Molekuly. Vazby, přechody mezi energetickými hladinami, laser

Podobné dokumenty
Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka.

Úvod do spektrálních metod pro analýzu léčiv

1. 5 I N T E R A K C E A T O MŮ

13. Spektroskopie základní pojmy

- Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl. - fluorescence - fosforescence

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu

Fluorescence (luminiscence)

SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Optické spektroskopie 1 LS 2014/15

Vybrané spektroskopické metody

Emise vyvolaná působením fotonů nebo částic

INSTRUMENTÁLNÍ METODY

ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY

Elektronový obal atomu

Od kvantové mechaniky k chemii

Nekovalentní interakce

Lasery. Biofyzikální ústav LF MU. Projekt FRVŠ 911/2013

Barevné principy absorpce a fluorescence

MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5

Nekovalentní interakce

Fyzika IV Dynamika jader v molekulách

Spektroskopické metody. převážně ve viditelné, ultrafialové a blízké infračervené oblasti

Laserové technologie v praxi I. Přednáška č.1. Fyzikální princip činnosti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011

Barevné principy absorpce a fluorescence

Luminiscence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence. chemicky (chemiluminiscence)

Struktura atomů a molekul

Spektroskopie v UV-VIS oblasti. UV-VIS spektroskopie. Roztok KMnO 4. pracuje nejčastěji v oblasti nm

Metody charakterizace nanomaterálů I

37 MOLEKULY. Molekuly s iontovou vazbou Molekuly s kovalentní vazbou Molekulová spektra

Spektrometrické metody. Reflexní a fotoakustická spektroskopie

SPEKTROMETRIE. aneb co jsem se dozvěděla. autor: Zdeňka Baxová

Stručný úvod do spektroskopie

Lasery optické rezonátory

Zdroje optického záření

Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence)

KOMPLEXY EUROPIA(III) LUMINISCENČNÍ VLASTNOSTI A VYUŽITÍ V ANALYTICKÉ CHEMII. Pavla Pekárková

Kapitoly z fyzikální chemie KFC/KFCH. VII. Spektroskopie a fotochemie

Úvod do laserové techniky

Optoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA)

SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE)

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ

Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal.

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL

Plazmové metody. Základní vlastnosti a parametry plazmatu

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =

Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm

Molekuly 1 12/4/2011. Molekula definice IUPAC. Molekuly. Proč existují molekuly? Kosselův model. Představy o molekulách

ATOM VODÍKU MODEL : STOJÍCÍ BODOVÉ JÁDRO A ELEKTRON VZÁJEMNĚ ELEKTROSTATICKY INTERAGUJÍCÍ SCHRÖDINGEROVA ROVNICE PRO PŘÍPAD POTENCIÁLNÍ ENERGIE.

Teorie Molekulových Orbitalů (MO)

CZ.1.07/2.2.00/ AČ (RCPTM) Spektroskopie 1 / 24

Vazby v pevných látkách

2. Elektrotechnické materiály

Metody spektrální. Metody molekulové spektroskopie. UV-vis oblast. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Zeemanův jev. 1 Úvod (1)

Úloha 15: Studium polovodičového GaAs/GaAlAs laseru

Infračervená spektroskopie

Přednáška IX: Elektronová spektroskopie II.

2 Nd:YAG laser buzený laserovou diodou

Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok

Něco o laserech. Ústav fyzikální elektroniky Přírodovědecká fakulta Masarykovy univerzity 13. května 2010

Základy fyzikálněchemických

Laserové technologie v praxi I. Přednáška č.2. Základní konstrukční součásti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011

METODY ANALÝZY POVRCHŮ

SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK


Průmyslové lasery pro svařování

Struktura elektronového obalu

Měření charakteristik pevnolátkového infračerveného Er:Yag laseru

7. Měření fluorescence při excitaci kontinuálním světlem ( steady-state )

Born-Oppenheimerova aproximace

Praktikum III - Optika

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony

Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1.

TECHNICKÁ UNIVERZITA V LIBERCI

Laserová technika prosince Katedra fyzikální elektroniky.

Automatizace výrobních procesů ve strojírenství a řemesel, CZ.1.07/1.1.30/ , Přednáška - KA 5

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Opakování

Balmerova série, určení mřížkové a Rydbergovy konstanty

CHARAKTERIZACE MATERIÁLU II

MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník

FLUORIMETRICKÉ STANOVENÍ FLUORESCEINU

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL

ZÁŘENÍ V ASTROFYZICE

Vybrané metody spektráln. lní analýzy. Metody charakterizace nanomaterálů I

Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika

Netradiční světelné zdroje

Jádro se skládá z kladně nabitých protonů a neutrálních neutronů -> nukleony

Laserové technologie v praxi I. Přednáška č.8. Laserové zpracování materiálu. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011

Transkript:

Molekuly Vazby, přechody mezi energetickými hladinami, laser

2 Interakce mezi atomy Je zprostředkována elektromagnetickou interakcí (jedna ze čtyř základních fyzikálních interakcí). Ve většině případů hraje významnější roli elektrická interakce, resp. elektrostatická interakce (slabší magnetické síly lze zanedbat). Vysvětlit působení mezi atomy není obecně možné pouze na základě klasického pohledu na elektrostatickou interakci (Coulombův zákon), systém musíme popisovat kvantově. Mezi atomy může vznikat velmi pevná vazba interakce mezi atomy je silná (velké síly) tzv. chemická vazba (velké vazebné energie) vznikají molekuly Mezi atomy nebo molekulami působí také slabší síly tzv. slabé mezimolekulové interakce (malé vazebné energie) mohou vznikat např. shluky atomů či molekul = klastry

3 Podmínky vzniku chemické vazby Podmínka rovnováhy Atomy v molekule se musí nacházet v takových vzájemných vzdálenostech (rovnovážné polohy), ve kterých jsou síly jimiž na sebe atomy vzájemně působí nulové. Podmínka stability Na atomy při vychýlení z rovnovážných poloh musí působit síly, které vrací atomy do těchto poloh, v rovnovážné poloze má tedy molekula i nejnižší interakční energii (též potenciální energie nebo potenciál). Poznámka stejně to platí i pro vznik klastrů v důsledku slabé mezimolekulové interakce.

Graf potenciální energie 4

5 Dvouatomové molekuly Typy vazeb dle polarity Nepolární (homopolární), na žádném z atomů není parciální elektrický náboj, jak tomu je u homonukleárních molekul. Polarizovaná (semipolární), též polární, na každém z atomů je stejně velký částečný parciální náboj opačného znaménka. Silně polarizovaná (heteropolární), též iontová neboli elektrovalenční, na každém z atomů je elektrický náboj s velikostí blížící se hodnotě elementárního elektrického náboje ( elektron přešel od jednoho atomu k druhému ).

6 Iontová vazba Objasnění vzniku této chemické vazby Původ odpudivých sil mezi atomy je u všech typů vazeb stejný elektrostatické odpuzování kladně nabitých jader, jejichž náboj je ale částečně stíněn elektrony v atomových obalech. Původ přitažlivých sil lze vysvětli rovněž na základě elektrostatiky jako přitahování iontů s opačnou polaritou náboje.

7 Kovalentní vazba Kovalentní - zde ve smyslu nepolární vazby. Původ odpudivých sil mezi atomy vysvětlíme stejně elektrostatické odpuzování kladně nabitých jader, jejichž náboj je ale částečně stíněn elektrony v atomových obalech. Objasnění přitažlivých sil je na rozdíl od vazby iontové možné teprve na základě kvantové mechaniky. Při řešení se vychází ze Schrödingerovy rovnice pro molekulu, důležitou úlohu při objasnění podstaty nepolární vazby pak hraje princip nerozlišitelnosti identických částic, jehož přímým důsledkem je tzv. výměnná interakce. S využitím kvantově mechanických výpočtů je pak možné objasnit i polární vazbu a zpřesnit popis vazby iontové.

Princip nerozlišitelnosti V kvantové fyzice nelze ani v principu rozlišit dvě identické částice. Stav systému částic tak nesmí být ovlivněn záměnou dvou identických částic. V kvantové fyzice je stav systému popsán vlnovou funkcí. Při formální záměně dvou identických částic (jejich souřadnic) nezmění znaménko (symetrické funkce) změní znaménka (antisymetrické funkce). 8

Víceatomové molekuly Model lokalizovaných vazeb vychází z představy, že vazba mezi dvěma sousedními atomy ve víceatomové molekule není podstatně ovlivněna vazbami zbývajících atomů v molekule. Vazba, resp. vazebné elektrony jsou tedy podle tohoto modelu lokalizovány ( vázány ) pouze na dané sousední atomy. 9

Víceatomové molekuly Model delokalizovaných vazeb je nutné použít v případech, kdy model lokalizovaných vazeb selhává. Vazebné elektrony nejsou lokalizovány u konkrétních atomů. Tento model více odpovídá představám kvantové mechaniky, podle kterých existuje nenulová pravděpodobnost výskytu kdekoliv v molekule. 10

Vibrace dvouatomové molekuly Úhlová frekvence vibrací Konstanta meziatomových sil Vibrační energie Redukovaná hmotnost 11

Rotace dvouatomové molekuly Moment hybnosti Moment setrvačnosti Rotační energie 12

Spektra molekul Jádra molekul nespočívají nehybně v rovnovážných polohách, ale vykonávají rotační a vibrační pohyby. Energie molekuly je součtem energie elektronového systému a vibrační a rotační energie molekuly. Výsledné spektrum je kombinací elektronového, rotačního a vibračního spektra. Přechody mezi hladinami Absorpce foton musí mít dostatečnou energii, aby se dostal z jedné hladiny na druhou Luminiscence -vyzáření fotonu, členíme na: Fluorescence- bez změny spinu Fosforescence se změnou spinu Přeměna na teplo 13

Spektroskopie Absorpční spektroskopie - změna světla při průchodu zkoumanou látkou přináší informace o struktuře, umožňuje identifikaci látky, stanovení její koncentrace atd.

Lambert-Beerův zákon di L: I I T I I A I c dl di I L 0 L 0 I I I L L 0 I I c L e L 10 * ln 0 L 0 0 ln ln I c L c L c dl * 0 c L c L A -Absorbance optická hustota Molární extinkční koeficient je funkcí vlnové délky a závisí na rozložení energetických hladin v molekule * 2. 303

Kvantová optika - spektroskopie Princip spektrometru: Světlo vstupuje pomoci optickeho vlakna do spektrometru. Divergujici svazek je kolimovan sférickym zrcadlem na rovinnou mřižku. Dochazi k difrakci na mřižce a světlo je fokusovano sférickym zrcadlem. Obraz spektra je zobrazen na jednodimenzionální CCD čip a získana data jsou přenesena do PC pomocí A/D převodniku. 1- SMA konektor; 2 - štěrbina; 3 - filtr; 4 - kolimačni zrcadlo; 5 - mřižka; 6 - fokusačni zrcadlo; 7 - čočky; 8 - CCD detektor

Luminiscenční spektrofotometrie Informace o výskytu molekul například navázání luminiscenční sondy na maligní tkáně, membrány, místo výskytu zlomu na DNA,. Změny spektra luminiscence - informace o okolí molekul, změny ph Některé biologicky zajímavé molekuly vykazují luminiscenci také

11. 01. 2011 RTG spektrum - čárové Píky charakteristického záření je zvykem označovat písmenem hladiny (slupky), na kterou dopadá elektron, (čili ze které díra vychází), s řeckým indexem podle rozpětí od hladiny, odkud elektron přichází (nebo kam díra dopadá). Například: K - elektron padá ze slupky L na nejnižší slupku K K - elektron padá ze slupky M na nejnižší slupku K L - elektron padá ze slupky M na slupku L L - elektron padá ze slupky N na slupku L 18

Laser Zdroj monochromatického světla Světlo je koherentní stejná fáze na výstupu z laseru Laserový paprsek je emitován v určitém směru malá divergence, může se dosáhnout velkých intenzit.

Podmínky pro činnost laseru Rezonátor sestává se z vysoce odrazivého zrcadla - odráží téměř 100% a částečně propustného zrcadla odráží cca 99% Aktivní médium v médiu se pohlcuje dodaná energie optická, elektrická, chemická, která způsobí excitaci média do stavů s vyšší energií. Médiem mohou být krystaly safír, Nd:YAG, roztoky barviv, plyny jako CO 2 or Helium - Neon, nebo polovodiče jako GaAs. Lasery se většinou nazývají podle média Podle výstupního paprsku se dělí na kontinuální a pulzní

Aktivní médium 1. Energie (například absorbovaných fotonů o určené frekvenci) vybudí atomy médií do nestabilní excitované hladiny 2. Atomy přejdou spontánní emisí do základního stavu 3. Základem laseru je jev stimulovaná emise - z excitované stavu může také přejít absorpcí druhého fotonu - z atomu jdou tedy dva fotony (ale na tento jev se spotřebovali dva fotony). 4. Zvyšování intenzity budícího světla převede polovinu atomů do excitovaného stavu tedy z média vyjde tolik fotonů, kolik tam dopadne, médium je transparentní. 5. Pro laserování je potřeba mít médium s třetí hladinou s dlouho dobou života na ní se soustředí většina atomů inverzní populace. 6. Absorbovaný foton v této hladině vyvolá stimulovanou emisi tedy účinkem jednoho fotonu vyletí dva fotony stejné energie (zbylou energii dodal třeba také foton, ale jiné energie). 7. Fotony jsou částečně odráženy zrcadly rezonátoru a stimulovanou emisí vyrážejí další fotony 21

Absorbovaná energie Energetické schéma Excitovaný stav Spontanní emise Metastabilní stav Stimulovaná emise Základní stav 22

Rezonátor Elektromagnetické vlny fotony se odráží na zrcadlech rezonátoru a interferují spolu ti, co jdou vlevo i vpravo. Vlny s nahodilými rozdíly fází se vynulují vznikne stojatá vlna s uzly na koncích Na výstupním zrcadle je proto vždy konstantní fáze vystupující světlo je koherentní Délka rezonátoru určuje vlnovou délku laserového světla - je celým (hodně velkým, třeba 500.000) násobkem vlnové délky L = nλ Tuto podmínku ale splňuje hodně vlnových délek zároveň ale musí být splněna podmínka, určená aktivním médiem

24

Vlnové délky nejpoužívanějších laserů Laser Type Wavelength (mm) Argon fluoride (Excimer-UV) Krypton chloride (Excimer-UV) Krypton fluoride (Excimer-UV) Xenon chloride (Excimer-UV) Xenon fluoride (Excimer-UV) Helium cadmium (UV) Nitrogen (UV) Helium cadmium (violet) Krypton (blue) Argon (blue) Copper vapor (green) Argon (green) Krypton (green) Frequency doubled Nd YAG (green) Helium neon (green) Krypton (yellow) Copper vapor (yellow) 0.193 0.222 0.248 0.308 0.351 0.325 0.337 0.441 0.476 0.488 0.510 0.514 0.528 0.532 0.543 0.568 0.570 Helium neon (yellow) Helium neon (orange) Gold vapor (red) Helium neon (red) Krypton (red) Rohodamine 6G dye (tunable) Ruby (CrAlO 3 ) (red) Gallium arsenide (diode-nir) Nd:YAG (NIR) Helium neon (NIR) Erbium (NIR) Helium neon (NIR) Hydrogen fluoride (NIR) Carbon dioxide (FIR) Carbon dioxide (FIR) 0.594 0.610 0.627 0.633 0.647 0.570-0.650 0.694 0.840 1.064 1.15 1.504 3.39 2.70 9.6 10.6 Key: UV = ultraviolet (0.200-0.400 µm) VIS = visible (0.400-0.700 µm) NIR = near infrared (0.700-1.400 µm) 25

Energy (Watts) Energy (Joules) Laserový výstup Kontinuální výstup (CW) Pulzní výstup (P) Time Time 26