Předmět: KBB/BB1P; KBB/BUBIO

Podobné dokumenty
B4, 2007/2008, I. Literák

Energetický metabolizmus buňky

METABOLISMUS SACHARIDŮ

Eva Benešová. Dýchací řetězec

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Fotosyntéza světelná fáze. VY_32_INOVACE_Ch0214.

Charakteristika složky 3) cytochrom-c NADH-Q-reduktasa cytochrom-c- oxidasa ubichinon cytochromreduktasa

Energetika a metabolismus buňky

Název: Fotosyntéza, buněčné dýchání

ení k tvorbě energeticky bohatých organických sloučenin

Energie fotonů je předávána molekulám chlorofylu A, který se zachyceným fotonem excituje (uvolní se energeticky bohatý elektron).

1- Úvod do fotosyntézy

FOTOSYNTÉZA. Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_07_BI1

Fotosyntéza (2/34) = fotosyntetická asimilace

FOTOSYNTÉZA. soubor chemických reakcí,, probíhaj v rostlinách a sinicích. z CO2 a vody jediný zdroj kyslíku ku pro život na Zemi

ANABOLISMUS SACHARIDŮ

FOTOSYNTÉZA. CO 2 a vody. - soubor chemických reakcí. - probíhá v rostlinách a sinicích. - zachycení a využití světelné energie

FOTOSYNTÉZA. Princip, jednotlivé fáze

BUŇKA A ENERGIE. kajman brýlový Caiman crocodilus Kostarika, Biologie 6, 2015/2016, Ivan Literák

FYZIOLOGIE ROSTLIN VÝŽIVA ROSTLIN 1) AUTOTROFNÍ VÝŽIVA ROSTLIN 2) HETEROTROFNÍ VÝŽIVA ROSTLIN

Konsultační hodina. základy biochemie pro 1. ročník. Přírodní látky Úvod do metabolismu Glykolysa Krebsův cyklus Dýchací řetězec Fotosynthesa

DÝCHÁNÍ. uložená v nich fotosyntézou, je z nich uvolňována) Rostliny tedy mohou po určitou dobu žít bez fotosyntézy

Každá molekula kyslíku kterou právě dýcháme vznikla někdy v nějaké rostlině. Každý atom uhlíku našeho těla byl kdysi včleněn fotosyntézou do nějaké

Fyziologie rostlin. 9. Fotosyntéza část 1. Primární fáze fotosyntézy. Alena Dostálová, Ph.D. Pedagogická fakulta ZČU, letní semestr 2013/2014

Fyziologie buňky. RNDr. Zdeňka Chocholoušková, Ph.D.

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN

Dýchací řetězec. Viz též přednášky prof. Kodíčka (snímky a blány v levém sloupci)

Předmět: KBB/BB1P; KBB/BUBIO

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Fotosyntéza

Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech

BUŇKA A ENERGIE. kajman brýlový Caiman crocodilus Kostarika, Biologie 8, 2017/2018, Ivan Literák

14. Fyziologie rostlin - fotosyntéza, respirace

Otázka: Metabolismus. Předmět: Biologie. Přidal(a): Furrow. - přeměna látek a energie

Biosyntéza sacharidů 1

FOTOSYNTÉZA Správná odpověď:

Praktické cvičení č. 11 a 12 - doplněno

Dýchací řetězec (Respirace)

Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy

Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková

Metabolismus příručka pro učitele

Autor: Katka Téma: fyziologie (fotosyntéza) Ročník: 1.

12-Fotosyntéza FRVŠ 1647/2012

35.Fotosyntéza. AZ Smart Marie Poštová

Přednáška 6: Respirace u rostlin

Energetické zajištění života buněk mitochondrie a plastidy

Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení

Ukázky z pracovních listů z biochemie pro SŠ A ÚVOD

VAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost

Inovace profesní přípravy budoucích učitelů chemie

Vyjádření fotosyntézy základními rovnicemi

Látky jako uhlík, dusík, kyslík a. z vnějšku a opět z něj vystupuje.

Respirace. (buněčné dýchání) O 2. Fotosyntéza Dýchání. Energie záření teplo BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3

FOTOSYNTÉZA I. Přednáška Fyziologie rostlin MB130P74. Katedra experimentální biologie rostlin, Z. Lhotáková

Katabolismus - jak budeme postupovat

METABOLISMUS SACHARIDŮ

MitoSeminář II: Trochu výpočtů v bioenergetice. Souhrn. MUDr. Jan Pláteník, PhD. Ústav lékařské biochemie 1.LF UK

Sacharidy a polysacharidy (struktura a metabolismus)

Fotosyntéza a Calvinův cyklus. Eva Benešová

9. Dýchací řetězec a oxidativní fosforylace. mitochondriální syntéza ATP a fotosyntéza

Buněčný metabolismus. J. Vondráček

umožňují enzymatické systémy živé protoplazmy, nezbytný je kyslík,

Fotosyntéza Světelné reakce. Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni

- metabolismus soubor chemických reakcí probíhajících v živých organismech a mezi organismy a jejich životním prostředím

Dýchací řetězec (DŘ)

FOTOSYNTÉZA ZÁKLAD ŽIVOTA NA ZEMI

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Transport elektronů a oxidativní fosforylace

Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách

DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal ::

BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ

Univerzita Karlova v Praze - 1. lékařská fakulta. Buňka. Ústav pro histologii a embryologii

Digitální učební materiál

Mitochondrie. Rostlinná cytologie, Katedra experimentální biologie rostlin PřF UK

BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA:

TRANSPORT PŘES MEMBRÁNY, MEMBRÁNOVÝ POTENCIÁL, OSMÓZA

ENERGIE BUNĚČNÁ RESPIRACE FOTOSYNTÉZA Doc. MVDr. Eva Bártová, Ph.D.

Buňka. Autor: Mgr. Jitka Mašková Datum: Gymnázium, Třeboň, Na Sadech 308

9. Citrátový cyklus, oxidační dekarboxylace pyruvátu a anaplerotické dráhy

Otázka: Základní děje na buněčné úrovni. Předmět: Biologie. Přidal(a): Growler. - příjem látek buňkou

Aerobní odbourávání cukrů+elektronový transportní řetězec

pátek, 24. července 15 BUŇKA

FOTOBIOLOGICKÉ POCHODY

DUM č. 3 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika

Efektivní adaptace začínajících učitelů na požadavky školské praxe

Hořčík. Příjem, metabolismus, funkce, projevy nedostatku

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ

Buňka buňka je základní stavební a funkční jednotka živých organismů

FOTOSYNTÉZA V DYNAMICKÝCH

1. Napište strukturní vzorce aminokyselin E a W a vzorce guanosinu a uracilu

Projekt realizovaný na SPŠ Nové Město nad Metují

Regulace metabolických drah na úrovni buňky

- pro učitele - na procvičení a upevnění probírané látky - prezentace

Metabolismus krok za krokem - volitelný předmět -

Metabolismus. Source:

5. Lipidy a biomembrány

5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku

Test pro přijímací řízení magisterské studium Biochemie Napište vzorce aminokyselin Q a K

Nejmenší jednotka živého organismu schopná samostatné existence. Výměnu látek Růst Pohyb Rozmnožování Dědičnost

Název: Fotosyntéza. Autor: Mgr. Jiří Vozka, Ph.D. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy

Energetický metabolismus rostlin

Transkript:

Předmět: KBB/BB1P; KBB/BUBIO

Energie z mitochondrií a chloroplastů Cíl přednášky: seznámit posluchače se základními principy získávání energie v mitochondriích a chloroplastech Klíčová slova: mitochondrie, chloroplast, protonový gradient, redoxní potenciál, fotosyntéza

Obrázky v následující prezentaci jsou převzaty z níže uvedené knihy výlučně k výukovým účelům. The illustrations in following lecture are taken from Alberts et al. Molecular Biology of the Cell, 5th Edition (Garland Science 2008) only and exclusively for the educational purposes. Alberts Johnson Lewis Raff Roberts Walter Molecular Biology of the Cell Fifth Edition Copyright Garland Science 2008

Geologická perspektiva v době počátků života na Zemi nebyl v atmosféře žádný kyslík, proto první živé organismy získávaly energii anaerobně (např. dodnes fungující mechanismus fermentace) asi před 3,5 miliardami let ovšem už existovaly první fotosyntetické organismy, které produkovaly kyslík a postupně (během dalších dvou miliard let) změnily složení atmosféry přítomnost kyslíku v atmosféře umožnila dýchání, čili aerobní uvolňování energie spalováním organických látek za vzniku vody a oxidu uhličitého dýchání je charakteristické pro všechny vyšší formy života

fotosyntéza a dýchání jsou založeny na využití transportu elektronů v membránách

Fermentace (kvašení)

Chemiosmotické spřažení jak víme, malé množství ATP se v běžné buňce tvoří při glykolýze v cytosolu, většina ATP se ale tvoří na membránách mitochondrií a chloroplastů, a to ve dvou fázích: 1. fáze: elektrony (pocházející z oxidace molekul potravy či odjinud) jsou přenášeny řadou přenašečů elektronů, která je zanořená v membráně tak se získá energie, jež je využita pro transport protonů (H + iontů) přes membránu vzniká tak elektrochemický gradient protonů 2. fáze: protony posléze proudí zpět ve směru gradientu (čili samovolně) dovnitř přes membránu, pohánějí enzym ATP-syntázu, který převádí ADP na ATP

spojení těchto dvou fází se nazývá chemiosmotické spřažení (Mitchell Nobelova cena 1978)

Původ chemiosmotického spřažení chemiosmotické spřažení se nejprve vyvinulo u bakterií a sinic, teprve pohlcením bakterií a sinic vznikly mitochondrie a chloroplasty v eukaryotní buňce u dýchání vysokoenergetické elektrony pocházejí z oxidace glukózy nebo mastných kyselin (tedy z potravy) a konečným příjemcem elektronů je kyslík (za vzniku vody) některé bakterie jsou schopny vysokoenergetické elektrony získávat z anorganických látek (např. sirné bakterie) u fotosyntézy jsou vysokoenergetické elektrony získány při působení světla na molekulu chlorofylu (dojde k rozkladu vody na kyslík, protony a elektrony elektrony přeberou energii světla a stanou se vysokoenergetickými)

Mitochondrie mitochondrie obsahují svou vlastní DNA, RNA a také ribozomy a obecně se podobají bakteriím provádějí svou vlastní transkripci a translaci (semiautonomní organely) mitochondrie má dvě membrány vnější a vnitřní, prostor obklopený vnitřní membránou je tzv. matrix, prostor mezi membránami je mezimembránový prostor každá z těchto částí mitochondrie obsahuje jedinečnou sbírku proteinů vnitřní membrána tvoří řadu záhybů, známých jako kristy, které zasahují do prostoru matrix a značně zvětšují povrch vnitřní membrány

wikipedia

v některých buňkách jsou mitochondrie přítomny ve velkém množství, rychle se pohybují a mění tvar, v jiných buňkách jsou pevně vázány v jednom místě, aby dodávaly ATP do míst vysoké spotřeby (např. srdeční sval nebo bičík spermie)

Funkční struktura mitochondrie vnější membrána obsahuje molekuly transportního proteinu porinu, který tvoří vodné kanály dvojnou vrstvou lipidů. Vnější membrána je tedy propustná jako síto pro všechny malé molekuly to činí mezimembránový prostor chemicky ekvivalentním cytosolu vnitřní membrána je naopak nepropustná pro ionty a většinu malých molekul tato membrána je místem přenosu elektronů a H + a obsahuje enzymy elektrontransportního řetězce, ATP-syntázu a transportní proteiny umožňující vstup a výstup metabolitů z/do matrix matrix enzymy účastnící se oxidace pyruvátu a mastných kyselin, enzymy citrátového cyklu, DNA, RNA, ribozomy

Přenos elektronů ve vnitřní membráně trávení acetyl-coa) glykolýza/b oxidace mastných kyselin (tvorba citrátový cyklus (opakování!) citrátový cyklus produkuje kromě odpadního CO 2 také vysokoenergetické elektrony na NADH a FADH 2 a ty jsou potom přenášeny na vnitřní membránu, kde vstupují do elektrotransportního řetězce (dýchací řetězec) ten zajišťuje oxidativní fosforylaci a obsahuje více než 40 proteinů, z nichž 15 je přímo zapojeno do přenosu elektronů. Je složen ze 3 enzymových komplexů: 1. NADH-dehydrogenázový komplex 2. komplex cytochromů b-c 1 3. cytochromoxidázový komplex

Elektrontransportní řetězec přenos elektronů v elektrontransportním řetězci probíhá na základě rozdílných hodnot redoxního potenciálu jednotlivých molekul (tendence molekul přijímat elektrony) Elektrony přitom přecházejí z molekul s nižším redoxním potenciálem na ty s vyšším redoxním potenciálem

NADH-dehydrogenáza obsahuje několik Fe-S-center, která si předávají elektrony až na další molekulu ubichinon další část řetězce je tvořena cytochromy obsahují atomy železa vázané v hemových skupinách a májí vyšší afinitu k elektronům (vyšší redoxní potenciál) než ubichinon také cytochromoxidázy jsou tvořeny hemovými skupinami, v nichž je vázáno buď železo nebo měď

Aktivní přenos protonů při průchodu elektronů každým ze tří komplexů je přes membránu ven čerpán (aktivně) vodíkový kation mechanismus detailně známe pouze u cytochromoxidázy, která přebírá elektrony z cytochromu c, a tím ho oxiduje čerpání protonů je vyvoláno allosterickými změnami v konformaci proteinu (cytochromoxidázy), které jsou poháněny energií, pocházející z transportu elektronů cytochromoxidáza přenáší elektrony na kyslík (a tím ho redukuje kyslík má mimořádně vysoký redoxní potenciál a hned po fluoru nejvyšší afinitu k elektronům v rámci celé periodické soustavy) a vytváří tak oxidový anion, který se spojuje s protony za vzniku vody (konec dýchacího řetězce)

Oxidativní fosforylace vysokoenergetické elektrony jsou ve vnitřní membráně přenášeny tak, že jejich energie klesá a je uvolňována k aktivnímu přenosu H + přes vnitřní membránu ven takto se pohání aktivní transport protonů přes vnitřní membránu do mezimembránového prostoru a tím se vytváří gradient náboje (potenciál) i koncentrační gradient tento gradient žene protony zpět do matrix mitochondrie v místě, kde je navázaná ATP-syntáza, a otáčí jí, čímž dochází k syntéze ATP v procesu tzv. oxidativní fosforylace (více než 100 molekul ATP za vteřinu) elektrochemický gradient je hnací silou také pro transport některých látek (pyruvát, P i, ADP, ATP)

Fotosyntéza všechny organické (uhlíkaté) látky, které vyžadují dnešní běžné buňky, vznikají při fotosyntéze, kdy se energie světla využívá k syntéze organických molekul z oxidu uhličitého, který je přítomen v atmosféře rostliny, řasy a fotosyntetické bakterie využívají elektrony z vody a energii světla na převedení CO 2 na organické sloučeniny (typicky glukózu) v rostlinách provádějí fotosyntézu organely zvané chloroplasty, které využívají denní světlo na výrobu ATP a NADPH, pomocí nichž se CO 2 uvnitř chloroplastu mění na cukry cukry jsou pak přenášeny do cytosolu, kde se používají buď pro dýchání nebo k syntéze jiných molekul

Struktura chloroplastů podobně jako mitochondrie i chloroplasty patří mezi semiautonomní organely a jejich vnitřní membrána je rovněž mnohem méně propustná než vnější (ve vnitřní membráně jsou pak zanořeny transportní proteiny) vnitřní membrána neobsahuje elektrontrasportní řetězec, místo toho jsou elektrontransportní řetězec, ATP-syntáza a systémy zachycující světlo obsaženy v tzv. thylakoidní membráně, která tvoří soubor váčků, nazývaných thylakoidy thylakoidy jsou uspořádány v granach a prostory uvnitř thylakoidů jsou propojeny tak, že tvoří jednotný prostor chloroplast se tedy skládá z: vnější a vnitřní membrány, mezimembránového prostoru, stromy a thylakoidů

Chloroplast vs. mitochondrie

Fáze fotosyntézy 1. (světelná) fáze: energie ze slunečního světla je pohlcena elektronem v zeleném barvivu chlorofylu, čímž vznikají elektrony s vysokým obsahem energie, jež putují elektrontransportním řetězcem v thylakoidní membráně chlorofyl získává své elektrony z vody, a tím je oxidový anion z vody oxidován na O 2 a uvolněn do okolí (fotolýza vody) během putování elektronů v řetězci dochází k uvolnění jejich energie, jež je využita na aktivní transport protonů přes thylakoidní membránu dovnitř thylakoidů. Vzniká tak elektrochemický gradient, což následně vede k syntéze ATP ve stromatu chloroplastu

v posledním kroku řetězce se vysokoenergetické elektrony (společně s H + ) spojí s molekulou NADP + a vzniká tak NADPH všechny tyto reakce probíhají uvnitř chloroplastu 2. (temnostní) fáze: ve světelné fázi fotosyntézy vytvořené ATP a NADPH slouží jako zdroj energie pro redukci CO 2 při syntéze organických látek, tzv. fixace uhlíku tento proces začíná ve stromatu a pokračuje v cytoplasmě ve 2. fázi fotosyntézy se odehrává Calvinův cyklus

1. (světelná) fáze fotosyntézy světelná energie je absorbována molekulami chlorofylu nacházejícími se ve velkých multiproteinových komplexech - fotosystémech (fotosystém II a fotosystém I) část fotosystému složena ze stovek molekul chlorofylu zvaná anténa zachycuje fotony a jejich energii je využita k excitaci elektronů energie excitovaných elektronů je postupně předávána od jedné molekuly chlorofylu ke druhé až do tzv. reakčního centra fotosystému v reakčním centru je vysokoenergetický elektron přenesen do elektrontransportního řetězce v thylakoidní membráně

Průběh světelná fázi fotosyntézy k fotosyntéze je zapotřebí dvou fotonů světelná energie (první foton) je nejprve absorbována fotosystémem II, kde vzniká vysokoenergetický elektron, který je přepravován elektrotransportním řetězcem za vzniku elektrochemického gradientu. Gradient je následně využit na pohon ATP-syntázy a dochází k tvorbě ATP z fotosystému II je elektron přenesen do fotosystému I, z kterého je přepravován elektrontransportním řetězcem za vzniku NADPH. Protože energie elektron při přechodu z fotosystému II do fotosystému I byla využita na transport H +, ke vzniku vysokoenergetického elektronu je nutné opětovně dodat energii (druhý foton)

v celém procesu je elektron odstraněn z reakčního centra fotosystému II předán molekule NADPH. Tento elektron je nahrazen elektronem vznikajícím při fotolýze vody

2. (temnostní) fáze fotosyntézy ve druhé fázi fotosyntézy se CO 2 z atmosféry spojuje nejprve s pětiuhlíkovým cukerným fosfátem a vodou za vzniku dvou trojuhlíkatých molekul enzym katalyzující tuto reakci se nazývá ribulosa-1,5-bisfosfát karboxyláza (RuBisCO), je velmi pomalý a musí ho být tedy v chloroplastu velké množství reakce probíhají v strome chloroplastů až ke vzniku glyceraldehyd-3-fosfátu (NADPH se oxiduje na NADP +, spotřeba ATP), který může přejít do cytosolu (např. do glykolýzy, nebo se z něj vytváří sacharóza a zejména škrob) nebo může být zpět regenerován na pětiuhlíkatý cukerný fosfát, který na sebe opět váže oxid uhličitý a cyklus (tzv. Calvinův cyklus) se stále opakuje