rods (Ø15mm, no. 4, cross section 24x13 mm, no. 5 and 6) with the one of 0,4 cm 2. The surface pre-treatment of the working electrodes from the rods was performed by mechanical polishing with SiC emery papers up to 1200 grit. These electrodes were then degreased with cleaning alcohol and washed by demineralised water. The solder wires were tested with the as received surface in vertical position by immersion into solution. The counter electrode was a platinum wire (5 cm 2 ). The potential values were measured relative to a saturated calomel electrode (SCE). The potentiodynamic polarization curves (J=f(E)) were recorded by sweeping the electrode potential (E) automatically from -1,5 to +1,5 V at the constant scan rate 5mV/s [6]. A potentiostat/galvanostat PGP201 and personal computer was used, Voltamaster 1 elctrochemical

Acta Metallurgica Slovaca, 11, 2005, 3 (369-374) 372 corrosion software was used for the technique mentioned above. All measurements were performed at constant temperature 25±1 C. 3. Results and discussion Fig. 1 shows potentiodynamic curves of Sn99Cu1, Sn95Cu1,5, Sn95Sb5 solder in 0,1 M KOH at 25 3 J [ ma/cm 2 ] 2 1 E [mv] Fig.1 Polarization curves of lead-free solders: 1- Sn99Cu1, 2 - Sn95Sb3,5Cu1,5, 3 - Sn95Sb5 The anodic polarization curve exhibits active/passive transition, similar as in the case of clean tin [1] with characteristic peaks. The active dissolution region involves a well-defined two anodic peak for alloy Sn99Cu1, followed by a passive region, which extends up to 1,0 V with almost constant current density, which is further rising by one order up to 1,5 V. When scanning is back in the cathodic direction, one small cathodic peak appeared before the potential, where hydrogen evolution commences. Addition of Sb contributes to one higher peak, which is probably formed by connection of two peaks and it increases a little the current density in the passive area and decreases one in transpassive region. For interpretation of results is significant that according to the Faraday law the current density is proportional to the corrosion rate. The potential value corresponds to an oxidation capability of solution and/or environment. The potentiodynamic polarization curves of solders Sn95Ag3,8Cu0,7; Sn96Ag4; Sn63Pb37 are documented on Fig. 2. There are compared the measured values of electrochemical corrosion properties of selected solders in Tab. 3: E cor corrosion (free) potential measured before potentiodynamic test, J p passivation current density (maximum current density in active area, peak current density), E a width of active area at current density 1,0mA/cm 2, E p passive range with current density below 0,1mA/cm 2 (measured in a scale log J-E).

Acta Metallurgica Slovaca, 11, 2005, 3 (369-374) 373 The differences in values of measured parameters (Tab. 3) are rather small, except passive (pseudopassive) range. Passive surface state for the lead-free solders, characterized by current density below 0,10 ma/cm 2 is not perfect, but on the Sn63Pb37 alloy this value is few times higher (0,5-0,8 ma/cm 2 ). This is in relation with salt spray test and gravimetric method results [7,8]. The higher mass loss and uniform corrosion was observed on Pb-Sn solders, on the lead-free ones the surface pitting and spot corrosion was characteristic. In transpassive area appears smaller peaks (for alloy no. 4 and 5 at 1,0 V) and narrow secondary passivity with a local minimum of current density (at 1,1-1,2V). Table 2 Electrochemical corrosion properties of solder alloys (solution 0,1M KOH). parameter E cor J p Ea Ep solder mv ma/cm 2 mv mv Sn99Cu1-1090 3,35 430 1220 Sn95 Sb3,5Cu1,5-1075 3,70 325 980 Sn95Sb5-1078 3,95 335 930 Sn95,5Ag3,8Cu0,7-1090 3,69 380 1095 Sn96Ag4-1090 3,73 450 870 Sn63Pb37-1060 2,90 450 0 The Sn-Pb solder exhibits 3 peaks in anodic area and larger one in the passive range (see Fig. 2). Similar peaks and trends on polarization curves were registered on alloy Sn60Pb40, Pb51Sn47Sb, Pb72Sn27. J [ ma/cm 2 ] 5 6 4 E [mv] Fig.2 Polarization curves of solders: 4 Sn95Ag3,8Cu0,7; 5 Sn96Ag4; 6 Sn63Pb37. For alloy Sn63Pb37 these areas are shifted to the lower potential values (e.g. peak at 0,6 V, change of oxidation state). Above potential 1,0 V the steep current is caused by oxygen

Acta Metallurgica Slovaca, 11, 2005, 3 (369-374) 374 evaluation. The surfaces after corrosion test exposition were cleaned and observed by stereomicroscope. Uniform corrosion was formed under testing conditions. The selected solders have been also tested in neutral water solution (0,1M NaCl) and in acid solution (0,1 M H 2 SO 4 ) and results will be published. Conclusion The electrochemical corrosion behaviour of tin base lead-free solders (Sn99Cu1, Sn95Sb3,5Cu1,5, Sn95Sb5, Sn95,5Ag3,8Cu0,7, Sn96Ag4) in water solution 0,1 mol/l KOH have been studied. For comparison the Sn63Pb37 solder was also tested. The results of potentiodynamic (voltametric) test have shown small differences among tested solders in the active area. The higher current density was measured in the passive area of Sn63Pb37 alloy in comparison with lead-free solders. Characteristic anodic peaks were registered for tested solders. The general corrosion of Sn lead-free solders is not worse than Sn-Pb one. Acknowledgements This work was supported by the research programme MSM 6198910013 and project COST 531 Lead-free Solder Materials. Literature [1] Keller P., Strehblow H.H.: Investigation of the passivity of Sn and CuSn alloys in 0,1M KOH. In Congress Corrosion 04, Nice 2004, CD 6 p. [2] Chang T-C, Hon M-H, et. al.: Electrochemical behaviour of lead-free solders Sn-9Zn-xAg in 3,5% NaCl solution. Journal of the Electrochemical Society, vol.151, no.7, p. 484, 2004. [3] Sabbar A et al.: Evaluation of corrosion behaviour on new phase Pb-free solder materials (Sn-In-Zn). Materials and Corrosion, 2001, vol. 52, no. 4, p. 298-301. [4] Sayed S. et al.: Anodic behaviour of tin in maleic acid solution and the effect of some inorganic inhibitors. Corrosion Science, vol. 46, 2004, p. 1071. [5] Urbaníková Ž.: Modelling of solid a liquid curves with the materials selection for low melting lead-free solders (Diploma theses) VŠB-TU Ostrava, 2004, 104 p. [6] ASTM G5-94: Standard Test Method for Making Potentiokinetic and Potentiodynamic Anodic Polarization Measurements, 12 p. [7] ČSN ISO 9227:.Corrosion tests in artificial atmospheres. Salt spray tests. 1994, 14 p. [8] Lasek S., Drápala J.: Comparison of corrosion resistance of selected solders on the base of salt spray test. Scientific letters, Mechanics, Opole 2005 (will be published).