Části a mechanismy strojů 1 KKS/CMS1

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Části a mechanismy strojů 1 KKS/CMS1"

Transkript

1 Katedra konstruování strojů Fakulta strojní Části a mechanismy strojů 1 KKS/CMS1 Podklady k přednáškám část A4 Prof. Ing. Stanislav Hosnedl, CSc. a kol. Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.

2 PRO ÚPLNOST Kapitola A K INFORMACI POTŘEBNÉ TEORETICKÉ ZÁKLADY 1. ČÁSTI A MECHANISMY STROJŮ (ČMS) JAKO STROJNÍ ČÁSTI TECHNICKÝCH SYSTÉMŮ (TS) 2. FYZIKÁLNÍ ZÁKLADY PRO STROJNÍ ČÁSTI TS 3. STATICKÉ (USTÁLENÉ) ZATĚŽOVÁNÍ A NAMÁHÁNÍ STROJNÍCH ČÁSTÍ TS - STATICKÁ PEVNOST A DEFORMACE 4. DYNAMICKÉ (PROMĚNLIVÉ) ZATĚŽOVÁNÍ A NAMÁHÁNÍ STROJ. ČÁSTÍ TS - DYNAMICKÁ (ÚNAVOVÁ) PEVNOST S. Hosnedl 2

3 4 Dynamické (proměnlivé) zatěžování a namáhání strojních částí TS - dynamická (únavová) pevnost OBSAH 4.1 Základní poznatky 4.2 Mez únavy materiálu (Wöhlerův diagram) 4.3 Mez únavy materiálu při obecném harmonickém napětí Smithův diagram Haighův diagram 4.4 Faktory ovlivňující mez únavy materiálu Vliv vrubu (součinitel vrubu β) Vliv velikosti součásti (součinitel velikosti součásti ν) Vliv jakosti povrchu (součinitel jakosti povrchu η P ) Vliv zpevnění povrchu (součinitel zpevnění povrchu κ) 4.5 Pevnostní podmínky při dynamickém namáhání Snížená mez únavy pro vrub v místě strojní části při obec. harmonickém napětí (úprava Haighova a Smithova diagramu) Bezpečnost při jednoduchém harmonickém napětí v místě vrubu Bezpečnost při kombinovaném harmonickém napětí v místě vrubu 4

4 Podkapitola 4.1 Základní poznatky 5

5 4.1 Základní poznatky Projevy dynamického (proměnlivého) zatížení na pevnost strojních částí: - porušení součástí i při napětích σ << σ D - křehké lomy součástí i z houževnatých materiálů Obr Příklad typického lomu strojní části (hřídele, čepu apod.) způsobeného únavovým porušením (horní část řezu znázorňuje vyhlazenou počáteční plochu porušení způsobeného únavou materiálu, dolní vyšrafovaná část znázorňuje konečný klasický zrnitý statický lom) 6

6 4.1 Základní poznatky Vznik dynamického zatížení a napětí: a) změnami vnějšího zatížení: Příklad: M o = M oooo sin ω t, n = 0 (4.1-1) b) změnami polohy součásti vůči konstantnímu (neproměnnému) zatížení: Příklad: M o = M ooooo, n 0 (4.1-2) Obr Vznik dynamického zatížení otáčením součásti vůči vnějšímu statickém (ustálenému) zatížení 7

7 4.1 Základní poznatky Průběhy proměnlivého zatížení a napětí: - obecný průběh: = stochastický = periodický - harmonický průběh: = sinový/cosinový s jednou příp. i více harmonickými složkami (je obvyklé i jako ekvivalentní náhrada obecného periodického průběhu pro výpočty a experimenty) POTŘEBNÉ Obr Diagramy průběhu typických druhů harmonického napětí kde: σ m - střední napětí kmitu, σ a - napětí amplitudy kmitu, σ h - horní napětí kmitu, σ d -dolní napětí kmitu 8

8 4.1 Základní poznatky Životnost (trvanlivost) strojní části při harmonickém napětí: Životnost (trvanlivost) součásti se udává počtem kmitů N, při němž dojde k jejímu únavovému porušení. Poznámka: - Všechny uvedené i další poznatky prezentované pro tahová-tlaková napětí (σ) platí (i když není uvedeno) analogicky též pro ohybová napětí (σ o ), krutová napětí (τ k ), i pro další základní napětí. Pro smyková (tečná) napětí (τ s ) však většinou nejsou uváděny všechny analogické poznatky jako pro zbývající 3 uvedené druhy napětí, neboť jeho vliv je při dynamickém namáhání většinou zanedbatelný. Orientačně lze pro smyková napětí využít speciálních poznatků a hodnot pro krutová napětí, protože mají shodný charakter smykového napětí (τ). 9

9 Podkapitola 4.2 Mez únavy materiálu 10

10 4.2 Mez únavy materiálu (1) Časová mez únavy (časová pevnost na únavu pro obecnou strojní část): σ N = σ M + σ AA kmitavé napětí (σ M, σ A ), při němž je životnost v uvažovaném místě strojní části N cyklů Mez únavy σ C = σ M + σ AA ( trvalá pevnost na únavu pro obecnou strojní část): pulzující harmonické napětí, (σ M 0, σ A 0, tj. σ H = σ M + σ A při němž je životnost uvaž. místě strojní části N = cyklů (obr ) (4.2-1) (4.2-2) Obr Wöhlerův diagram pro pulzující harmonické napětí (podtržené hodnoty počtů cyklů lze orientačně uvažovat pro většinu ocelí)

11 4.2 Mez únavy materiálu (2) Základní mez únavy ( trvalá pevnost na únavu pro hladkou leštěnou tyč): ( σ C =) σ CZ = ± σ A střídavé souměrné harmonické napětí (σ M = 0, σ A 0, tj. σ H = σ A ), při němž je životnost tyče N = cyklů (obr ). (4.2-3) Poznámky: Obr Wöhlerův diagram pro střídavé souměrné harmonické napětí (podtržené hodnoty počtů cyklů jsou shodné jako pro pulzující zatížení/napětí) - Velká písmena indexů A, M, H vyjadřují kmity na mezi únavové pevnosti. - Pro základní mez únavy lze pro ocel orientačně uvažovat: σ c = 0,3 0,4 σ pt 0,5 0,6 0,8 σ pt 0,5 σ kt σ CC 0,5 σ pt τ C 0,6 σ C (4.2-4) - Pozor, v literatuře i v praxi (což bylo převzato i do těchto textů) je základní mez únavy σ CZ (která se vztahuje pouze na hladkou leštěnou tyč při pulzujícím zatížení) prakticky výhradně nazývána a označována jako mez únavy σ C (která se teoreticky správně vztahuje na jakoukoli strojní část při obecném zatížení!)

12 Podkapitola 4.3 Mez únavy materiálu při obec. harmonickém napětí 13

13 4.3 Mez únavy materiálu při obecném harmonickém napětí POTŘEBNÉ Smithův diagram (1) Obecný Smithův diagram: Smithův diagram vymezuje svými čarami mezní velikosti parametrů harmonického napětí, tj. dvojic mezního středního napětí kmitu a mezního napětí amplitudy kmitu, při nichž dochází k únavovým lomům hladké leštěné tyče (obecně určitého místa na obecné strojní části). Diagram je nutné experimentálně zjišťovat pro každý druh materiálu (i místo na strojní části) samostatně. Obr Obecný Smithův diagram 14

14 4.3 Mez únavy při obecném harmonickém napětí Smithův diagram (2) Zjednodušený Smithův diagram: Křivky z experimentálně zjištěného obecného Smithova diagramu (obr ) jsou nahrazeny přímkami. Diagram lze jednoduše sestrojit ze známých základních hodnot σ Pt, σ kt,σ C = σ CZ,, přičemž lze při orientačních inženýrských výpočtech s výhodou využít, že pro ocel přibližně platí: σ kt 0,6 0,8 σ Pt a σ c 0,3 0,4 σ Pt POTŘEBNÉ (4.3-1) Obr Zjednodušený přímkový Smithův diagram 15

15 4.3 Mez únavy při obecném harmonickém napětí POTŘEBNÉ Haighův diagram (1) Obecný Haighův diagram: Haighův diagram je zjednodušeným zobrazením obecného Smithova diagramu, po odstranění dolní zbytečné symetrické části pod jeho osou se sklonem 45 0 (obr ). Obr Obecný Haighův diagram 16

16 4.3 Mez únavy při obecném harmonickém napětí Haighův diagram (2) Zjednodušený Haighův diagram: Křivky z experimentálně zjištěného Haighova diagramu jsou nahrazeny přímkami (příp. vznikne odstraněním dolní zbytečné symetrické části pod osou se sklonem 45 0 ve zjednodušeném Smithově přímkovém diagramu (obr ).. Diagram lze jednoduše sestrojit ze známých hodnot σ Pt, σ kt,σ C = σ CZ,, přičemž lze při orientačních inženýrských výpočtech s výhodou využít, že pro ocel přibližně platí: σ kt 0,6 0,8 σ Pt a σ c 0,3 0,4 σ Pt Přímky v tomto diagramu lze jednoduše vyjádřit analyticky pomocí rovnic uvedených v obr (4.3-2) Obr Zjednodušený přímkový Haighův diagram Poznámka: - (Zjednodušený přímkový) Haighův diagram se pro svoji jednoduchost používá téměř výhradně místo Smithova diagramu pro stanovení meze únavy při obecném harmonickém zatížení. 17

17 Podkapitola 4.4 Faktory ovlivňující mez únavy materiálu 18

18 4.4 Faktory ovlivňující mez únavy σ C = σ CZ (základní) mez únavy pro hladkou leštěnou tyč (odst. 4.2.) (4.4-1) σ C *= σ CZ * snížená (základní) mez únavy pro místo na součásti (4.4-2) (tj. ne pro součást jako celek!!!) vlivem faktorů uvedených v (tab ). Tab Součinitele pro faktory ovlivňující mez únavy Název a označení faktoru vrub β = f (α, η c ) - tvar vrubu α - vrubová citlivost materiálu η c velikost součásti ν kvalita povrchu η P zpevnění povrchu κ Po stanovení jednotlivých součinitelů (viz dále) se pro dané místo na součásti vypočte snížená mez únavy : σ C = σ C η P ν β Poznámka: Vztah je prakticky výhradně používán jen pro výpočty σ C = σ CC při σ C = σ CC Pozor, součinitele a tudíž i snížení meze únavy je pro jednotlivé druhy namáhání rozdílné. κ (4.4-3) 19

19 4.4 Faktory ovlivňující mez únavy Vliv vrubu (součinitele vrubu β ) Vruby jsou náhlé změny tvaru na součástech, které vyvolávají lokální zvýšení (koncentraci) řádného napětí v daném místě, což způsobuje: - snížení pevnosti - snížení houževnatosti materiálu Obr Vliv vrubu a jeho tvaru na pevnost součásti Snížení pevnosti i houževnatosti vrubem, je nepříznivé zejména při dynamické namáhání, u křehkých materiálů však i při statickém namáhání! 20

20 4.4 Faktory ovlivňující mez únavy Vliv vrubu (součinitele vrubu β ) Poznámka: Tab Orientační pravidla pro zahrnutí vlivu vrubů Druh materiálu statické zatížení dynamické zatížení houževnatý běžně NE ANO křehký ANO ANO Pro základní druhy napětí analogicky platí: σ C = σ C β pro tah tlak (4.4-4) σ Co = σ Co β o pro ohyb (4.4-5) τ Ck = σ Ck β k pro krut (4.4-6) Součinitel vrubu β je závislý: - na tvaru vrubu - na materiálu vrubu (tj. na okolním materiálu) 21

21 4.4 Faktory ovlivňující mez únavy Vliv vrubu (součinitele vrubu β ) Experimentální predikování β je velmi nákladné, proto se používá vyjádření obou vlivů odděleně: β = 1 + α 1 η C β O = 1 + α O 1 η CC pro tah tlak (4.4-7) pro ohyb (4.4-8) β k = 1 + α k 1 η CC pro krut (4.4-9) Poznámka: Pro vrubovou citlivost materiálu η C = 1 dostaneme: β = α 22

22 4.4 Faktory ovlivňující mez únavy Vliv vrubu (součinitele vrubu β ) a) Vliv tvaru vrubu (součinitel tvaru vrubu α ) Obr Příklad vlivu vrubu na zvýšení napětí v součásti 23

23 4.4 Faktory ovlivňující mez únavy POTŘEBNÉ Vliv vrubu (součinitele vrubu β ) Obr Příklad nomogramu pro stanovení hodnoty součinitele tvaru vrubu α Poznámka: - Ve speciální odborné literatuře lze nalézt další analogické podklady pro jednotlivé druhy namáhání a další typické tvary vrubů. 24

24 4.4 Faktory ovlivňující mez únavy Vliv vrubu (součinitele vrubu β ) b) Vliv materiálu (součinitel vrubové citlivosti materiálu η C ) Obr Příklad vlivu velikosti zrna na snížení špiček napětí ve vrubu na součásti Tab Součinitele vrubové citlivosti materiálu η c pro vybrané druhy materiálů Materiál Citlivost Součinitel η C [1] Ocel σ Pt = 1100 MPa velká! 1,0 Perlitické oceli 0,9 1,0 Chromniklová ocel 0,7 09 Austenitická ocel 0,7 0,7 Ocel ,6 0,8 Ocel žíhaná 0,4 0,7 Ocel ,2 0,4 Šedá litina malá! 0,1 0,2 25

25 4.4 Faktory ovlivňující mez únavy Vliv jakosti povrchu (součinitel jakosti povrchu η P ) Pro základní druhy napětí analogicky platí: σ C = η p σ C σ CC = η po σ CC pro tah tlak (4.4-13) pro ohyb (4.4-14) τ CC = η pp τ CC pro krut (4.4-15) η po = η p η pp = 0,5 1 + η p (4.4-16) 1 jemně leštěno 2 středně leštěno 3 jemně broušeno 4 středně soustruženo 5 hrubě soustruženo 6 povrch s okujemi 7 koroze vodou 8 koroze slanou vodou Obr Diagram pro stanovení hodnoty součinitele kvality povrchu η P 26

26 4.4 Faktory ovlivňující mez únavy Vliv velikosti součásti (součinitel velikosti součásti ν ) Pro základní druhy napětí analogicky platí: σ C = v σ C pro tah tlak (pro tah vždy ν = 1) (4.4-10) σ CC = v σ CC pro ohyb (4.4-11) τ CC = v k τ CC pro krut (4.4-12) Obr Příklad vlivu velikosti součásti na velikost zatížení (kritické) povrchové vrstvy 27

27 4.4 Faktory ovlivňující mez únavy POTŘEBNÉ Vliv velikosti součásti (součinitel velikosti součásti ν ) Obr Příklad diagramů pro stanovení hodnoty součinitele velikosti součásti ν 28

28 4.4 Faktory ovlivňující mez únavy Vliv zpevnění povrchu (součinitel zpevnění povrchu κ) Pro základní druhy napětí analogicky platí: σ C = κ σ C pro tah tlak (4.4-17) σ CC = κ o σ CC pro ohyb (4.4-18) τ CC = κ k τ CC pro krut (4.4-19) Obr Vliv zpevnění povrchu součásti na zvýšení meze únavy při jejím povrchu (kritickém pro únavové poruchy) Hodnoty součinitelů κ pro jednotlivé druhy namáhání a typické druhy zpevňování je nutné vyhledat ve speciální odborné literatuře. Pro rozhodující většinu nezpevňovaných povrchů však : (4.4-20) κ = κ kk = κ k = 1 29

29 4.5 Pevnostní podmínky při dynamickém namáhání Snížená mez únavy v místě vrubu na strojní části při obecném harmonickém napětí (úprava Haighova a Smithova diagramu) Úprava Haighova diagramu (používá se častěji) Obr Úprava Haighova diagramu pro sníženou mez únavy 30

30 4.5 Pevnostní podmínky při dynamickém namáhání Snížená mez únavy v místě vrubu na strojní části při obecném harmonickém napětí (úprava Haighova a Smithova diagramu) Pro základní druhy napětí analogicky platí: σ C = σ C η p ν κ β pro tah tlak (4.5-1) σ Co = σ Co η p o ν o β o σ Ck = σ Ck η p k ν k β k κ o κ k pro ohyb (4.5-2) pro krut (4.5-3) Úprava Smithova diagramu Provedla by se pro jednotlivé základní druhy napětí analogicky změnou σ h, σ d na ose: ze σ C na σ C * ze σ Co na σ Co * z τ Ck na τ Ck * pro tah tlak pro ohyb pro krut 31

31 4.5 Pevnostní podmínky při dynamickém namáhání Bezpečnost při jednoduchém harmonickém napětí v místě vrubu Pro základní druhy napětí (tah-tlak, ohyb, krut, smyk, atp.) platí analogicky. Obr Diagram průběhu obecného harmonického napětí se základními veličinami, viz též (obr ) Obr Obecný průběh zvyšování hodnot veličin obecného harmonického napětí k mezi únavy zobrazený v Haighově diagramu 32

32 4.5 Pevnostní podmínky při dynamickém namáhání Bezpečnost při jednoduchém harmonickém napětí v místě vrubu Obr a Příklady typického zvyšování hodnot veličin obecného harmonického napětí k mezi únavy zobrazené v Haighově diagramu Obr b Příklady typického zvyšování hodnot veličin obecného harmonického napětí k mezi únavyzobrazené v diagramech jejich průběhu 33

33 4.5 Pevnostní podmínky při dynamickém namáhání POTŘEBNÉ Bezpečnost při jednoduchém harmonickém napětí v místě vrubu Příklad výpočtu bezpečnosti pro případ σ a = b. σ m (případ 3 v obr b) (4.5-4) Obr Schéma pro výpočet bezpečnosti vůči mezi únavy s pomocí Haighova diagramu Zobrazení obecného harmonického namáhání: a) při σ a, σ m (bod P) b) při σ a,σ m (bod P ) a znázornění lineárního zvyšování těchto kmitů až do mezního kmitu: a) při σ A *, σ M * (bod M*), příp. σ A, σ M (bod M) b) při σ A, σ M (bod M ) 34

34 4.5 Pevnostní podmínky při dynamickém namáhání Bezpečnost při jednoduchém harmonickém napětí v místě vrubu a) Bezpečnost pro hladkou leštěnou tyč: - pro kmit σ a, σ m (P): s ddd = OM M + OM A OP m + OP a = σ a σ C 1 + σ = m σf s a 1 s m (4.5-5) - pro kmit σ a, σ m (P ): s ddd = OMM M + OMM A OPP m + OPP a = σ kk σ m + σ a = s ssss (4.5-6) 35

35 4.5 Pevnostní podmínky při dynamickém namáhání Bezpečnost při jednoduchém harmonickém napětí v místě vrubu b) Bezpečnost v místě vrubu na strojní části: - pro kmit σ a, σ m (P): s ddd = OM M + OM A OP m + OP a = σ a σ C 1 + σ = m σf s a 1 s m (4.5-7) - pro kmit σ a, σ m (P ): s ddd = OM M + OM A OP m + OP a = σ kk σ m + σ a = s ssss (4.5-8) 36

36 4.5 Pevnostní podmínky při dynamickém namáhání POTŘEBNÉ Bezpečnost při kombinovaném harmonickém napětí v místě vrubu Uvažujme dvě různá kmitavá zařízení o shodné frekvenci a fázi: σ = σ m + σ a (4.5-9) a τ = τ m + τ a (4.5-10) Potom musí v každém okamžiku platit: σ rrr = σ 2 + α τ 2 / 1 σ C = 1 σ C α τ C α τ C (4.5-11) kde: α = 4 α = 3 pro pevnostní hypotézu τ max pro pevnostní hypotézu λ F α = 2,6 pro pevnostní hypotézu λ max 37

37 4.5 Pevnostní podmínky při dynamickém namáhání POTŘEBNÉ Bezpečnost při kombinovaném harmonickém napětí v místě vrubu (4.5-11) σ rrr σ C = σ 2 + α τ 2 σ C 2 σ 2 2 σ C + α τ2 α τ C 2 / 2 (4.5-12) 1 2 s ddd s dddσ 1 2 s dddτ (4.5-13) s ddd 2 2 s dddσ s dddτ 2 s dddσ + s dddτ 2 = s dddσ s dddτ 2 2 s dddσ + s dddτ (4.5-14) 38

38 4.5 Pevnostní podmínky při dynamickém namáhání POTŘEBNÉ Bezpečnost při kombinovaném harmonickém napětí v místě vrubu Poznámky: - Výsledná bezpečnost při kombinovaném dynamickém napětí lze za uvedených předpokladů (statická, nebo dynamická namáhání o shodné frekvenci a fázi) vyjádřit pomocí jednotlivých bezpečností pro příslušné základní druhy napětí. - Při kombinovaném harmonickém napětí se bezpečnost každého působícího kmitavého napětí vyřeší samostatně a tyto dílčí bezpečnosti se pak složí analogicky, jak je výše uvedeno. S. Hosnedl 39

39 Děkuji za pozornost Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky v rámci projektu č. CZ.1.07/2.2.00/ Inovace výuky podpořená praxí.

Části a mechanismy strojů 1 KKS/CMS1

Části a mechanismy strojů 1 KKS/CMS1 Katedra konstruování strojů Fakulta strojní Části a mechanismy strojů 1 KKS/CMS1 Podklady k přednáškám Zákl. informace Prof. Ing. Stanislav Hosnedl, CSc. a kol. Tato prezentace je spolufinancována Evropským

Více

Nauka o materiálu. Přednáška č.5 Základy lomové mechaniky

Nauka o materiálu. Přednáška č.5 Základy lomové mechaniky Nauka o materiálu Přednáška č.5 Základy lomové mechaniky Způsoby stanovení napjatosti a deformace Využívají se tři přístupy: 1. Analytický - jen jednoduché geometrie těles - vždy za jistých zjednodušujících

Více

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná.

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná. Test A 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná. 2. Co je to µ? - Poissonův poměr µ poměr poměrného příčného zkrácení k poměrnému podélnému prodloužení v oblasti pružných

Více

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011 OTÁZKY VSTUPNÍHO TESTU PP I LS 010/011 Pomocí Thumovy definice, s využitím vrubové citlivosti q je definován vztah mezi součiniteli vrubu a tvaru jako: Součinitel tvaru α je podle obrázku definován jako:

Více

Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec,

Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec, BUM - 7 Únava materiálu Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec, Úkoly k řešení 1. Vysvětlete stručně co je únava materiálu.

Více

Wöhlerova křivka (uhlíkové oceli výrazná mez únavy)

Wöhlerova křivka (uhlíkové oceli výrazná mez únavy) Únava 1. Úvod Mezním stavem únava je definován stav, kdy v důsledku působení časově proměnných zatížení dojde k poruše funkční způsobilosti konstrukce či jejího elementu. Charakteristické pro tento proces

Více

b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti

b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti 1. Podmínka max τ a MOS v Mohrově rovině a) Plasticity ϭ K = ϭ 1 + ϭ 3 b) Křehké pevnosti (ϭ 1 κ R * ϭ 3 ) = ϭ Rt Ϭ red = max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) MOS : max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) = ϭ Rt a) Plasticita

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 2

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 2 Fakulta strojního inženýrství VUT v Brně Ústav konstruování KONSTRUOVÁNÍ STROJŮ strojní součásti Přednáška 2 Porušování při cyklickém zatěžování All machine and structural designs are problems in fatigue

Více

5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu.

5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu. 5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu. K poškození únavou dochází při zatížení výrazně proměnném s časem. spolehlivost

Více

Spoje pery a klíny. Charakteristika (konstrukční znaky)

Spoje pery a klíny. Charakteristika (konstrukční znaky) Spoje pery a klíny Charakteristika (konstrukční znaky) Jednoduše rozebíratelná spojení pomocí per, příp. klínů hranolového tvaru (u klínů se skosením na jedné z ploch) vložených do podélných vybrání nebo

Více

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Ing. Jan BRANDA PRUŽNOST A PEVNOST Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 013 Použitá literatura: Technická

Více

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky.

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky. POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)

Více

Únava (Fatigue) Úvod

Únava (Fatigue) Úvod Únava (Fatigue) Úvod Únavové křivky napětí - historie 9. století rozvoj technického poznání rozšíření možnosti využití oceli a kovových materiálů v běžné praxi. Rozvoj železniční dopravy parní lokomotiva

Více

Dynamická pevnost a životnost Přednášky

Dynamická pevnost a životnost Přednášky DPŽ 1 Dynamická pevnost a životnost Přednášky Milan Růžička, Josef Jurenka, Martin Nesládek, Jan Papuga mechanika.fs.cvut.cz martin.nesladek@fs.cvut.cz DPŽ 2 Přednášky část 3 Koncentrace napětí a její

Více

Dynamická pevnost a životnost Přednášky

Dynamická pevnost a životnost Přednášky DPŽ 1 Dynamická pevnost a životnost Přednášky Milan Růžička, Josef Jurenka, Martin Nesládek, Jan Papuga mechanika.fs.cvut.cz martin.nesladek@fs.cvut.cz DPŽ 2 Přednášky část 3 Koncentrace napětí a její

Více

POŽADAVKY KE ZKOUŠCE Z PP I

POŽADAVKY KE ZKOUŠCE Z PP I POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze o vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)

Více

NAUKA O MATERIÁLU I. Zkoušky mechanické. Přednáška č. 04: Zkoušení materiálových vlastností I

NAUKA O MATERIÁLU I. Zkoušky mechanické. Přednáška č. 04: Zkoušení materiálových vlastností I NAUKA O MATERIÁLU I Přednáška č. 04: Zkoušení materiálových vlastností I Zkoušky mechanické Autor přednášky: Ing. Daniela ODEHNALOVÁ Pracoviště: TUL FS, Katedra materiálu ZKOUŠENÍ mechanických vlastností

Více

Vlastnosti a zkoušení materiálů. Přednáška č.9 Plasticita a creep

Vlastnosti a zkoušení materiálů. Přednáška č.9 Plasticita a creep Vlastnosti a zkoušení materiálů Přednáška č.9 Plasticita a creep Vliv teploty na chování materiálu 1. Teplotní roztažnost L = L α T ( x) dl 2. Závislost modulu pružnosti na teplotě: Modul pružnosti při

Více

Příloha-výpočet motoru

Příloha-výpočet motoru Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ

Více

Nelineární problémy a MKP

Nelineární problémy a MKP Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)

Více

Porušení hornin. J. Pruška MH 7. přednáška 1

Porušení hornin. J. Pruška MH 7. přednáška 1 Porušení hornin Předpoklady pro popis mechanických vlastností hornin napjatost masivu je včase a prostoru proměnná nespojitosti jsou určeny pevnostními charakteristikami prostředí horniny ovlivňuje rychlost

Více

5. Únava materiálu S-n přístup (Stress-life) Pavel Hutař, Luboš Náhlík

5. Únava materiálu S-n přístup (Stress-life) Pavel Hutař, Luboš Náhlík Příklad Zadání: Vytvořte přibližný S-n diagram pro ocelovou tyč a vyjádřete její rovnici. Jakou životnost můžeme očekávat při zatížení souměrně střídavým cyklem o amplitudě 100 MPa? Je dáno: Mez pevnosti

Více

Únava materiálu. únavového zatěžování. 1) Úvod. 2) Základní charakteristiky. 3) Křivka únavového života. 4) Etapy únavového života

Únava materiálu. únavového zatěžování. 1) Úvod. 2) Základní charakteristiky. 3) Křivka únavového života. 4) Etapy únavového života Únava materiálu 1) Úvod 2) Základní charakteristiky únavového zatěžování 3) Křivka únavového života 4) Etapy únavového života 5) Klíčové vlivy na únavový život 1 Degradace vlastností materiálu za provozu

Více

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii.

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. Henry Kaiser, Hoover Dam 1 Henry Kaiser, 2 Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti

Více

Zkoušky vlastností technických materiálů

Zkoušky vlastností technických materiálů Zkoušky vlastností technických materiálů Stálé zvyšování výkonu strojů a snižování jejich hmotnosti klade vysoké požadavky na jakost hutního materiálu. Se zvyšováním nároků na materiál je nerozlučně spjato

Více

BAKALÁŘSKÁ PRÁCE. Návrh rozměru čelních ozubených kol je proveden podle ČSN ČÁST 4 PEVNOSTNÍ VÝPOČET ČELNÍCH A OZUBENÝCH KOL.

BAKALÁŘSKÁ PRÁCE. Návrh rozměru čelních ozubených kol je proveden podle ČSN ČÁST 4 PEVNOSTNÍ VÝPOČET ČELNÍCH A OZUBENÝCH KOL. Příloha č.1.: Výpočtová zpráva - převodovka I Návrh čelních ozubených kol Návrh rozměru čelních ozubených kol je proveden podle ČSN 01 4686 ČÁST 4 PEVNOSTNÍ VÝPOČET ČELNÍCH A OZUBENÝCH KOL. Návrhovým výpočtem

Více

PRUŽNOST A PEVNOST 2 V PŘÍKLADECH

PRUŽNOST A PEVNOST 2 V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ PRUŽNOST A PEVNOST 2 V PŘÍKLADECH doc. Ing. Karel Frydrýšek, Ph.D., ING-PAED IGIP Ing. Milan Sivera Ing. Richard Klučka Ing. Josef Sedlák

Více

10.1. Spoje pomocí pera, klínu. hranolového tvaru (u klínů se skosením na jedné z ploch) kombinaci s jinými druhy spojů a uložení tak, aby

10.1. Spoje pomocí pera, klínu. hranolového tvaru (u klínů se skosením na jedné z ploch) kombinaci s jinými druhy spojů a uložení tak, aby Cvičení 10. - Spoje pro přenos kroutícího momentu z hřídele na náboj 1 Spoje pro přenos kroutícího momentu z hřídele na náboj Zahrnuje širokou škálu typů a konstrukcí. Slouží k přenosu kroutícího momentu

Více

Kritéria porušení laminy

Kritéria porušení laminy Kap. 4 Kritéria porušení laminy Inormační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky S ČVU v Praze.. 007-6.. 007 Úvod omové procesy vyvolané v jednosměrovém

Více

1 Úvod do konstruování 3 2 Statistické zpracování dat 37 3 Volba materiálu 75 4 Analýza zatížení a napětí 119 5 Analýza deformací 185

1 Úvod do konstruování 3 2 Statistické zpracování dat 37 3 Volba materiálu 75 4 Analýza zatížení a napětí 119 5 Analýza deformací 185 Stručný obsah Předmluva xvii Část 1 Základy konstruování 2 1 Úvod do konstruování 3 2 Statistické zpracování dat 37 3 Volba materiálu 75 4 Analýza zatížení a napětí 119 5 Analýza deformací 185 Část 2 Porušování

Více

2.2 Mezní stav pružnosti Mezní stav deformační stability Mezní stav porušení Prvek tělesa a napětí v řezu... p03 3.

2.2 Mezní stav pružnosti Mezní stav deformační stability Mezní stav porušení Prvek tělesa a napětí v řezu... p03 3. obsah 1 Obsah Zde je uveden přehled jednotlivých kapitol a podkapitol interaktivního učebního textu Pružnost a pevnost. Na tomto CD jsou kapitoly uloženy v samostatných souborech, jejichž název je v rámečku

Více

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky

Více

Ztráta stability tenkých přímých prutů - vzpěr

Ztráta stability tenkých přímých prutů - vzpěr Ztráta stability tenkých přímých prutů - vzpěr Motivace štíhlé pruty namáhané tlakem mohou vybočit ze svého původně přímého tvaru a může dojít ke ztrátě stability a zhroucení konstrukce dříve, než je dosaženo

Více

VY_32_INOVACE_C 07 03

VY_32_INOVACE_C 07 03 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Ing. Jan BRANDA PRUŽNOST A PEVNOST Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 2013 Aktualizováno: 2015 Použitá

Více

Kapitola vstupních parametrů

Kapitola vstupních parametrů Předepjatý šroubový spoj i ii? 1.0 1.1 1.2 1.3 1.4 1.5 Výpočet bez chyb. Informace o projektu Zatížení spoje, základní parametry výpočtu. Jednotky výpočtu Režim zatížení, typ spoje Provedení šroubového

Více

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky

Více

Filosofie konstruování a dimenzování mechanických částí vozidel z hlediska jejich funkce a provozního zatěžování

Filosofie konstruování a dimenzování mechanických částí vozidel z hlediska jejich funkce a provozního zatěžování Filosofie konstruování a dimenzování mechanických částí vozidel z hlediska jejich funkce a provozního zatěžování doc. Ing. Miloslav Kepka, CSc. ZČU v Plzni, Fakulta strojní, Katedra konstruování strojů

Více

VŠB TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ, KATEDRA ČÁSTÍ A MECHANISMŮ STROJŮ

VŠB TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ, KATEDRA ČÁSTÍ A MECHANISMŮ STROJŮ VŠB TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ, KATEDRA ČÁSTÍ A MECHANISMŮ STROJŮ NÁVRH A VÝPOČET DYNAMICKY NAMÁHANÉHO ŠROUBU PŘÍRUBOVÉHO SPOJE Vysokoškolská příručka Květoslav Kaláb Ostrava 013 OBSAH

Více

Části a mechanismy strojů 1 KKS/CMS1

Části a mechanismy strojů 1 KKS/CMS1 Katedra konstruování strojů Fakulta strojní Části a mechanismy strojů 1 KKS/CMS1 Podklady k přednáškám část A3 Prof. Ing. Stanislav Hosnedl, CSc. a kol. Tato prezentace je spolufinancována Evropským sociálním

Více

Příloha č. 1. Pevnostní výpočty

Příloha č. 1. Pevnostní výpočty Příloha č. 1 Pevnostní výpočty Pevnostní výpočty navrhovaného CKT byly provedeny podle normy ČSN 69 0010 Tlakové nádoby stabilní. Technická pravidla. Vzorce a texty v této příloze jsou převzaty z této

Více

Operační program Vzdělávání pro konkurenceschopnost (OPVK)

Operační program Vzdělávání pro konkurenceschopnost (OPVK) 1 Operační program Vzdělávání pro konkurenceschopnost (OPVK) Značky a jednotky vybraných důležitých fyzikálních veličin doporučené v projektu OPVKIVK pro oblast konstruování a výběr nejdůležitějších pravidel

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE

ÚVOD DO MODELOVÁNÍ V MECHANICE ÚVO O MOELOVÁNÍ V MECHNICE MECHNIK KOMPOZITNÍCH MTERIÁLŮ 2 Přednáška č. 7 Robert Zemčík 1 Zebry normální Zebry zdeformované 2 Zebry normální Zebry zdeformované 3 Zebry normální 4 Zebry zdeformované protažené?

Více

Zkouška rázem v ohybu. Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer. Jméno: St. skupina: Datum cvičení:

Zkouška rázem v ohybu. Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer. Jméno: St. skupina: Datum cvičení: BUM - 6 Zkouška rázem v ohybu Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer Jméno: St. skupina: Datum cvičení: Úvodní přednáška: 1) Vysvětlete pojem houževnatost. 2) Popište princip zkoušky

Více

OVMT Mechanické zkoušky

OVMT Mechanické zkoušky Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor

Více

Pevnost kompozitů obecné zatížení

Pevnost kompozitů obecné zatížení Pevnost kompozitů obecné zatížení Osnova Příčná pevnost v tahu Pevnost v tahu pod nenulovým úhlem proti vláknům Podélná pevnost v tlaku Příčná pevnost v tlaku Pevnost vláknových kompozitů - obecně Základní

Více

3. Mezní stav křehké pevnosti. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík

3. Mezní stav křehké pevnosti. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík Únava a lomová mechanika Mezní stav křehké pevnosti Při monotónním zatěžování tělesa může dojít k nepředvídanému porušení křehkým lomem. Poškození houževnaté oceli při různých způsobech namáhání Poškození

Více

Výpočtová i experimentální analýza vlivu vrubů na omezenou životnost součástí

Výpočtová i experimentální analýza vlivu vrubů na omezenou životnost součástí Výpočtová i experimentální analýza vlivu vrubů na omezenou životnost součástí Martin Laštovka. Úvod Predikce životnosti je otázka, kterou se zabývají inženýři již dlouho dobu. Klasické přístupy jsou zvládnuty,

Více

Části a mechanismy strojů 1 KKS/CMS1

Části a mechanismy strojů 1 KKS/CMS1 Katedra konstruování strojů Fakulta strojní Části a mechanismy strojů 1 KKS/CMS1 Podklady k přednáškám část D1 Prof. Ing. Stanislav Hosnedl, CSc. a kol. Tato prezentace je spolufinancována Evropským sociálním

Více

Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1

Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1 Mechanické vlastnosti technických materiálů a jejich měření Metody charakterizace nanomateriálů 1 Základní rozdělení vlastností ZMV Přednáška č. 1 Nejobvyklejší dělení vlastností materiálů v technické

Více

Inovace a zkvalitnění výuky prostřednictvím ICT Kontrola a měření strojních součástí a jejich polotovarů Pevnostní zkouška statická na tah

Inovace a zkvalitnění výuky prostřednictvím ICT Kontrola a měření strojních součástí a jejich polotovarů Pevnostní zkouška statická na tah Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Inovace a zkvalitnění výuky prostřednictvím ICT Kontrola a měření strojních součástí a jejich polotovarů

Více

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Spoje a spojovací součásti Pevnostní výpočet šroubů

Více

Téma: Dynamiky - Základní vztahy kmitání

Téma: Dynamiky - Základní vztahy kmitání Počítačová podpora statických výpočtů Téma: Dynamiky - Základní vztahy kmitání 1) Vlastnosti materiálů při dynamickém namáháni ) Základní vztahy teorie kmitání s jedním stupněm volnosti Katedra konstrukcí

Více

4. Napjatost v bodě tělesa

4. Napjatost v bodě tělesa p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.

Více

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ 7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní

Více

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A9. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A9. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí 133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška A9 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Posuzování betonových sloupů Masivní sloupy

Více

ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické

ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické ZKOUŠKY MECHANICKÝCH VLASTNOSTÍ MATERIÁLŮ Mechanické zkoušky statické a dynamické Úvod Vlastnosti materiálu, lze rozdělit na: fyzikální a fyzikálně-chemické; mechanické; technologické. I. Mechanické vlastnosti

Více

Namáhání na tah, tlak

Namáhání na tah, tlak Namáhání na tah, tlak Pro namáhání na tah i tlak platí stejné vztahy a rovnice. Velikost normálového napětí v tahu, resp. tlaku vypočítáme ze vztahu: resp. kde je napětí v tahu, je napětí v tlaku (dále

Více

Uplatnění prostého betonu

Uplatnění prostého betonu Prostý beton -Uplatnění prostého betonu - Charakteristické pevnosti - Mezní únosnost v tlaku - Smyková únosnost - Obdélníkový průřez -Konstrukční ustanovení - Základová patka -Příklad Uplatnění prostého

Více

MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ

MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ STUDIJNÍ PODPORY PRO KOMBINOVANOU FORMU STUDIA NAVAZUJÍCÍHO MAGISTERSKÉHO PROGRAMU STAVEBNÍ INŽENÝRSTVÍ -GEOTECHNIKA A PODZEMNÍ STAVITELSTVÍ MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ

Více

Šroubovaný přípoj konzoly na sloup

Šroubovaný přípoj konzoly na sloup Šroubovaný přípoj konzoly na sloup Připojení konzoly IPE 180 na sloup HEA 220 je realizováno šroubovým spojem přes čelní desku. Sloup má v místě přípoje vyztuženou stojinu plechy tloušťky 10mm. Pro sloup

Více

Prvky betonových konstrukcí BL01 3. přednáška

Prvky betonových konstrukcí BL01 3. přednáška Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování

Více

OPOTŘEBENÍ A TRVANLIVOST NÁSTROJE

OPOTŘEBENÍ A TRVANLIVOST NÁSTROJE Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10; s platností do r. 2016 v návaznosti na platnost norem. Zákaz šíření a modifikace těchto materiálů. Děkuji Ing. D.

Více

Je-li poměr střední Ø pružiny k Ø drátu roven 5 10% od kroutícího momentu. Šroub zvedáku je při zvedání namáhán kombinací tlak, krut, případně vzpěr

Je-li poměr střední Ø pružiny k Ø drátu roven 5 10% od kroutícího momentu. Šroub zvedáku je při zvedání namáhán kombinací tlak, krut, případně vzpěr PRUŽINY Která pružina může být zatížena silou kolmou k ose vinutí zkrutná Výpočet tuhosti trojúhelníkové lisové pružiny k=f/y K čemu se používá šroubová zkrutná pružina kolíček na prádlo Lisová pružina

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 11

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 11 Fakulta strojního inženýrství VUT v Brně Ústav konstruování KONSTRUOVÁNÍ STROJŮ strojní součásti Přednáška 11 Mechanické pružiny http://www.victorpest.com/ I am never content until I have constructed a

Více

12. Únavové šíření trhliny. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík

12. Únavové šíření trhliny. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík Únava a lomová mechanika Proces únavového porušení Iniciace únavové trhliny v krystalu Cu (60 000 cyklů při 20 C) (převzato z [Suresh 2006]) Proces únavového porušení Jednotlivé stádia únavového poškození:

Více

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c )

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c ) 3.3 Řešené příklady Příklad 1: Pro nosník na obrázku vyšetřete a zakreslete reakce, T (x) a M(x). Dále určete M max a proveďte dimenzování pro zadaný průřez. Dáno: a = 0.5 m, b = 0.3 m, c = 0.4 m, d =

Více

NÁVRH A VÝPOČET DYNAMICKY NAMÁHANÉHO ŠROUBU KRUHOVÉHO PŘÍRUBOVÉHO SPOJE

NÁVRH A VÝPOČET DYNAMICKY NAMÁHANÉHO ŠROUBU KRUHOVÉHO PŘÍRUBOVÉHO SPOJE VŠB TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ, KATEDRA ČÁSTÍ A MECHANISMŮ STROJŮ NÁVRH A VÝPOČET DYNAMICKY NAMÁHANÉHO ŠROUBU KRUHOVÉHO PŘÍRUBOVÉHO SPOJE Vysokoškolská příručka Květoslav Kaláb Ostrava

Více

Obecný Hookeův zákon a rovinná napjatost

Obecný Hookeův zákon a rovinná napjatost Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou

Více

IOK L. Rozlívka 1, M. Vlk 2, L. Kunz 3, P. Zavadilová 3. Materiál. Institut ocelových konstrukcí, s.r.o

IOK L. Rozlívka 1, M. Vlk 2, L. Kunz 3, P. Zavadilová 3. Materiál. Institut ocelových konstrukcí, s.r.o IOK ÚNAVOVÉ ZKOUŠKY PATINUJÍCÍ OCELI L. Rozlívka 1, M. Vlk 2, L. Kunz 3, P. Zavadilová 3 1 Institut ocelových konstrukcí, s.r.o 2 VUT Brno, Fakulta strojního inženýrství 3 Ústav fyziky materiálů AVČR Seminář

Více

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE 1 TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE Michal Jandera Obsah přednášek 1. Stabilita stěn, nosníky třídy 4.. Tenkostěnné za studena tvarované profily: Výroba, chování průřezů, chování prutů. 3. Tenkostěnné

Více

Statika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury.

Statika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury. ocelových 5. přednáška Vybrané partie z plasticity Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 2. prosince 2015 Pracovní diagram ideálně pružného materiálu ocelových σ

Více

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled

Více

Materiálové vlastnosti: Poissonův součinitel ν = 0,3. Nominální mez kluzu (ocel S350GD + Z275): Rozměry průřezu:

Materiálové vlastnosti: Poissonův součinitel ν = 0,3. Nominální mez kluzu (ocel S350GD + Z275): Rozměry průřezu: Řešený příklad: Výpočet momentové únosnosti ohýbaného tenkostěnného C-profilu dle ČSN EN 1993-1-3. Ohybová únosnost je stanovena na základě efektivního průřezového modulu. Materiálové vlastnosti: Modul

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Zemní tlaky cvičení doc. Dr. Ing. Hynek Lahuta Inovace studijního oboru Geotechnika CZ.1.07/2.2.00/28.0009. Tento projekt je spolufinancován Evropským sociálním

Více

HODNOCENÍ PEVNOSTI A ŽIVOTNOSTI ŠROUBŮ DLE NORMY ASME BPV CODE, SECTION VIII, DIVISION 2

HODNOCENÍ PEVNOSTI A ŽIVOTNOSTI ŠROUBŮ DLE NORMY ASME BPV CODE, SECTION VIII, DIVISION 2 HODNOCENÍ EVNOSTI ŽIVOTNOSTI ŠROUBŮ DLE NORMY SME BV CODE, SECTION VIII, DIVISION 2 STRENGTH ND FTIGUE EVLUTION OF BOLTS CCORDING TO SME BV CODE, SEC. VIII, DIV. 2 Miroslav VRNER 1, Viktor KNICKÝ 2 bstract:

Více

Navrhování konstrukcí z korozivzdorných ocelí

Navrhování konstrukcí z korozivzdorných ocelí Navrhování konstrukcí z korozivzdorných ocelí Marek Šorf Seminář Navrhování konstrukcí z korozivzdorných ocelí 27. září 2017 ČVUT Praha 1 Obsah 1. část Ing. Marek Šorf Rozdíl oproti navrhování konstrukcí

Více

Pevnostní vlastnosti

Pevnostní vlastnosti Pevnostní vlastnosti J. Pruška MH 3. přednáška 1 Pevnost v prostém tlaku na opracovaných vzorcích Jedná se o mezní napětí při porušení zkušebního tělesa za jednoosého tlakového namáhání F R = mez d A pevnost

Více

ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME

ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME 1. Úvod ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME Michal Feilhauer, Miroslav Varner V článku se

Více

PRUŽNOST A PLASTICITA I

PRUŽNOST A PLASTICITA I Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice

Více

Ing. Michal Lattner (lattner@fvtm.ujep.cz) Fakulta výrobních technologií a managementu Věda pro život, život pro vědu CZ.1.07/2.3.00/45.

Ing. Michal Lattner (lattner@fvtm.ujep.cz) Fakulta výrobních technologií a managementu Věda pro život, život pro vědu CZ.1.07/2.3.00/45. Ing. Michal Lattner (lattner@fvtm.ujep.cz) Fakulta výrobních technologií a managementu Věda pro život, život pro vědu CZ.1.07/2.3.00/45.0029 Statické zkoušky (pevnost, tvrdost) Dynamické zkoušky (cyklické,

Více

REGIONÁLNÍ TECHNOLOGICKÝ INSTITUT. Západočeská univerzita v Plzni Fakulta strojní

REGIONÁLNÍ TECHNOLOGICKÝ INSTITUT. Západočeská univerzita v Plzni Fakulta strojní REGIONÁLNÍ TECHNOLOGICKÝ INSTITUT Západočeská univerzita v Plzni Fakulta strojní Výzkumné centrum RTI Regionální technologický institut - RTI je výzkumné centrum Fakulty strojní Západočeské univerzity

Více

VYHODNOCENÍ LABORATORNÍCH ZKOUŠEK

VYHODNOCENÍ LABORATORNÍCH ZKOUŠEK VYHODNOCENÍ LABORATORNÍCH ZKOUŠEK Deformace elastomerových ložisek při zatížení Z hodnot naměřených deformací elastomerových ložisek v jednotlivých měřících místech (jednotlivé snímače deformace) byly

Více

Únosnost kompozitních konstrukcí

Únosnost kompozitních konstrukcí ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav letadlové techniky Únosnost kompozitních konstrukcí Optimalizační výpočet kompozitních táhel konstantního průřezu Technická zpráva Pořadové číslo:

Více

Zkoušky rázem. Vliv deformační rychlosti

Zkoušky rázem. Vliv deformační rychlosti Zkoušky rázem V provozu působí často na strojní součásti síla, která se cyklicky mění, popř. Její působení je dynamického charakteru. Rázové působení síly je velmi nebezpečné, neboť to může iniciovat náhlou

Více

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze

Více

TAH-TLAK. Autoři: F. Plánička, M. Zajíček, V. Adámek R A F=0 R A = F=1500N. (1) 0.59

TAH-TLAK. Autoři: F. Plánička, M. Zajíček, V. Adámek R A F=0 R A = F=1500N. (1) 0.59 Autoři:. Plánička, M. Zajíček, V. Adámek 1.3 Řešené příklady Příklad 1: U prutu čtvercového průřezu o straně h vyrobeného zedvoumateriálů,kterýjezatížensilou azměnou teploty T (viz obr. 1) vyšetřete a

Více

Prvky betonových konstrukcí BL01 3. přednáška

Prvky betonových konstrukcí BL01 3. přednáška Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování

Více

KONSTRUKČNÍ NÁVRH RÁMU LISU CKW 630 SVOČ FST Bc. Martin Konvalinka, Jiráskova 745, Nýrsko Česká republika

KONSTRUKČNÍ NÁVRH RÁMU LISU CKW 630 SVOČ FST Bc. Martin Konvalinka, Jiráskova 745, Nýrsko Česká republika KONSTRUKČNÍ NÁVRH RÁMU LISU CKW 630 SVOČ FST 2009 Bc. Martin Konvalinka, Jiráskova 745, 340 22 Nýrsko Česká republika ABSTRAKT Práce obsahuje pevnostní kontrolu rámu lisu CKW 630 provedenou analytickou

Více

Prvky betonových konstrukcí BL01 11 přednáška

Prvky betonových konstrukcí BL01 11 přednáška Prvky betonových konstrukcí BL01 11 přednáška Mezní stavy použitelnosti (MSP) Použitelnost a trvanlivost Obecně Kombinace zatížení pro MSP Stádia působení ŽB prvků Mezní stav omezení napětí Mezní stav

Více

Dimenzování pohonů. Parametry a vztahy používané při návrhu servopohonů.

Dimenzování pohonů. Parametry a vztahy používané při návrhu servopohonů. Dimenzování pohonů. Parametry a vztahy používané při návrhu servopohonů. M. Lachman, R. Mendřický - Elektrické pohony a servomechanismy 13.4.2015 Požadavky na pohon Dostatečný moment v celém rozsahu rychlostí

Více

Verifikace výpočtových metod životnosti ozubení, hřídelů a ložisek na příkladu čelní a kuželové převodovky

Verifikace výpočtových metod životnosti ozubení, hřídelů a ložisek na příkladu čelní a kuželové převodovky Katedra částí a mechanismů strojů Fakulta strojní, VŠB - Technická univerzita Ostrava 708 33 Ostrava- Poruba, tř. 7.listopadu Verifikace výpočtových metod životnosti ozubení, hřídelů a ložisek na příkladu

Více

Dynamická pevnost a životnost Cvičení

Dynamická pevnost a životnost Cvičení DPŽ - vičení Dynamiá pevnost a životnost Cvičení Milan Růžiča, Josef Jurena, Martin Nesláde, Jan Papuga mehania.fs.vut.z milan.ruzia@fs.vut.z DPŽ - vičení Cvičení Dynamiá pevnost a životnost Milan Růžiča,

Více

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady. Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových

Více

Experimentální výzkum vlivu zesílení konstrukce valené klenby lepenou uhlíkovou výztuží

Experimentální výzkum vlivu zesílení konstrukce valené klenby lepenou uhlíkovou výztuží EXPERIMENTÁLNÍ VÝZKUM KLENEB Experimentální výzkum vlivu zesílení konstrukce valené klenby lepenou uhlíkovou výztuží 1 Úvod Při rekonstrukcích památkově chráněných a historických budov se často setkáváme

Více

pedagogická činnost

pedagogická činnost http://web.cvut.cz/ki/ pedagogická činnost -Uplatnění prostého betonu - Charakteristické pevnosti - Mezní únosnost v tlaku - Smyková únosnost - Obdélníkový ýprůřez - Konstrukční ustanovení - Základová

Více

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Vzpěr,

Více

OPTIMALIZACE NÁVRHU CB VOZOVEK NA ZÁKLADĚ POČÍTAČOVÉHO A EXPERIMENTÁLNÍHO MODELOVÁNÍ. GAČR 103/09/1746 ( )

OPTIMALIZACE NÁVRHU CB VOZOVEK NA ZÁKLADĚ POČÍTAČOVÉHO A EXPERIMENTÁLNÍHO MODELOVÁNÍ. GAČR 103/09/1746 ( ) OPTIMALIZACE NÁVRHU CB VOZOVEK NA ZÁKLADĚ POČÍTAČOVÉHO A EXPERIMENTÁLNÍHO MODELOVÁNÍ. GAČR 103/09/1746 (2009 2011) Dílčí část projektu: Experiment zaměřený na únavové vlastnosti CB desek L. Vébr, B. Novotný,

Více

POROVNÁNÍ RŮZNÝCH PŘÍSTUPŮ K ODHADU MEZE ÚNAVY

POROVNÁNÍ RŮZNÝCH PŘÍSTUPŮ K ODHADU MEZE ÚNAVY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF SOLID MECHANICS,

Více