UNIVERZITA ORANY Fakulta vojenských technologií SOUČÁSTKY ELEKTROTECHNIKY LAORATORNÍ PRAKTIKUM Ing. Martin Kyselák, Ph.D. prof. Ing. Čestmír Vlček, CSc. Ing. Jiří Solfronk, CSc. rno 2016
OSAH 1 A STAILIZAČNÍ DIODA STEJNOSMĚRNÉ CHARAKTERISTIKY A PARAMETRY TRANZISTORU V ZAPOJENÍ SE SPOLEČNÝM EMITOREM 2 A VÝKONOVÝ ZESILOVAČ TŘÍDY TDA2003 STAILIZÁTOR NAPĚTÍ MAA723 3 A LOGICKÝ ČLEN NAND MULTIPLEXOR A DEMULTIPLEXOR 4 A POSUVNÝ REGISTR ČÍTAČ 5 A ELEKTROLUMINISCENČNÍ DIODA FOTODIODA 6 A
1.a STAILIZAČNÍ DIODA Obsah měření a) U předloženého vzorku stabilizační diody změřte statický průběh V-A charakteristiky a určete její základní parametry. b) Naměřenou V-A charakteristiku stabilizační diody využijte k návrhu parametrického stabilizátoru napětí pro zadanou zátěž a vstupní nestabilizované napětí U I. Otázky pro přípravu 1. Jaká je fyzikální podstata mechanizmů elektrického průrazu přechodu PN a jeho možná aplikace u stabilizačních diod? 2. Prostudujte obvodové uspořádání a princip činnosti parametrického stabilizátoru napětí se stabilizační diodou. Zapojení měřicího pracoviště Průběh V-A charakteristiky stabilizační diody (někdy též nazývané Zenerovy diody ZD ) změřte v zapojení pracoviště podle obr. 1. K měření využijte přípravku pro zapojení stabilizační diody do obvodu nastavitelného zdroje stejnosměrného napětí U ss, ochranného odporu R 0, miliampérmetru ma a stejnosměrného voltmetru V s velkým vstupním odporem. U ss + (-) - (+) R o ma IF (IR) ZD A K UF (UR) V Obr. 1 Zapojení k měření stabilizační diody Podle směru měřeni V-A charakteristiky volte polaritu zapojení stabilizační diody nebo polaritu připojení zdroje U ss a případně svorek měřicích přístrojů ma a V. K ověření funkční činnosti stabilizační diody v obvodu jednoduchého parametrického stabilizátoru napěti využijte přípravku pro zapojení pracoviště uvedeného na obr. 2. K měření použijte opět zdroje U ss k nastavení zadaných hodnot vstupního nestabilizovaného napětí U I, které může být pro větší přesnost měřeno voltmetrem V 1. Stabilizované napětí U O na zátěži R L je nutno měřit voltmetrem V 2 s velkým vstupním odporem. Potřebnou hodnotu sériového odporu R S je možno nastavit na připojené odporové dekádě.
odporová dekáda R s IZ+IRL) UI U V1 UZ RL ss UO ZD V 2 K A Obr. 2 Zapojení pro měření stabilizátoru napětí. Použité přístroje: Postup měření: a) Statické měření V-A charakteristiky stabilizační diody "ZD" si rozdělte do tří oblastí naznačených v typickém průběhu na obr. 3. V přímém směru oblasti "I" nepřekročte zadanou mezní hodnotu proudu I F. Pro přesnější měření nastavujte proud I F a odečítejte napětí U F. Ve zpětném směru oblasti "II" bývá proud IR těchto křemíkových stabilizačních diod zanedbatelně malý, přičemž jeho hodnota není pro zadané měření určující. V této oblasti pomalu zvyšujte napětí U R až do měřitelné hodnoty proudu I R a od tohoto bodu V-A charakteristiky přejděte k měření v oblasti "III". Hlavní důraz položte do měření v oblasti "III" elektrického nedestruktivního průrazu, kde prudce narůstá proud I R při malé změně napětí U R. Pro přesnější měření je výhodnější opět nastavovat hodnoty proudu I R a odečítat napětí U R. Při měření v této oblasti nesmíte překročit maximální přípustnou výkonovou ztrátu P d,max stabilizační diody, popř. zadanou hodnotu proudu I R = I Z,max. Vzhledem k nedokonalému chlazení stabilizační diody v použitém přípravku může být měření při větších proudech v oblasti "III" zkresleno ohřevem diody. V mezích požadované přesnosti měření lze připustit v této dílčí oblasti aproximaci V-A charakteristiky přímkou se strmostí odpovídající střední části v okolí proudu I Z Hodnoty základních parametrů měřené stabilizační diody zjistěte z naměřeného průběhu V-A charakteristiky v souladu s parametry na obr. 3.
Základní parametry: U Z I Z r Z S Z IZ, max P d, max - stabilizační napětí - stabilizační proud - diferenciální odpor - teplotní součinitel U Z > 5,5 V, S Z > 0 U Z < 5, 5 V, S Z < 0 - mezní proud - mezní ztrátový výkon diody Poznámka: parametry jsou udávány pro teploty ϑ J = 25 C. Obr. 3. Typický průběh V-A charakteristiky stabilizační diody K posouzení měřené stabilizační diody určete na základě předchozího studia jejich vlastnosti a hodnoty napětí U Z znaménko teplotního součinitele S Z a fyzikální podstatu mechanizmu elektrického průrazu v oblasti "III". b) Návrh parametrického stabilizátoru napětí s měřenou stabilizační diodou řešte graficky v principu naznačeném na obr. 4. při zadaných hodnotách napětí U l ± ΔU I, zátěže R L, a změřeném průběhu V-A charakteristiky stabilizační diody je cílem grafického výpočtu navrhnout optimální hodnotu sériového odporu R S. Na tomto odporu R S vzniká průtokem proudu I Z + I RL úbytek napětí, jehož změny ΔU RS přibližně odpovídají změnám nestabilizovaného vstupního napětí ΔU I. Změny napětí ΔU RS jsou vyvolány změnami proudu ΔI Z, zatímco proud I RL a napětí U O = U Z jsou v podstatě stabilní. Malá změna výstupního napěti ΔU O ku změně vstupního napětí ΔU I v podstatě určuje činitel stabilizace S U. Při grafickém návrhu stabilizátoru napětí se "ZD" nejprve nakreslete na milimetrový papír průběh V-A charakteristiky ve zpětném směru. Měřítko napěťové osy volte nejméně 10 mm na 1 V. Měřítko proudové osy volte dle naměřených hodnot proudů v oblasti "III", tak abyste zakreslili V-A charakteristiku do typického průběhu podle obr. 4. Do téhož grafu dále zakreslete V-A charakteristiku zadaného zatěžovacího odporu R L, danou přímkou, na níž známe dva body a to počátek "0" a bod daný např. napětím U Z a proudem I RL = U Z/R L. V dalším kroku zakreslete V-A charakteristiku paralelního zapojení ZD a R L a to součty proudů v několika zvolených bodech V-A charakteristik ZD a R L vždy při stejných hodnotách napěti U R. Na takto získané V-A charakteristice určete pracovní bod stabilizátoru P stab" odpovídající napětí U Z a proudu I Z + I RL. Hledanou hodnotu odporu R S zjistěte ze směrnice přímky proložené body "P stab a napětí U l na napěťové ose, popř. ze zvolených hodnot ΔU R a ΔI R v libovolné části přímky "R S", jak je ukázáno na obr. 4.
Obr. 4 Grafický výpočet stabilizátoru napětí. Pro názor lze určit z grafu výpočtu stabilizátoru hodnotu činitele napěťové stabilizace S U odečtením hodnot ΔU 0 = ΔU Z, U 0 = U Z a spolu se zadanými hodnotami U l a ΔU I dosazením do vztahu pro S U na obr. 5. Princip určení těchto hodnot je rovněž naznačen na obr. 5. Obr. 5 Stabilizační charakteristika stabilizátoru se ZD. S U = U 0 U I ΔU I ΔU 0 kde je U 0 = U Z, ΔU 0 = ΔU Z, U O výstupní stabilizované napětí, U I vstupní napětí.
Zpracování výsledků: Naměřené hodnoty V-A charakteristiky stabilizační diody ZD a stabilizační charakteristiky parametrického stabilizátoru napěti zapisujte do připravených tabulek podle příkladů tabulek. měření v propustném směru I F[mA] U F[V] měření v závěrném směru I R[mA] U R[V] Naměřenou V-A charakteristiku stabilizační diody ZD zakreslete do grafu ve vhodném měřítku napěťových a proudových os tak, abyste získali graf typického průběhu podle obr. 3. Stejně tak do grafu zpracujte grafický návrh parametrického stabilizátoru napětí s měřenou diodou. V textové části zhodnocení výsledků měření uveďte předpokládaný fyzikální princip činnosti měřené stabilizační diody a její stabilizační účinky. V textové části zhodnocení výsledků měření uveďte předpokládaný fyzikální princip činnosti měřené stabilizační diody.
1. STEJNOSMĚRNÉ CHARAKTERISTIKY A PARAMETRY TRANZISTORU V ZAPOJENÍ SE SPOLEČNÝM EMITOREM Zadání: a) Změřte u předloženého tranzistoru ve vymezené oblasti průběhy výstupních a vstupních charakteristik v základním zapojeni SE b) Z naměřených charakteristik graficky odvoďte průběhy převodních charakteristik pro zadaná napěti U CE a proudy I ; zakreslete soustavu hybridních charakteristik. c) Pro zadaný pracovní bod "P" odvoďte se soustavy naměřených charakteristik hodnoty čtyřpólových parametrů h ik předloženého tranzistoru. Otázky pro přípravu a) Vysvětlete fyzikální podstatu tranzistorového jevu v bipolárním tranzistoru N-P-N a P-N-P. b) Popište funkční závislost soustavy hybridních stejnosměrných charakteristik bipolárního tranzistoru N-P-N a P-N-P. c) Definujte čtyřpólové h ike parametry bipolárního tranzistoru. Zapojení měřicího pracoviště: objímka NPN (PNP) C μa R I (-I) EV UE (-UE) E UCE (-UCE) EV ma IC (-IC) U ss + NPN (- PNP) NPN+ (PNP-) U ss Obr. 1. Schéma zapojeni pro měření stejnosměrných charakteristik bipolárního tranzistoru v zapojení SE Průběhy výstupních charakteristik naprázdno daných rovnicí I C = f(u CE), kde parametrem je I, a vstupních charakteristik nakrátko U E = f (I C) s parametrem U CE, měřte v základním zapojení se společným emitorem v uspořádání podle obr. 1. Pro měření použijte univerzální přípravek. Před zahájením práce zjistěte v katalogu typ a základní údaje měřeného tranzistoru (označení tranzistoru je obvykle situováno na tělese pouzdra) a zakreslete do protokolu zapojení patice. Zapište též mezní údaje doporučené výrobcem, jež nesmíte při měření překročit! Na přípravku vyberte vhodnou objímku a zasuňte do ní tranzistor. Polarita zdrojů a měřidel závisí na typu měřeného tranzistoru.
Použité přístroje: Postup měření: a) Při měření voltampérových charakteristik je obecně vhodné zapisovat naměřené údaje do tabulky a zároveň kreslit alespoň informativní graf. To umožňuje průběžnou kontrolu měřených závislostí a současně též sledování, zda nedochází k překračování dovoleného pracovního rozsahu tranzistoru. Proto si do grafu zakreslete před zahájením měření mezní elektrické hodnoty udávané výrobcem: - mezní ztrátový výkon P Cmax, - dovolený proud I Cmax, - napětí U CEmax. Typické průběhy soustavy hybridních charakteristik bipolárního tranzistoru v základním zapojení se společným emitorem jsou uvedeny na obr. 2. Při měření výstupní charakteristiky nastavte a udržujte zadané hodnoty proudu I. Měňte napětí U CE v zadaném rozsahu a odečítejte hodnoty výstupního proudu I C. Hodnoty zapisujte do tabulky (vzor Tab. 1). Při měření vstupní charakteristiky nastavte a udržujte zadané hodnoty napětí U CE. Měňte proud I v zadaném rozsahu a odečítejte odpovídající hodnoty napětí U E. Hodnoty zapisujte průběžně do tabulky (Tab. 2). Naměřené průběhy sítí výstupních a vstupních charakteristik vyneste do grafu. Měřítka os U CE, I C, I, U E volte tak, abyste na plochu formátu A4 zobrazili celou soustavu sítí podle příkladu na obr. 2. b) Přímé převodní charakteristiky vyjadřující funkční závislost I C = f (I ) při U CE = konst. odvodíme graficky z výstupních charakteristik promítnutím průsečíků přímky U CE = konst. s výstupními charakteristikami do souřadnicového systému I, I C. Obdobně lze ze systému vstupních charakteristik odvodit průběh zpětných převodních charakteristik U E = f (U E) pro I = konst. Připomeňme, že všecky čtyři sítě charakteristik vzájemně korespondují.
Obr. 2. Soustava hybridních stejnosměrných charakteristik bipolárního tranzistoru v zapojení SE c) Zakreslete polohu zadaného pracovního bodu do všech sítí, jak je naznačeno na obr. 2. Pro grafické určeni přibližných hodnot hybridních čtyřpólových parametrů h ike užijte postup dle U 255 str. 237.
Zpracování výsledků: Úloha vyžaduje záznam měřených hodnot do tabulek (Tab. 1), grafické vypracováni sítí hybridních charakteristik tranzistoru a grafické odvozeni parametrů. Tab. 1 Výstupní charakteristiky I [µa] U CE [V] 0,1 0,2 0,3 0,4 0,5 1,0 2,0 5,0 10 15 20 I C [mа] 40 I C [mа] 60 I C [mа] 80 I C [mа] 0 I CE0 [µа] Tab. 2 Vstupní charakteristika U CE [V] I [µa] 0,5 1,0 2,0 5,0 10 20 40 60 80 5 U E [V]
2.A VÝKONOVÝ ZESILOVAČ TŘÍDY TDA2003 Zadání: Změřte následující parametry předloženého výkonového integrovaného zesilovače: a) Modulovou kmitočtovou charakteristiku b) Výstupní napětí a výkon v závislosti na napájecím napětí c) Vstupní citlivost a napájecí proud při vybuzení Otázky pro přípravu 1) Jak můžete změřit výstupní výkon integrovaného obvodu výkonového zesilovače? 2) Popište typické pouzdro výkonového integrovaného zesilovače. 3) Jaké další typy výkonových integrovaných zesilovačů znáte a jaké je jejich pouzdro? Schéma zapojení měřicího obvodu je na obr. 1. Zesilovač je sestaven z integrovaného obvodu TDA2003, který má ve své struktuře navržen celou řadu ochran, je odolný proti stejnosměrnému i střídavému zkratu na výstupu, odolává zkratu mezi jednotlivými vývody (piny). Má vestavěnu tepelnou ochranu, je odolný napěťovým rázům až do 40 V a je zabezpečen proti důsledkům náhodně vzniklé otevřené smyčky (při rozpojení zpětné vazby). Integrovaný obvod je vyráběn v pouzdru typu PENTAWATT a v našem případě se jedná o variantu pro svislou montáž. Zapojení měřicího pracoviště: Obr. 1. Zapojení přípravku pro měření nf výkonového zesilovače s IO TDA2003 Výstup zesilovače je zapojen proti zemi podle doporučení výrobce a napájení je nesymetrické. Lze zvolit i variantu tzv. můstkového zapojení (viz technická data). Kondenzátory C 3 a C zlepšují filtraci napájecího
napětí U CC. Rezistor R prakticky určuje vstupní impedanci zesilovače a zároveň zajišťuje nulový vstupní signál ve stavu bez připojení zdroje signálu. Kondenzátor C 1 odděluje vstup integrovaného obvodu od případného stejnosměrného napětí. Rezistory R 1 a R 2 určují zesílení zesilovače a zároveň potlačují vliv kolísání napájecího napětí na vlastnosti zesilovače (tzv. SVR - 5upply Voltage Rejection). Kondenzátor C 2 odděluje stejnosměrné napětí, které je na výstupu integrovaného obvodu (pin 4). Kondenzátor C 4 je výstupní oddělovací kondenzátor. Prvky R3 a C 5 tvoří tzv. oucherotův člen, který kompenzuje vliv případné indukční zátěže (reproduktoru). Použité přístroje: Postup měření: a) Ke vstupním svorkám připojte nf generátor. K výstupním svorkám připojte osciloskop a nf milivoltmetr. K bočním svorkám přípravku připojte napájecí zdroj. Nastavte napájecí napětí U CC = 16 V. Na generátoru nastavte f = 1 khz a úroveň signálu takovou, aby výstupní napětí bylo U O= 2 V (P O = 1 W). Odečtěte hodnotu vstupního napětí U I. Modulovou kmitočtovou charakteristiku změřte v rozsahu kmitočtů f = 20 Hz až 50 khz. V průběhu měření udržujte konstantní vstupní napětí U I stejné jako pro f = 1 khz. Výstupní napětí U O odečtěte pro každý nastavený kmitočet a zapište do tabulky. Přenos napětí K v d vypočtěte podle vztahu: K u = 20 log U O U I Typický průběh měřené závislosti je uveden na Obr. 2. Obr. 2. Typické průběhy charakteristik IO TDA2003
b) Nastavte na generátoru kmitočet f = 1 khz. Napájecí napětí měňte postupně U CC= 6 V, 9 V, 14 V, 16 V, 18 V. Pro každou hodnotu U CC změřte výstupní napětí U O plně vybuzeného zesilovače, tj. výstupní signál na osciloskopu je těsně před omezením bez viditelného zkreslení. Pro danou zátěž zesilovače R L = 4 Ω vypočtěte maximální výstupní výkon pro každou hodnotu U CC: P Omax = U 2 Omax [W, V, Ω] R L Typický průběh měřené závislosti je uveden na Obr. 3. Obr. 3. Typické průběhy charakteristik IO TDA2003 c) Nastavte na generátoru kmitočet f = 1 khz, napájecí napětí U CC= 16 V. Do napájecího obvodu zesilovače připojte miliampérmetr (DU 10, DU 20) a vybuďte zesilovač tak, aby U O = 4 V. Odečtěte velikost vstupního napětí U I a napájecího proudu I CC. Zpracování výsledků: Výsledky měření zapisujte do tabulek podle vzoru Tab. 1 a 2. Výsledky a) zpracujte graficky v semilogaritmickém měřítku. A b) zpracujte graficky jako závislosti K U = f (f), U O = f (U CC), P O = f (U CC). Z kmitočtové závislosti přenosu stanovte šířku pásma přenášených kmitočtů pro pokles přenosu o 3 d. Naměřené a vypočítané hodnoty porovnejte s katalogovými údaji.
Tab. 1 F [Hz] U I [V] U I [V] U O [V] K U K U [d] 20 50 100 200 500 1 10 3 2 10 3 5 10 3 1 10 4 2 10 4 5 10 4 Tab. 2 U CC [V] U Omax [V] P Omax [W] 6 9 14 16 18
2. STAILIZÁTOR NAPĚTÍ MAA723 Zadání: 1) Navrhněte potřebné hodnoty rezistorů pro stabilizátor napěti MAA 723: a) výstupní napěti je v rozsahu U O = 2 V až 7 V, b) výstupní napětí je v rozsahu U O = 7 V až 37 V. 2) Změřte referenční napěti U R, výstupní napěti U O a zatěžovací charakteristiku pro navržený stabilizátor při zadaném vstupním napěti. Otázky pro přípravu: 1) Jaký je rozdíl mezi zapojením stabilizátoru napětí s MAA 723, pro malá (U a < U R) a pro velká (U a > U R) výstupní napětí? 2) Jakým způsobem je omezena hodnota maximálního výstupního proudu? Zapojení měřicího pracoviště: Schéma zapojení stabilizátorů pro oba rozsahy napětí je uvedeno na obr. 1. Jednotlivé rezistory jsou na přípravku realizovány odporovými dekádami XL-6, pro měření napětí je použit číslicový voltmetr (např. M1T 242). UR 8 7 6 4 10 1 ma R1 MAA 723 R3 UI V 3 2 V 5 9 RO IO UO CR R2 100 RL Obr. 1. Schéma zapojeni pro měření IO MAA 723
UR 8 7 6 4 10 R1 1 ma R3 MAA 723 UI V 3 2 V 5 9 RO IO UO 100 R2 RL Obr. 2. Schéma zapojeni pro měření IO MAA 723 Použité přístroje: Postup měření: a) Navrhněte hodnoty rezistorů R 1, R 2 a R 3 pro výstupní napětí U O = (3, 5, 7) V a výstupní proud I O = 50mA. Pro zvolenou hodnotu R 1 (cca 1 až 5 kω) vypočítejte R 2 a R 3 podle vztahů: R 2 = U O. R 1 U R U O ; R3 = R 1. R 2 R 1 + R 2. (Hodnotu referenčního napětí pro výpočet určíte měřením na vývodu č. 4 integrovaného obvodu při vstupním napětí cca 10 V - porovnejte s katalogovou hodnotou U R= 7,15 V). Hodnota R 0 závisí na výstupním proudu I O podle vztahu (je již součástí přípravku): R 0 = 0,65 I O. Hodnoty všech rezistorů nastavte na dekádách, které připojíte do příslušných zdířek na přípravku podle schéma na obr. 1. Na vstup stabilizátoru připojte zdroj a nastavte vstupní napětí U I = 12V. Číslicovým voltmetrem změřte výstupní napětí U O a referenční napětí U R.
Pro měření zatěžovací charakteristiky připojte na výstup stabilizátoru proměnný zatěžovací odpor v sérii s miliampérmetrem. Změnou odporu nastavujte proud v rozmezí 0 až 60 ma a měřte odpovídající výstupní napětí U O. b) Podobně jako v předchozím bodu navrhněte hodnoty R 1, R 2 a R 3 pro výstupní napětí U O = (9, 15, 24) V a výstupní proud I O = 20 ma. Pro zvolenou hodnotu R 1 (cca 5 až 10 kω) vypočítejte R 2 a R 3 podle vztahů: R 2 = U R. R 1 U O U R ; R 3 = R 1. R 2 R 1 + R 2. Hodnoty všech rezistorů nastavte na dekádách, které připojíte k odpovídajícím zdířkám na přípravku podle zapojení na obr. 2. Nastavte vstupní napětí U I = 30 V. Číslicovým voltmetrem změřte výstupní napětí. Zpracování výsledků: Naměřené a vypočítané hodnoty zapisujte do tabulek podle následujícího vzoru: Tab. 1 Stabilizační charakteristika U I [V] 0 2 4 6 8 10 12 14 16 18 20 U Oměř [V] ad a) U Oměř [V] ad b) Tab. 2 Zatěžovací charaktesristika U I [V] 0 10 20 30 40 50 60 U Oměř [V]
3.A LOGICKÝ ČLEN NAND Zadání: 1) Změřte převodní charakteristiku logického členu NAND a posuďte, zda odpovídá tolerančnímu poli. 2) Z logických členů NAND sestavte obvod realizující základní logické funkce NOT, AND, OR, NOR. Otázky pro přípravu: 1) Popište logický člen NAND pravdivostní tabulkou. 2) Určete hodnoty tolerančního pole logického členu NAND realizovaného technikou TTL. 3) Vysvětlete rozdílné požadavky na logické úrovně na vstupu a výstupu logického členu NAND. 4) Vysvětlete pojem logický zisk. Zapojení měřicího pracoviště: Měřeni převodní charakteristiky logického členu NAND bude provedeno v zapojení, nakresleném na obr. 1. Na jeden vstup logického členu NAND je přivedeno vstupní napětí, druhý vstup je připojen na napájecí napětí U CC = 5 V a je na něm tedy logická úroveň H. Vzhledem k charakteru úlohy je zavedeno zjednodušení - na výstup není připojena zátěž. Pro úplné posouzeni funkce logického členu NAND je obvykle požadováno provádět měřeni při připojeni umělé zátěže, která zatíží měřený obvod maximálně přípustným proudem. UCC=5V 01 02 01 02 & 03 14 13 UI V & V 03 04 05 06 07 04 05 10 09 13 & & & 06 08 12 11 10 09 08 Obr. 1. Zapojení pro měření převodní charakteristiky logického členu NAND (a), uspořádáni přípravku pro měření (b). Vlastní měření bude provedeno na přípravku se zapojeným logickým obvodem MH 7400, obsahujícím čtyři dvouvstupové logické členy NAND. Uspořádání přípravku je nakresleno na obr. 1b. Všechny vývody logického obvodu MH 7400 jsou propojeny s dvojicemi zdířek na předním panelu přípravku. To umožňuje snadné připojení požadovaných napětí, jejich měření i propojení logických členů při modelování zadaných logických funkcí. Pamatujte, že při práci se všemi integrovanými obvody je třeba nezapojené vstupy ošetřit, to znamená připojit je na logickou úroveň L nebo H.
Použité přístroje: Postup měření: 1) Zapojte jeden z logických členů NAND obvodu MH 7400, zapojených v přípravku, nakresleném na obr. 1a podle schématu na obr. 1b. Změřte závislost výstupního napětí U O na vstupním napětí U I. Změřenou závislost U O= f (U I) zpracujte ve formě grafické závislosti, do níž zakreslete meze tolerančního pole. Posuďte správnost funkce logického členu NAND. Typický průběh převodní charakteristiky logického členu NAND je na obr. 2. Obr. 2. Typický průběh převodní charakteristiky logického členu NAND. 2) Sestavte z logických členů NAND logické obvody, realizující základní logické funkce NOT, AND, OR, NOR. Správnost sestavení logických obvodů posuďte srovnáním pravdivostních tabulek těchto obvodů s pravdivostními tabulkami zadaných logických funkcí. Zadané logické funkce sestavte z logických členů NAND podle vztahů Y = A, Y = A + = A Y = A = A, Y = A + = A + = A. Zpracování výsledků: Hodnoty vstupního a výstupního napětí, získané při měření převodní charakteristiky zapisujte do tabulky 1. Vstupní napětí nastavujte po 0,4 V, v rozsahu 0,6 až 2,4 V po 0,2 V nebo i menší hodnotě podle strmosti měřené charakteristiky. Závislost U O = f (U I) nakreslete do souřadného systému s
lineárním měřítkem. Do stejného souřadného systému zakreslete toleranční pole logického členu. Pravdivostní tabulky sestavených logických obvodů zpracujte ve formě tabulek Tab. 2 a, b, c, d. Tab. 1 U I [V] 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4 2,6 2,8 U O [V] Tab. 2 a) A Y = A b) A Y = A b) A Y = A + b) A Y = A +
3. MULTIPLEXOR A DEMULTIPLEXOR Zadání: 1) Ověřte funkci multiplexoru. Na základě znalosti jeho funkce určete logické úrovně na vstupech, zadané připojením odpovídajících napětí propojovacím polem. 2) Ověřte funkci demultiplexoru a jeho propojením s multiplexorem se přesvědčte o vzájemně inverzní funkci obou obvodů. 3) Ověřte funkci demultiplexoru jako dekodéru 1 z n. Otázky pro přípravu: 1) Vysvětlete funkci multiplexoru a demultiplexoru, uveďte způsob jejich popisu pravdivostní tabulkou. 2) Navrhněte zapojení demultiplexoru jako dekodéru 1 z n a uveďte rozdíly ve funkci demultiplexoru a dekodéru 1 z n. 3) Jaké další typy dekodérů znáte? 4) Vysvětlete funkci dekodéru pro sedmi segmentové zobrazovací prvky. Zapojení měřicího pracoviště: Funkce multiplexoru a demultiplexoru bude ověřena v zapojení přípravku, nakresleném na obr. 1. Přípravek umožňuje snadnou adresaci vstupů multiplexoru a výstupu demultiplexoru připojením logických úrovní L, H tlačítky, připojení logických úrovní L, H na vstup multiplexoru S a výstupy demultiplexoru G 1, G 2 a indikaci logických úrovní na vstupech a výstupech luminiscenčními diodami. Logické úrovně na výstupu demultiplexoru je možné indikovat připojením k logické sondě s luminiscenční diodou, zabudovanou v přípravku. Logické úrovně na vstupu multiplexoru jsou určeny připojením napětí propojovacím polem. Adresace multiplexoru a demultiplexoru může být provedena samostatně nebo společně pro oba obvody podle polohy přepínače ADRESOVÁNÍ. Použité přístroje: Postup měření: 1) Přepínač ADRESOVÁNÍ přepněte do polohy SAMOSTATNĚ. Na vstup multiplexoru S přiveďte logickou úroveň L. Tlačítky ADRESA postupně adresujte jednotlivé vstupy multiplexoru přivedením logických úrovní, odpovídajících binárním číslům 0000 až 1111, na adresovací vstupy. Podle logických úrovní na výstupu a odpovídajících adres na vstupu logické úrovně na odpovídajících vstupech. Výsledky zpracujte do tabulky. 2) Na vstup demultiplexoru G 2 přiveďte logickou úroveň L. Na vstup G 1 přiveďte logickou úroveň L nebo H a postupnou adresací vstupu demultiplexoru se přesvědčte o přenosu logických úrovni ze vstupu G 1 na výstup. Vstupy G 1, G 2 lze při tomto ověření zaměnit. Přepněte přepínač ADRESOVÁNÍ do polohy SPOLEČNĚ. Tím je umožněno společné adresováni multiplexoru a demultiplexoru adresovacími tlačítky multiplexoru (adresovací tlačítka demultiplexoru jsou
adresa propojovací pole adresa odpojena). Propojte výstup W multiplexoru se vstupem G 1 demultiplexoru. Vstup G 2 demultiplexoru připojte na logickou úroveň L. Společným adresováním multiplexoru a demultiplexoru se přesvědčte o vzájemně inverzní funkci obou obvodů. MX A DC logická sonda C D A C D G1 G2 S samostatně společně L adresa L Obr. 1. Přípravek pro ověření funkce multiplexoru a demultiplexoru. 3) Přepínač ADRESOVÁNÍ přepněte do polohy SAMOSTATNĚ. Na vstupy demultiplexoru G 1, G 2 připojte logické úrovně L. Na adresovací vstupy demultiplexoru přiveďte logické úrovně, odpovídající binárním číslům 0000 až 1111. Zjistěte logické úrovně na výstupech, výsledek zapisujte do tabulky. Demultiplexor pracuje v tomto případě jako dekodér 1 z n. Zpracování výsledků: Zjištěné logické úrovně na vstupech multiplexoru spolu s adresou vstupu zpracujte do tabulky. Funkci demultiplexoru jako dekodéru 1 z n popište tabulkou. Neopomeňte ke každé tabulce uvést logické úrovně na vstupech, které nejsou v tabulce obsaženy, ale jsou pro realizaci dané funkce nezbytné. Ve zhodnocení posuďte správnost funkce ověřovaných obvodů. Na základě získaných poznatků sestavte stručné slovní definice funkce multiplexoru, demultiplexoru a dekodéru 1 z n. Uvědomte si přitom opačné funkce multiplexoru a demultiplexoru a odlišnost funkce demultiplexoru a dekodéru 1 z n.
Tab. 1 ADRESA A C D S = L Tab. 2 VSTUP č. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 L/H ADRESA VÝSTUPY A C D 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 G 1 = L, G 2 = L
& & & & & Sériový výstup 4. A POSUVNÝ REGISTR Zadání: 1) Ověřte funkci posuvného registru a vyjádřete tuto funkci zápisem do zadané tabulky. 2) Ověřte funkci vstupů nulování a nastavení posuvného registru, výsledky zpracujte formou tabulky. Otázky pro přípravu: 1) Vysvětlete funkci posuvného registru. 2) Vysvětlete funkci vstupů NULOVÁNÍ a UVOLŇOVACÍ VSTUP NASTAVENÍ posuvného registru. Zapojení měřicího pracoviště: Měření bude provedeno na přípravku se zapojeným posuvným registrem, nakresleným na obr. 1. Logické úrovně na vstupech a výstupech jsou indikovány luminiscenčními diodami. Vstupní úrovně L, H na vstupech nulování a nastavení jsou generovány připojením napětí O a 5 V tlačítky s označením NULOVÁNÍ, UVOLŇOVACÍ VSTUP NASTAVENÍ. Vstupní svorka, označená posuv, je propojena s výstupem generátoru hodinových impulsů. Funkční přepínač generátoru hodinových impulsů je v poloze RUČNĚ. Generátor hodinových impulsů GHI je přípravek pracující podle polohy funkčního přepínače P ve třech režimech: - TVAROVACÍ OVOD - hodinové impulsy jsou tvarovány ze sinusového průběhu výstupního signálu RC generátoru. - INTERNÍ GENERÁTOR - hodinové impulsy s opakovacím kmitočtem cca 1Hz jsou tvarovány vnitřním generátorem přípravku a umožňují snadnou indikaci logických stavů pomocí ELD. - RUČNÍ SPOUŠTĚNÍ - hodinové impulsy jsou tvarovány RS klopným obvodem ovládaným tlačítkem. Jejich délka je dána dobou stisknutí tlačítka. Sériový vstup Q1 Q2 Q3 Q4 Q5 A0 1 1 S R T S R T S R T S R T S R T posuv C 1 C S R C S R C S R C S R C S R R 1 nulován S uvolňovací vstup Paralelní vstupy A1 A2 A3 A4 A5 Obr. 1. Přípravek pro ověření funkce posuvného registru MH..96.
Použité přístroje: Postup měření: 1) Generátor hodinových impulsů a měřený obvod připojte na napájecí napětí 5 V. Přívody pro napájení jsou vyvedeny na zdířky na boční straně přípravků. Vstupní svorku posuvného registru, označenou POSUV propojte s výstupem Q generátoru hodinových impulsů. Zapojte posuvný registr jako kruhový propojením sériového výstupu se sériovým vstupem. Nastavte logickou úroveň L na uvolňovací vstup S stisknutím tlačítka UVOLŇOVACÍ VSTUP NASTAVENÍ. Tím je zamezeno přenosu logických úrovní z paralelních vstupů na nastavovací vstupy klopných obvodů posuvného registru. Zavedením logické úrovně L na nulovací vstup R sepnutím tlačítka NULOVÁNÍ proveďte vynulování posuvného registru. Opětovným stisknutím tlačítka NULOVÁNÍ tlačítko uvolněte. Na nastavovacích vstupech nastavte zvolenou kombinaci logických úrovni L, H. Uvolněním tlačítka UVOLŇOVACÍ VSTUP NASTAVENÍ přiveďte logické úrovně H na obvody nastavovacích vstupů, které nastaví klopné obvody posuvného registru do požadovaného stavu. Po nastavení posuvného registru stiskněte tlačítko UVOLŇOVACÍ VSTUP NASTAVENÍ (zavedení logické úrovně L) a tím odblokujte paralelní vstupy od vlastního posuvného registru. Stisknutím tlačítka na generátoru hodinových impulsů (zavedením logické úrovně H na vstupní svorku posuv posuvného registru) proveďte posuv binární informace v posuvném registru a ověřte tak jeho funkci. K posuvu dochází při změně logické úrovně L na H. 2) Uvedený postup zopakujte s tím, že hodnoty vstupních logických proměnných R, S, C, A 1 A 5 a výstupních logických proměnných Q 1 Q 5 zapíšete do tabulky. Hodnoty logických proměnných R, S, C odpovídající zadanému postupu jsou předepsány v tabulce. Zpracování výsledků: Logické stavy na vstupech a výstupech posuvného registru, zjištěné při plnění bodu 2) postupu zaznamenejte do tabulky. Některé logické úrovně jsou v tabulce předepsány v souladu s postupem měření. V případě, že je postup nulování a nastaveni posuvného registru zcela jasný, můžete vynechat slovní postup a předepsané operace s posuvným registrem provádět přímo podle tabulky 1. Dodržujte přitom předepsaný postup plnění dílčích operací po jednotlivých řádcích tabulky a uvědomujte si smysl každé operace. Použitá symbolika zápisu do tabulky je vysvětlena v doplňku tabulky. Symbol X označuje libovolný stav logické proměnné. Vyjadřuje skutečnost, že logická proměnná na vstupu může nabývat hodnot L nebo H aniž by ovlivnila logické úrovně na výstupu. Libovolný stav na výstupu. Znamená, že logická úroveň na výstupu není definována a obvykle záleží na předchozí činnosti posuvného registru. Tab. 1 R S C(n) A 1 A 2 A 3 A 4 A 5 Q 1n Q 2n Q 3n Q 4n Q 5n nulování X L L X X X X X X X X X X nulování L L L X X X X X zadávání H L L X X X X X
zadávání H L L přepnutí H H L přepnutí H L L posuv H L L H X X X X X posuv H L L H X X X X X posuv H L L H X X X X X posuv H L L H X X X X X posuv H L L H X X X X X X L H Q 1n Q 5n - libovolný stav - změna logické úrovně L na H - logické proměnné na výstupech po změně logické úrovně L na H na vstupy C (POSUV)
4. ČÍTAČ Zadání: 1) Ověřte funkci nastavovacích vstupů čítače. 2) Ověřte funkci čítače. 3) Ověřte funkci čítače jako děliče modulo n (n = 2, 4, 8, 16, 7, 10) 4) Navrhněte zapojeni čítače jako děliče n (n = 6, 9, 13) a ověřte prakticky správnost návrhu. Nakreslete časové průběhy na vstupu a výstupu čítače, zapojeného jako děliče n. Otázky pro přípravu: 1) Popište funkci čítače, vysvětlete funkci nastavovacích vstupů. 2) Navrhněte zapojení čítače jako děliče n = 2 až 16. Zapojení měřicího pracoviště: Měření bude provedeno na přípravku, nakresleném na obr. 1. Přípravek umožňuje snadné připojení logických úrovní na nastavovací vstupy i propojení vstupu čítače s generátorem čítaných impulsů. Vstupní čítané impulsy jsou přiváděny na vstup čítače z generátoru hodinových impulsů, popsaného v úloze 4. A. Výstup GHI Q je propojen se vstupem čítače C. Logické úrovně na vstupech a výstupech jsou indikovány luminiscenčními diodami. Použité přístroje: Postup měření: 1) Generátor hodinových impulsů a měřený obvod připojte na napájecí napětí SV. Přívody pro napájení jsou vyvedeny na zdířky na boční straně přípravku. Propojte výstup Q prvního klopného obvodu čítače se vstupem druhého klopného obvodu. Na vstup C čítače připojte výstup Q generátoru hodinových impulsů. GHI přepněte do polohy RUČNÍ. Připojte na nastavovací vstupy R 0(1), R 0(2) možné kombinace logických úrovní L a H a zjistěte reakci čítače na přivedení čítaných impulsů, které generujte stisknutím tlačítka na generátoru hodinových impulsů. Výsledky zpracujte do tabulky 2. 2) Na základě ověření funkce nastavovacích vstupů proveďte vynulováni čítače a přivedením potřebných logických úrovní na nastavovací vstupy jej připravte k čítání. Na vstup čítače přiveďte impulsy z generátoru hodinových impulsů. Při poloze přepínače P na GHI RUČNĚ jsou impulsy generovány stisknutím tlačítka, při poloze přepínače INTERNÍ GENERÁTOR vnitřním generátorem pracujícím s kmitočtem 1 Hz. Závislost výstupních logických proměnných čítače na počtu vstupních impulsů zaznamenejte do tabulky 3.
MH 7493 A QA Q QC QD H H H J K T J K T J K T J K T C R C R C R C R & & & H L POMOCNÝ OVOD MH 7420 Obr. 1. Přípravek pro ověření funkce čítače. A A A QA Q A A A QA Q Ro(1) Ro(1) C QC Q H Ro(1) Ro(1) C QC Q & & H Obr. 2. Zapojení čítače jako děliče n = 10 a 7. 3) Zapojte měřený čítač M 7493 jako dělič kmitočtu n = 2, 4, 8, 16 podle tabulky 1 a jako dělič kmitočtu n = 7, 10 podle schématu na obr. 2. Ověřte funkci těchto zapojení. 4) Na základě předchozích poznatků navrhněte zapojení čítače jako děliče n = 6, 9, 13 a ověřte správnost navržených zapojení. Zapojení nakreslete do laboratorního deníku. Nakreslete časové průběhy na vstupu a výstupu čítače zapojeného jako dělič n = 6, 7, 9. Tab. 1 Dělící poměr Vstup Výstup A 2 A (Q A ) 4 Q A Q Q Q C
8 A (Q A ) Q C Q D 16 A (Q A ) Q D Q A označuje propojení výstupu Q A se vstupem Zpracování výsledků: Reakci čítače na logické úrovně L, H na nastavovacích vstupech R 0(1) a R 0(2) zaznamenejte do tab. 2. V případě, že při zvolené kombinaci L, H čítač čítá, zaznamenejte tento stav do tabulky. Funkci čítání popište do tab. 3. Tab. 2 R 0(1) R 0(2) Q A Q Q Q D Tab. 3 n Q A Q Q Q D 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Ověřené zapojeni čítače jako děliče n = 6, 9, 13 nakreslete. Časové průběhy na vstupu a výstupu čítače zapojeného jako dělič n = 6, 7, 9 nakreslete.
5. A ELEKTROLUMINISCENČNÍ DIODA Zadání: a) Změřte V-A charakteristiku elektroluminiscenční diody WK 164 05 v přímém směru. b) Změřte výkonovou vyzařovací W-A charakteristiku ELD. c) Změřte směrovou vyzařovací charakteristiku ELD. Otázky pro přípravu: 1) Nakreslete a popište průběhy statických charakteristik elektroluminiscenčních diod. 2) Jaká je fyzikální podstata spektrálních vyzařovacích charakteristik elektroluminiscenčních diod. Zapojení měřicího pracoviště: K měření je použito přípravku, který obsahuje jednak obvod pro nastavení pracovního bodu ELD a dále fotodetektor pro měření zářivého výkonu, který je posuvný a umožňuje měření výkonu v různých vzdálenostech od ELD. Ta je umístěna v otočném držáku s ukazatelem, pro nastavení požadovaného úhlu natočení. + IF ma LED 90 80 70 60 50 40 30 20 FOTODETECTOR USS UF V 10 V - 90 80 70 60 20 30 40 50 10 [1V=1mW] Obr. 1. Schéma zapojení pracoviště pro měření ELD.
Použité přístroje: Postup měření: a) Zapojte přípravek podle obr. 1. Nastavujte hodnoty proudu I F v rozsahu od 1 do 30 ma a měřte odpovídající hodnoty napětí U F. Výsledky zapisujte do tabulky. b) Voltmetr přepojte z pozice V 1 na výstup fotodetektoru (V 2). Nastavujte stejné hodnoty proudu I F jako při měření V-A charakteristiky a odečítejte hodnoty výstupního výkonu. Při tom je fotodetektor v těsné blízkosti ELD a její úhel natočení je nulový. Vyzářený výkon ELD se měří fotodetektorem s fotodiodou 1 PP 75, jejíž fotoelektrický proud nakrátko je převodníkem I/U převeden na napětí. Cejchování je provedeno tak, že U O = 1V odpovídá Φ e = 1 mw. c) Při čtení směrové vyzařovací charakteristiky ELD nastavte doporučenou hodnotu I F a vzdálenosti fotodetektoru. Natáčením osy záření ELD vůči fotodetektoru v úhlu 0 až ± 90 odečítejte pro nastavené úhly odpovídající vyzářený výkon. Hodnoty výkonu přepočítejte na relativní hodnoty v procentech vzhledem k výkonu pro nulový úhel natočení. Ze zakreslené vyzařovací charakteristiky vyhodnoťte úhel polovičního vyzářeného výkonu α/2. Zpracování výsledků: Výsledky měření zpracujte do tabulek a do tří grafů I F = f (U F), Φ e = f(i F) a Φ e = f(α). Tab. 1. VA charakteristika LED v propustném směru I F [ma] U F [V] Tab. 2. Výkonová charakteristika LED I F [ma] Φ e [mw] Tab. 3. Směrová charakteristika LED pro IF = ma. ϕ [ ] Φ e [mw] Φ e [mw]
Příklad grafického znázornění Obr. 2. Obr. 2. Ukázka voltampérové, výkonové a směrové vyzařovací charakteristiky ELD.
5. FOTODIODA Zadání: a) Změřte V-A charakteristiku fotodiody 1PP75 za tmy a při osvětlení pro zářivý výkon zdroje v rozsahu Φ e = 1, 2, 3, 4, 5 mw. b) Změřte závislost fotoelektrického proudu nakrátko I LO na zářivém výkonu Φ e. c) Změřte závislost fotovoltaického napětí naprázdno U L na zářivém výkonu Φ e. Otázky pro přípravu: 1) Jaká je fyzikální podstata fotovoltaického jevu při interakci světla s přechodem P-N? 2) Vymezte na typickém průběhu V-A charakteristiky fotodiody za tmy a při jistém konstantním ozářeni pracovní režimy "fotodiodový" a "fotovoltaický". Zapojení měřicího pracoviště: K měření je použito přípravku se zabudovaným zdrojem optického záření, tvořeného elektroluminiscenční diodou, vyzařující na vlnové délce λ = 950 nm. Vyzářený výkon lze přepínat stupňovitě v rozsahu 0 až 5 mw. Měřicí obvod umožňuje práci ve třech režimech. V poloze přepínače V-A je po připojení miliampérmetru a voltmetru možno měřit voltampérové charakteristiky fotodiody. V poloze I L0 je k diodě připojen převodník proud/napětí, který umožňuje měřit proud nakrátko. V poloze U L pak je k diodě připojen voltmetr pro měření fotovoltaického napětí naprázdno. Použité přístroje: Postup měření: a) Zapojte přípravek podle obrázku. Přepínač FUNKCE v poloze V-A. Přepínač Φ e je v poloze 0 (charakteristika fotodiody za tmy). Nastavujte napětí na diodě v rozsahu od -2 V do +0,5 V, odečítejte proud ID a výsledky zapisujte do tabulky. Nastavte Φ e = 1 mw a opakujte postup. b) Přepínač FUNKCE je v poloze I LO. Postupně nastavujte Φ e v rozsahu od 1 do 5 mw a odečítejte napětí na voltmetru připojeném k výstupu převodníku I/U. Hodnota ve voltech odpovídá proudu nakrátko v ma. Výsledky zapište do tabulky. c) Přepínač FUNKCE je v poloze U L. Postupně nastavujte Φ e od 0 do 5 mw a odečítejte napětí na voltmetru. Výsledky zapište do tabulky.
1 2 FUNKCE: 1) V-A charakteristika, 3 2) proud IL0 (nakrátko), 4 3) napětí UL (naprázdno) 0 5 U D Φ e [mw] ma UCC10 +5V I/U V UCC2+± 15V FUNKCE V-A I L0 U L Obr. 1. Zapojení pracoviště pro měření fotodiody. Zpracování výsledků: Výsledky zpracujte graficky do tří grafů: I D = f(u D), Φ e = par.; I L0 = f(φ e); U L = f(φ e). Pro zapsání výsledků je možno použít následující tabulky. Typické průběhy uvedených závislosti jsou uvedeny na obr. 2. Do tabulky 1 použijte krok hodnot U R po 0,5 V a krok U F po 0,1 V. Tab. 1. I D [ma] U R [V] U F [V] Φ e [mw]
Tab. 2. Φ e [mw] I L0 [ma] U L [V] Obr. 1. Příklad grafického zpracování charakteristik.