Bioceramics Joon Park

Podobné dokumenty
Kapitola 3.6 Charakterizace keramiky a skla POVRCHOVÉ VLASTNOSTI. Jaroslav Krucký, PMB 22

Nauka o materiálu. Přednáška č.12 Keramické materiály a anorganická nekovová skla

Křehké materiály. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. Karel Daďourek, 2008

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška

Požadavky na technické materiály

Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost

Nízká cena při vysokých množstvích

Elektricky vodivý iglidur F. Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost

FDA kompatibilní iglidur A180

Minule vazebné síly v látkách

2 MECHANICKÉ VLASTNOSTI SKLA

iglidur H2 Nízká cena iglidur H2 Může být použit pod vodou Cenově výhodné Vysoká chemická odolnost Pro vysoké teploty

Bez PTFE a silikonu iglidur C. Suchý provoz Pokud požadujete dobrou otěruvzdornost Bezúdržbovost

Vysoké teploty, univerzální

Hodnocení opotřebení a změn tribologických vlastností brzdových kotoučů

iglidur UW500 Pro horké tekutiny iglidur UW500 Pro použití pod vodou při vysokých teplotách Pro rychlé a konstantní pohyby

LOGO. Struktura a vlastnosti pevných látek

Produktová řada Dobrá odolnost proti opotřebení Nízké tření bez mazání Cenově efektivní Nízké opotřebení

Zdroj: Bioceramics: Propertie s, Characterization, and applications (Biokeramika: Vlastnosti, charakterizace a aplikace) Překlad: Václav Petrák

Nauka o materiálu. Přednáška č.14 Kompozity

Produktová řada Samomazná a bezúdržbová Založen na obnovitelných zdrojích Univerzální použití

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Charakteristika. Vlastnosti. Použití NÁSTROJE NA TLAKOVÉ LITÍ NÁSTROJE NA PROTLAČOVÁNÍ NÁSTROJE PRO TVÁŘENÍ ZA TEPLA VYŠŠÍ ŽIVOTNOST NÁSTROJŮ

Teplotně a chemicky odolný, FDA kompatibilní iglidur A500

iglidur N54 Biopolymer iglidur N54 Produktová řada Samomazná a bezúdržbová Založen na obnovitelných zdrojích Univerzální použití

12. Struktura a vlastnosti pevných látek

Karbid křemíku, bílý korund a hnědý korund

Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec,

KRYSTALY PRO VĚDU, VÝZKUM A ŠPIČKOVÉ TECHNOLOGIE

Alexandra Kloužková 1 Martina Mrázová 2 Martina Kohoutková 2 Vladimír Šatava 2

ruvzdorné povlaky endoprotéz Otěruvzdorn Obsah TRIBOLOGIE Otěruvzdorné povlaky endoprotéz Fakulta strojního inženýrství

Sklářské a bižuterní materiály 2005/06

Pod vodu iglidur H370. Produktová řada Odolný proti opotřebení - zejména pod vodou Vysoká teplotní odolnost 40 C až +200 C Vysoká chemická odolnost

18MTY 1. Ing. Jaroslav Valach, Ph.D.

Pro vysoká zatížení iglidur Q

Keramika. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. K. Daďourek 2008

Pro vysoké rychlosti pod vodou

JEMNOZRNNÉ BETONY S ČÁSTEČNOU NÁHRADOU CEMENTU PŘÍRODNÍM ZEOLITEM

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti

Kumulace poškození termoplastického laminátu C/PPS při cyklickém zatížení a jeho posuzování

Druhy vláken. Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008

Pro vysoké rychlosti iglidur L250

Nauka o materiálu. Přednáška č.5 Základy lomové mechaniky

Struktura a vlastnosti kovů I.

Základy materiálového inženýrství. Křehké materiály Katedra materiálu, Strojní fakulta Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010

Části a mechanismy strojů 1 KKS/CMS1

Sklo definice, vlastnosti, výroba. LF MU Brno Brýlová technologie

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii.

Díly forem. Vložky forem Jádra Vtokové dílce Trysky Vyhazovače (nitridované) tlakové písty, tlakové komory (normálně nitridované) V 0,4

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK

Základní informace o wolframu

Pevnost kompozitů obecné zatížení

Všeobecně lze říci, že EUCOR má několikanásobně vyšší odolnost proti otěru než tavený čedič a řádově vyšší než speciální legované ocele a litiny.

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná.

Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky

Plastická deformace a pevnost

Pracovní diagram vláken

Téma 2 Napětí a přetvoření

Zkoušení kompozitních materiálů

ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické

VLIV MIKROSTRUKTURY SLINUTÝCH KARBIDŮ NA ŽIVOTNOST NÁSTROJŮ A STROJNÍCH SOUČÁSTÍ

Křehké porušení a zlomy. Ondrej Lexa, 2010

Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či náhrad. 20. března 2012

Číslo a název klíčové aktivity: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

BEZCEMENTOVÝ BETON S POJIVEM Z ÚLETOVÉHO POPÍLKU

HLINÍK. Lehké neželezné kovy a jejich slitiny

Anorganická pojiva, cementy, malty

TERMOMECHANICKÉ VLASTNOSTI

Vlastnosti a zkoušení materiálů. Přednáška č.9 Plasticita a creep

Zkoušení kompozitních materiálů

Nízké tření a opotřebení: Pro rychlé i pomalé pohyby iglidur J

Keramika spolu s dřevem, kostmi, kůží a kameny patřila mezi první materiály, které pravěký člověk zpracovával.

ÚSTAV KONSTRUOVÁNÍ seminář Degradace nízkolegovaných ocelí v. abrazivním a korozivním prostředí

Nelineární problémy a MKP

Únava materiálu. únavového zatěžování. 1) Úvod. 2) Základní charakteristiky. 3) Křivka únavového života. 4) Etapy únavového života

PMC - kompozity s plastovou matricí

Fyzikální praktikum II

Pro vysoká dyn. zatížení a otěruvzdornost iglidur Z

Použití. Části formy V 0,9. Části nástroje. Matrice Podpěrné nástroje, držáky matric, pouzdra, lisovací podložky,

Sklo chemické složení, vlastnosti, druhy skel a jejich použití

Inovace bakalářského studijního oboru Aplikovaná chemie CZ.1.07/2.2.00/ Výpočty z chemických vzorců

Wöhlerova křivka (uhlíkové oceli výrazná mez únavy)

VÚHŽ a.s. Laboratoře a zkušebny č.p. 240, Dobrá

Vysoké učení technické v Brně Zkušební laboratoř při ÚTHD FAST VUT v Brně Veveří 95, Brno

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti

NAUKA O MATERIÁLU I. Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení)

Zkoušení fyzikálně-mechanických vlastností materiálů a výrobků pro automobilový průmysl

OPTIMALIZACE NÁVRHU CB VOZOVEK NA ZÁKLADĚ POČÍTAČOVÉHO A EXPERIMENTÁLNÍHO MODELOVÁNÍ. GAČR 103/09/1746 ( )

Příloha-výpočet motoru

REGIONÁLNÍ TECHNOLOGICKÝ INSTITUT. Západočeská univerzita v Plzni Fakulta strojní

ρ 490 [lb/ft^3] σ D 133 [ksi] τ D 95 [ksi] Výpočet pružin Informace o projektu ? 1.0 Kapitola vstupních parametrů

Identifikace zkušebního postupu/metody PP (ČSN ISO 9556, ČSN ISO 4935) PP (ČSN EN , ČSN )

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK)

Ing. Petra Cihlářová. Odborný garant: Doc. Ing. Miroslav Píška, CSc.

Poškození strojních součástí

Experimentální zjišťování charakteristik kompozitových materiálů a dílů

Identifikace zkušebního postupu/metody

LŠVT Mechanické vlastnosti: jak a co lze měřm. ěřit na tenkých vrstvách. Jiří Vyskočil, Andrea Mašková HVM Plasma, Praha

LETECKÉ MATERIÁLY. Úvod do předmětu

Transkript:

Bioceramics Joon Park 6 Aluminum Oxides (Alumina) 6.1 6.3 Str.: 117 128 16.4.2011 Bc. Jan Tureček skupina: PMB 23 obor: PMB FBMI ČVUT v Praze

6 Aluminum Oxides (Alumina) Jednotlivé pestrobarevné krystaly oxidu hliníku. Takové krystaly mohou vyrůst uměle. Polykrystalický oxid hliníku byl po mnoho let používaný jako izolátor v zapalovacích svíčkách, jako vysokonapěťový izolátor a jako implantát. Viz obrázky 6.11 a 6.15, které jsou s povolením převzaté z: http://en.wikipedia.org/wiki/image:sapphire01.jpg. Podívejte se prosím do barevné části na tyto obrázky ve všech barvách.

Oxidy hliníku byly hojně používané v průmyslu, například pro řezací nástroje, izolátory zapalovacích svíček a pro domácí lampy na sodíkové výpary díky svým mechanickým, elektrickým, chemickým a tepelným vlastnostem [8]. Hliníkové oxidy byli zkoumané od roku 1907, kdy byl vydán patent na čistý keramického oxid hlinitý. Nicméně komercializace produktů přišla mnohem později, ve 20. a 30. letech 20. Století, a v té době se začali vyrábět materiály pro pece a bylo objeveno slinování (sintrování) prašného oxidu hlinitého s přidáním MgO jako pomocného materiálu. V podstatě čistý oxid hlinitý (>99.5%) byl používaný od počátku 70. let jako materiál pro implantáty, zvláště pro umělé kloubní protézy (většinou kyčelní) a pro zubní implantáty, protože měl vynikající kompatibilitu s okolními tkáněmi a výborné mechanické vlastnosti (zejména co se týče tření a opotřebení) [8]. Oxid hlinitým má ale kvůli jeho křehkosti mnohem menší pevnost v tahu než pevnost v tlaku (nemůže podstoupit plastickou deformaci jako kovy a plasty, jako je zmíněno v 3.1). Tyto vlastnosti omezují jeho použití pro aplikace, kde je namáhán v tlaku. Nejvíce se oxid hlinitý používá pro výrobu implantátů z monokrystalů nebo pevných polykrystalů o vysoké hustotě a čistotě nebo z uměle vytvořených monokrystalů podobných safíru nebo rubínu. Tabulka 6.1. Chemické složení, zrnitost a hustota hliníkových oxidů Žíhaný, A-14 Tubular, T-60 ISO6474 b Biolox c Al 2 O 3 99.6 99.5+ 99.5+ 99.7+ SiO2 + alkali oxides a 0.12 0.06 - - SiO 2 - - <0.01 <0.01 Fe 2 O 3 0.03 0.06 - <0.015 Na 2 O 0.04 0.20 <0.01 <0.01 CaO - - - <0.01 Velikost zrn (µm) - - <4.5 3 Hustota (g/ml) 3.8 3.9 3.65 3.8 >3.94 >3.95 a ASTM F603 specifikuje, že kombinovaní SiO 2 s alkalickými oxidy by mělo být menší než 0.1%, pro aplikace jako chirurgické nebo dentální implantáty. b Vydáno po roce 1981. Také kombinované SiO2 + Fe2O3 + Na2O + CaO < 0.1%. c Product Feldmuhle (Plochingen, Německo). Reprodukované s povolením z [13]. Copyright 1970, American Ceramic Society. 6.1 Zdroje, složení, struktura Hlavními zdroji vysoce čistého oxidu hlinitého je Bauxit (hydratovaný oxid hlinitý) a nativní korund (minerální oxid hlinitý). Nejběžnější proces získání čistého alumina (oxid hliníku) je Bayer proces,

kterým se získají tzv. α-alumina [12]. Tento proces zahrnuje rozpuštění drceného bauxitu v roztoku hydroxidu sodného (NaOH), pod tlakem a za vysokých teplot (až 300 C) a vytvoření přesyceného sodno-hlinitého roztoku. Hydratovaný oxid hlinitý se vysráží očkováním nebo jako metastabilní bayerite snížením ph oxidem uhličitým. Praním a sušením sraženiny při 1000 ~ 1200 C se sraženina změní na nízko-teplotní formu "kalcinovaného" alumina. Byly vyvinuty i další různé způsoby získávání čistého alumina, tyto způsoby jsou závislé na zdroji surovin [12]. Komerčně dostupný čistý oxid hlinitý obvykle obsahuje 99,5 až 99,6% A1 2 O 3, 0.06 až 0.12% SiO 2, 0.03-0.06% Fe 2 O 3, a 0.04-0.20% Na 2 O, a má hustotu 3,65-3,9 g/cm 3, jak je uvedeno v tabulce 6.1. Je také možné získat oxid hlinitý o čistotě 99,9%, který se připravuje z amonného kamence. Nicméně, pro práci s implantáty, specifikuje Americká společnost pro testování a materiály (ASTM) pouze 99,5%-ní čistotu oxidu hlinitého, s kombinací méně než 0.1% SiO 2 a oxidů alkalických kovů (především Na 2 O). Obrázek 6.1. Bazální roviny struktury krystalu oxidu hlinitého. Jsou zde naznačeny bazální směry rovin a šestihranné vektory buněk. Převzato se svolením z [8]. Copyright 1984, Springer-Verlag. Krystalová struktura α-alumina je šestiúhelníková a je těsná (sbalená) (a = 0,4758 a c = 1,299 nm) a patří do prostoru skupiny D 6 3 d. Sbalení Al a O k sobě v bazální rovině šestiúhelníkové těsné struktury je na obrázku 6.1. Jak je uvedeno v tabulce 2.2, třetina z odpovídajících octaedrických míst jsou ve struktuře Al 2 O 3 volná, takže existují tři různé typy vrstev kationtů. Koordinační čísla pro Al 3+ a O 2- jsou 6 a 4, a jejich poloměry jsou 0,053 resp. 0,138 nm. Monokrystaly oxidu hlinitého se úspěšně používají k výrobě implantátů [14]. Implantáty se vyrábí nanesením jemného hlinitého prášku na povrch zárodečného krystalu, který je zahříván

elektrickým obloukem nebo oxyhydrogenovým plamenem. Následně se pomalu od zdroje tepla stahuje krystal, který byl vytvořen tavením hlinitého prášku. Totu metodou byly vypěstovány krystaly, které měli až 10 cm v průměru. Čistý mono-krystal rubínu může být použit jako krystal do hodinek. Některé krystaly mohou být barvené přidáním Cr 2 O 3 (0,05%), který z nich udělá růžové, ty pak mohou být použity pro výrobu laserů s vlnovou délkou 694 nm. Přidáním 0,5% Cr 2 O 3 vzniknou krystaly, které mohou být použity pro lasery s vlnovou délkou 701-704 nm. K výrobě modrých safírů se používají jiné kovové ionty: Ti 3+, Fe 3+. Tabulka 6.2. Mechanické vlastnosti oxidu hlinitého Vlastnosti a materiály Hodnoty Pevnost v ohybu (MPa) Safír 496-703 Rubín 345 Polykrystaly 241-482 Pevnost v tlaku (MPa) Safír 3055-3413 Polykrstaly 2069-3861 Pevnost v tahu (MPa) Monokrystaly 490 Vlákna Potažená 1448 Nepotažená 483 Polykrystaly 259 Modul pružnosti (GPa) Monokrystaly 362.7 Polykrystaly 408.9 Poissonovo číslo Safír 0.257 Polykrystaly 0.32 Všechna měření při 25 C. Přetištěno se svolením z [13]. Copyright 1970, American Ceramic society.

Příklad 6.1 Spočítejte teoretickou hustotu monokrystalu alumna. Odpověď: Vzhledem k tomu, že hustota je dána jako: Pak: 6.2 Mechanické Jako u všech ostatních křehkých materiálů, mechanické vlastnosti polykrystalického oxidu hlinitého ve velké míře závisí na velikosti zrna, jeho distribuci a pórovitosti. Například pevnost v ohybu (σ b ) polykrystalického oxidu hlinitého s konstantní velikostí zrna může být vyjádřeno, rovnicí (5.10), ve znění:, (6.1) kde ρ 0 je pevnost v ohybu při nulové pórovitosti, n je konstanta, a P je pórovitost. Pevnost při nulové pórovitosti může být získána z rovnice (3.57) a obr. 3.24. Vztah mezi velikostí zrna a pórovitostí pro plně hustý oxid hlinitý je uveden na obrázku 6.2. Je zde vidět velký experimentální rozptyl, což naznačuje, že tento typ měření je obtížný. Obrázek 6.2. Velikost zrna versus pórovitost vysoce čistého (99,9 + %), plně hustého alumina. Přetištěno s povolení [27]. Copyright 1963, American Ceramic Society.

Když je pórovitost nižší než 2%, zrna jsou pak mnohem větší, čímž se podle rovnice (3.59) sníží pevnost. Velikost zrn může být udržena menší než 2 µm přidáním 0,1% MgO. Typická mikrostruktura oxidu hlinitého o vysoké hustotě, určeného pro implantáty, je na obrázku 6.3. Přidání MgO učiní oxid hlinitý téměř průsvitný, což může být využito i pro sodíkové výbojky (Lucalox ). Tento typ alumina se pro implantáty nepoužívá. Tabulka 6.2 uvádí mechanické vlastnosti typického implantátu z alumina. Oxid hlinitý má obecně tvrdost 20 ~ 30 GPa a Mohsovu tvrdost 9. Vysokou tvrdost doprovází i nízké tření a opotřebení, což jsou hlavní výhody při použití hliníku jako materiálu pro kloubní náhrady, navzdory jeho křehkosti. Tabulka 6.3 uvádí tribologické vlastnosti oxidu hlinitého. Dlouhodobé tribologické vlastnosti hustého alumina jsou výhodnější než u jiných materiálů, např.: koeficient tření, objem opotřebení a drsnost povrchu u páru hliník-hlinik v čase klesá, což je znázorněno na obrázku 6.4. Tyto vlastnosti vyplývají z toho, že voda a dlouhý řetěz karboxylové kyseliny jsou přednostně chemicky sorbované na povrchu oxidu hlinitého, a to i při nízkých koncentracích vodní páry (viz tabulka 6.4), to je i navrženo na obrázku 6.5. Obrázek 6.3. Mikrostruktura alumina o vysoké hustotě určeného pro implantáty (100 zvětšeno). Přetištěno se svolením z [8]. Copyright 1984, Springer-Verlag.

Obrázek 6.4. Tribologické chování oxidu hlinitého: (a) tření, (b) opotřebení, a (c) drsnost povrchu [7]. Přetištěno se svolením z [7]. Copyright 1980, Wiley. Tabulka 6.3. Tribologické vlastnosti oxidu hlinitého (alumina) Vlastnosti Hodnoty Zkušební podmínky Součinitel tření aluminu-aluminum 0.71 0.09 Sucho Voda aluminum UHMWPE 0.16 Sucho 0.05 Voda Míra opotřebení (mg za 20 h) aluminum na aluminum 0.10 Sucho UHMWPE na aluminum 0.10 Sucho Převzato se souhlasem z [27]. Copyright 1977, Wiley.

Tabulka 6.4. Opotřebení a tření vysoce hustého oxidu hlinitého při různých relativních tlacích vodní páry Relativní součinitel tlaku Opotřebení vodních par P/P 0 (10 4 mm 3 m 1 ) Koeficient tření 2.5 10-7 139 0.50 4.0 10-3 70 0.50 4.0 10-2 3 0.40 7.0 10-1 2 0.20 9.5 10-1 - 0.03 Monomolekulární pokrytí nastane, když P/P 0 = 10-2. Převzato se souhlasem z [9]. Copyright 1984, Springer-Verlag. Příklad 6.2 Stanovte průměrnou velikost zrn a číslo zrnitosti mikrostruktury oxidu hlinitého znázorněné na obrázku 6.3. Dále odhadněte příčnou pevnost v ohybu oxidu hlinitého na základě velikosti zrn z obr. 3.24. Odpověď: Počet zrn na 10 cm lineární stupnice je asi 20; proto je průměrná velikost 0,5 cm, což znamená 5 µm, neboť obrázek byl zvětšen 1000. Index velikosti zrna je standardizován ASTM podle rovnice N = 2 n-1, kde n je číslo zrnitosti a N je počet zrn na čtvereční palec při lineárním 100 zvětšení. Jestliže tedy dáme palcovou čtvercovou mřížku na obrázek náhodně, získám asi kolem 30 zrn. Tento obrázek je ale zvětšen 1000 namísto 100 a počet zrn na čtvereční palec je tedy 3000. A proto: 3000 = 2 n-1 a n = 12,55. Číslo zrnitosti je téměř 13. Podle obrázku 3.24 je příčná pevnost v ohybu, při velikosti zrna 5 µm, asi 300 MPa, což je více než jaká je pevnost v tahu uvedená v tabulce 6.2.

Obrázek 6.5. Adsorpční chování keramického hliníkového povrchu. Převzato se souhlasem z [8]. Copyright 1984, Springer-Verlag. 6.3. Únavové vlastnosti a životnost Je velmi zajímavé, že inertní keramiky, jako je oxid hlinitý, může vykazovat únavu způsobenou buď dynamickými, nebo statickými podmínkami. V jedné studii bylo prokázáno, že únavová pevnost oxidu hlinitého se snižuje při přítomnosti vody spolu a nad hranicí kritického napětí [10]. Toto snížení únavové pevnosti je způsobeno následným růstem trhlin, který je urychlen molekulami vody. Nicméně, další studie ukázala, že snížení pevnosti je vykazováno, pokud je absorpce vody sledována pomocí rastrovací elektronové mikroskopie rozbitých vzorků, ale nebyla zaznamenáno žádné snížení pevnosti u vzorků, které neukázaly žádné vodoznaky na povrchu zlomu (obr. 6,6). Bylo tedy navrhnuto, že přítomnost malého množství oxidu křemičitého může přispět k pronikání molekul vody, což snižuje pevnost [15]. Není jasné, zda se stejným mechanismem pracuje statická únava v jediném krystalu alumina. Je však rozumné předpokládat, že stejné statická únava nastane v případě, že krystaly budou obsahovat chyby nebo nečistoty, které budou působit jako zdroje trhlin místo hranic zrn u polykrystalického oxidu hlinitého a dále bude způsobovat růst trhlin v napjatém materiálu. Únavové vlastnosti oxidu hlinitého jsou důležité pří použití těchto implantátů jako nosných umělých kloubů. Je to podobné jako dynamická únava kromě toho, že je zatížení vyvoláno nárazem

například kýváním. Jeden takový výsledek testu je zobrazen na obrázku 6.7, který je podobný Wohlerovu graf ukazující napětí v závislosti na počtu cyklů. Obrázek 6.6. Pevnost v ohybu aluminových prutů při stárnutí pod napětím v Ringerově roztoku. Převzato se svolením z [15]. Copyright 1978, Wiley. Obrázek 6.7. Dopad únavové pevnosti alumina měřené kyvadlovým testem. Přetištěno se svolením z [7]. Copyright 1980, Wiley. Porucha na každém vzorku byla souzena podle vzhledu první trhliny. Je zřejmé, že test nemůže odhalit vnitřní praskliny nebo mikrotrhliny, které jsou mimo schopnosti pozorovacího přístroje jako je optický mikroskop. To je důvod, proč je poměrně obtížné předpovědět únavovou životnost keramických materiálů, jako je oxid hlinitý, v dynamických podmínkách.

Některé metody používají teorii pravděpodobnosti k pochopení statického a dynamického únavového chování polykrystalického oxidu hlinitého [4]. Kumulativní pravděpodobnost porušení struktury pod napětím na konstantní plochu, je dána: (6.2) kde t je doba do poruchy (spodní hranici času do poruchy), L 0 je parametr měřítka, A je plocha pod napětím, a m je Weibullovův modul. Obrázek 6.8 ukazuje výsledky statických a dynamických únavových zkoušek alumina při pokojové teplotě, kde můžeme sledovat: (1) na okolí materiálu má drastický vliv na únavovou životnost, což je opět působeno korozí pod napětím v přítomnosti vodní páry, a (2) odolnost polykrystalického keramického oxidu hlinitého na cyklické zatížení je nižší než je statické zatížení při pokojové teplotě, což může být významné návrhu implantátu. Obrázek 6.8. (a) Doba do prasknutí při statickém zatížení ve srovnání pravděpodobností zlomeniny ve vzduchu a (50% RH) v čistém argonu při pokojové teplotě. (b) Pravděpodobnost zlomeniny ve srovnání s časem do prasknutí při statické a dynamické únavové zkoušce při pokojové teplotě.

Někteří předpovídali únavovou životnost alumina a Bioskla (sklo-keramika, viz 8.3) potaženého alumina na základě teorie lomové mechaniky, která je založena na předpokladu, že únava se řídí pomalým růstem trhlin předcházející vadám [23]. Obecně může být rozložení pevnosti keramiky v inertní atmosféře (σ i ) být vztaženo k pravděpodobnosti poruchy (F) Weibullovým vztahem, který je podle Trantina [29] podobný rovnici (6.2): kde m a σ 0 jsou konstanty. Obrázek 6.9 ukazuje dobrou volbou pro Biosklo vrstveného oxidem hlinitým testovaného v tris pufru a kapalném dusíku [23]. Obrázek 6.9. Závislosti ln ln (1 / 1 - F) ve srovnání ln σ pro Biosklo vrstveného oxidem hlinitým v trishydroxyamino-metanovém pufru a kapalném dusíku. Přetištěno se svolením z [23]. Copyright 1979, Wiley. Minimální životnost t min lze předvídat jen tehdy, pokud je každý vzorek podroben testování na napětí větší než se očekává při provozu: (6.4) kde σ P je dokazované testované napětí, σ a je aplikované napětí a B a N jsou konstanty. Přeskupeno do rovnice: (6.4) (6.5) která výjde přímo, pokud log t m σ 2 a se vynese proti log (σ P / σ a ), se sklonem N - 2 a průsečík se rovná B (viz obr. 6.10.).

Příklad 6.3 Vypočítejte kontrolní zkoušku napětí hliníkového keramického implantátu pro minimální životnost 50 let pod neustálým namáháním, při použití normální tělesné hmotnosti (700 N). Předpokládejme průřez 2 cm 2 a dynamické zatížení může být 10 vyšší než statické zatížení. Odpověď: Napětí na implantátu je [(700 N) / (2 cm2)] = 3,5 MPa. Pokud budeme předpokládat dynamické zatížení, tak se maximální napětí bude blížit 35 MPa. log t min σ a = log [50 yr 365 days/yr 24 hr/day 60 min/hr 60 s/min 35 MPa] = 10.74 Z obrázku 6.7 je σ P /σ a = 2.35 v Ringerově roztoku; a proto σ P = 82.25 MPa. Tato hodnota by měla být značně zvýšená v důsledku nepřátelského prostředí těla. Obrázek 6.10. Graf z rovnice (6.4) pro aluminum při zátěžovém testu. N = 43,85; log B = 3,256, m = 13,21, a σ 0 = 55728 (psi). Převzato se svolením z [23]. Copyright 1979, Wiley.