Obsah Contents pdf Tisk Obsah je rozdělen do sedmi témat a to Zdroje a přeměna energie, Lopatkové stroje, Tepelné turbíny a turbokompresory, Pístový parní motor, Stirlingův motor, Proudění a Teoretické základy. Úvodní strana (vyhledávání) Obsah Rejstřík Symboly Přílohy Aktualizace (RSS) O stránkách O autorovi Zdroje a přeměna energie 1. Cesta člověka k transformačním technologiím Oheň; Živá síla; Střípky z historie větrné energetiky; Vodní kola a vodní turbíny; Historie strojů na páru; Jde to i bez páry; Elektřina; Jaderná energetika; Jak člověk začal transformovat energii ze Slunce přímo; Na závěr 2. Sluneční záření jako zdroj energie Tepelný tok ze Slunce na Zemi; Slunce; Využití sluneční energie rozdělení; Intenzita slunečního záření na povrchu Země; Systém pro ohřev tekutin a akumulaci tepla; Solární kolektor; Návrh solárního systému pro ohřev vody; Fotovoltaické systémy; Solární panel princip činnosti; Na závěr The contents is subdivided to seven themes as Sources and transformation of energy, Turbomachinery, Heat turbines and turbocompressors, Steam piston engine, Stirling engine, Flow and Theoretically essentials. Head page (search) Contents Index Symbols Appendixes Updates (RSS) About this web (only cz) About author (only cz) Sources and transformation of energy Way of mankind to transformation technologies Sun radiation as source of energy
Obsah-2 3. Biomasa jako zdroj energie Rostlinná biomasa; Fotosyntéza a vznik rostlinné biomasy; Výnosy; Typy konverzí biomasy pro energetické účely; Hoření dřeva; Spalování biomasy 4. Využití energie větru Konstrukce větrné elektrárny; Transformace energie ve větrné turbíně úvod; Vznik větru; Výběr lokality; Stavba větrné elektrárny; Větrná energetika 5. Využití energie vodního spádu Energetický potenciál vodního spádu; Základní typy vodních elektráren; Vodní turbíny; Potenciál vodního spádu v ČR 6. Tepelné oběhy a jejich realizace Oběhy spalovacích motorů; Lenoirův oběh; Výbušný (Ottův) oběh; Rovnotlaký (Dieselův) oběh, oběh vznětového motoru; Rankine-Clausiův oběh (R C oběh; parní oběh); Braytonův oběh (Jouleho oběh); Chladící oběh; Carnotizace tepelného oběhu; Tepelné stroje; Na závěr 7. Fosilní paliva, jejich využití v energetice a ekologické dopady Vznik uhlí; Ložiska uhlí v ČR; Spalování uhlí v uhelných elektrárnách; Ropa; Těžba ropy; Složení ropy; Spotřeba ropy v ČR; Zemní plyn; Dovoz a distribuce zemního plynu; Výpočet dodané energie v zemním plynu (účtování); Závislost na dovozu fosilních paliv; Spalování fosilních paliv a ekologické dopady spalování; Vliv oxidů síry; Vliv oxidů dusíku; Tvorba CO a CO 2 a koloběh uhlíku; Skleníkový efekt a vliv CO 2 8. Využití tepla Země Přímé využití geotermální energie; Tepelná čerpadla Biomass as source of energy Use of wind energy Use of water gradient Heat cycles and their realisations Fossil fuels, their use in energy industry and environmental impact Use of heat of Earth
Obsah-3 9. Jaderná energetika Jaderné reaktory; Termonukleární reaktor; Jaderné elektrárny; Jaderná elektrárna; Schéma zařízení jaderné elektrárny s reaktorem typu VVER; Primární okruh, Sekundární okruh; Uran a palivový cyklus; Těžba a úprava uranové rudy; Obohacování uranu; Výroba palivové kazety; Štěpení v reaktoru; Přepracovací závod; Mezisklad použitého paliva; Hlubinné (konečné) úložiště jaderného odpadu; Jaderná bezpečnost 10. Principy výroby elektřiny a tepla v domácnostech Výroba tepla; Výroba elektřiny v domácnostech; Kogenerace v domácnosti; Programovatelné (inteligentní) řízení výroby a spotřeby energií v domácnostech; Na závěr Lopatkové stroje 11. Lopatkový stroj Základní rozdělení a princip činnosti; Základní typy a aplikace lopatkových strojů; Rozdíl mezi objemovým strojem a lopatkovým strojem; Rozdělení lopatkových strojů podle směru proudění; Společné konstrukční znaky lopatkových strojů; Lopatka, lopatkový kanál a lopatková mříž; Výkon/příkon lopatkového stroje; Stupeň lopatkového stroje; Rychlostní trojúhelník; Ztráty lopatkových strojů Nuclear energy industry Principles of production of electricity and heat in household Turbomachinery Turbomachine Nomenclature and principle of operation; General classification and application of turbomachines; Difference between piston engine and turbomachine; Classification of turbomachines according to stream direction; Construction features of turbomachines; Blade, blade passage and blade row; Power output/input of turbomachine; Turbomachine stage; Velocity triangle; Turbomachine losses
Obsah-4 12. Základní rovnice lopatkových strojů Síla působící na lopatky od proudu tekutiny (Eulerova rovnice); Diskuze k Eulerově rovnici; Vztah mezi střední aerodynamickou rychlostí a silou F; Kroutící moment, výkon (Eulerova turbínová rovnice; Diskuze k Eulerově turbínové rovnici; Obvodová práce; Diskuze k rovnici obvodové práce; Síla působící na osamocený profil (rovnice Kutta Žukovského); Aplikace rovnice Kutta-Žukovského na lopatku v lopatkové mříži; Spirální kanály v lopatkových strojích 13. Energetické bilance lopatkových strojů Energetická bilance vodní turbíny; Diskuze k energetickým rovnicím vodní turbíny; Čerpadla; Diskuze k energetickým rovnicím čerpadla; Energetická bilance tepelné turbíny; Diskuze k energetickým rovnicím tepelné turbíny; Energetická bilance turbokompresoru; Diskuze k energetickým rovnicím turbokompresoru; Energetická bilance ventilátoru; Energetická bilance větrné turbíny; Vrtule 14. Energetické bilance tepelných lopatkových strojů při sdílení tepla s okolím Expanze se sdílením tepla s okolím; Komprese se sdílením tepla s okolím; Vliv změny měrné tepelné kapacity plynu na expanzi a kompresi; Konstrukce izobar v T-s diagramu 15. Vztah mezi obvodovou a vnitřní prací stupně lopatkového stroje Profilové ztráty; Celková energetická bilance stupně Essential equations of turbomachines Force on blades from fluid stream (Euler equation); Discussion about Euler equation; Relation between mean aerodynamic velocity and force F; Torque, power output (Euler turbomachinery equation); Discussion about Euler turbomachinery equation; Specific shaft work; Discussion about specific shaft work equation; Force on airfoil (Kutta Joukowski theorem); Application of Kutta Joukowski theorem to blade inside blade row; Spiral passages inside turbomachines Energy balances of turbomachines Energy balance of turbine; Discussion about water turbine energy equations; Rotodynamic pumps; Discussion about pump energy equations; Energy balance of heat turbine; Discussion about heat turbine energy equations; Energy balance of turbocompressor; Discussion about compressor energy equations; Energy balance of fan; Energy balance of wind turbine; Propellers Energy balances of heat turbomachines at heat transfer with surroundings Expansion inside of turbomachine at heat transfer with surroundings; Compression inside of turbomachine at heat transfer with surroundings; Influence of change of specific heat capacity of gas on expansion and compression; Drawing isobaric curves in T-s diagram Relation between shaft work and internal work of turbomachine stage Blade profile losses; Total energy balance of stage
Obsah-5 16. Geometrie lopatkových strojů Základní pojmy lopatkových mříží; Tvar profilu lopatky; Geometrické a aerodynamické charakteristiky lopatkových mříží; Tvary vstupních a výstupních hrdel lopatkových strojů; Tvary spirálních skříní 17. Základy aerodynamiky profilů lopatek a lopatkových mříží Průběh tlaku podél profilu lopatky; Aerodynamika osamoceného profilu; Aerodynamika lopatkové mříže; Důsledky stlačitelnosti proudění; Aerodynamika profilů a lopatkových mříží ve stlačitelném prostředí; Shrnutí vlivu stlačitelnosti proudění 18. Ztráty v lopatkových strojích Rozdělení profilových ztrát; Ztráta třením v mezní vrstvě; Ztráta vířením při odtržení mezní vrstvy od profilu; Ztráta vířením za odtokovou hranou; Ztráta rázem při obtékání profilu; Ostatní ztráty vznikající ve stupni lopatkového stroje; Ztráta parciálním ostřikem; Okrajová ztráta; Ztráta nesprávným úhlem náběhu; Ztráty vznikající vzájemným účinkem sousedních lopatkových mříží; Ztráty vnitřní netěsností stupně; Ventilační ztráta disku; Ztráty vlhkostí páry; Celkové poměrné ztráty stupně; Ztráty vznikající mimo lopatkovou část stroje; Ztráty v hrdlech lopatkových strojů 19. Podobnosti lopatkových strojů Teorie podobnosti, teorie modelů; Geometrická podobnost stupňů lopatkových strojů; Kinematická podobnost stupňů lopatkových strojů; Průtokový součinitel; Tlakový součinitel; Výkonový součinitel; Stupeň reakce; Rychlostní poměr; Specifické (měrné) otáčky; Odhad účinnosti z podobnostních součinitelů; Podobnost lopatkových strojů; Na závěr Shapes of parts of turbomachines Fundamental terminology of blade rows; Shape of blade profile; Geometry and aerodynamic characteristics of blade rows; Shapes of inlet and exit branches of turbomachines; Shapes of spiral casings Fundamentals of aerodynamic of blade profiles and blade rows Losses in turbomachines Similarities of turbomachines
Obsah-6 20. Návrh stupně lopatkového stroje se zanedbatelným vlivem prostorového charakteru proudění Příklad postupu návrhu stupně lopatkového stroje; Elementární a normální axiální stupeň lopatkového stroje; Návrh axiálního rovnotlakého stupně; Návrh Curtisova stupně; Návrh axiálního přetlakového stupně; Návrh axiálního stupně kompresoru/dmychadla; Radiální stupeň lopatkového stroje; Návrh radiálního stupně čerpadla, ventilátoru a kompresoru; Návrh radiálního stupně turbíny; Základní návrh vícestupňového lopatkového stroje 21. Návrh stupně lopatkového stroje s přihlédnutím k prostorovému charakteru proudění Vliv zakřivení proudu na transformaci energie v lopatkovém stroji; Zjednodušující předpoklady; Vstupní rovnice popisující prostorové proudění; Rovnice pro osově symetrické proudění; Podmínky řešení rovnic; Axiální stupeň s konstantní cirkulací po výšce lopatky; Axiální stupeň s konstantní reakcí a konstantní prací; Axiální stupeň s konstantním měrným průtokem po výšce lopatky; Kuželový stupeň s předepsanými proudovými plochami 22. Vodní turbíny a hydrodynamická čerpadla Peltonova turbína; Francisova turbína; Kaplanova turbína; Radiální čerpadla; Axiální čerpadla; Vícestupňové hydraulické stroje; Výkonové charakteristiky hydrodynamických čerpadel; Kavitace; Výrobci a dodavatelé vodních turbín a hydrodynamických čerpadel Design of turbomachine stage with negligible influence of spatial character of stream Design of turbomachine stage with taking into account spatial character of flow Water turbines and rotodynamic pumps
Obsah-7 23. Větrné turbíny a ventilátory Aerodynamický návrh větrné turbíny; Turbíny pro přílivové elektrárny; Axiální ventilátory; Radiální ventilátory; Charakteristiky ventilátorů a jejich regulace; Výrobci a dodavatelé větrných turbín a ventilátorů 24. Tepelné turbíny a turbokompresory Stupně parních turbín; Parní turbíny s axiálními stupni; Parní turbíny s radiálními stupni; Stupně turboexpandérů a expanzní stupně plynových turbín; Stupně turbokompresorů a kompresní stupně plynových turbín; Návrh vícestupňové tepelné turbíny a turbokompresoru; Základní charakteristiky tepelných turbín a turbokompresorů Tepelné turbíny a turbokompresory 25. Tepelná turbína a turbokompresor Parní turbíny; Plynové turbíny; Paroplynový oběh; Turbokompresory 26. Parní turbína v technologickém celku Tepelná účinnost bloku s parní turbínou; Carnotizace Rankine Clausiova oběhu; Vliv tlaku páry p 2 na tepelnou účinnost; Vliv zvýšení teploty páry T 3 na tepelnou účinnost; Přihřívání páry a jeho vliv na tepelnou účinnost; Regenerační ohřev napájecí vody; Vliv kondenzační teploty respektive tlaku v kondenzátoru na tepelnou účinnost; Parní turbína v paroplynovém bloku; Alternativní pracovní látky v parních obězích; Regulace výkonu parních turbín; Zjednodušené spotřební charakteristiky parních turbín; Výrobci a dodavatelé parních turbín Wind turbines and fans Heat turbines and turbocompressors Heat turbines and turbocompressors Heat turbine and turbocompressor Steam turbines; Gas turbines and expanders; Combined cycle gas turbine (CCGT); Turbocompressors Steam turbine in technological unit
Obsah-8 27. Turbokompresor v technologickém celku Napojení turbokompresoru na technologii; Snižování příkonu kompresoru chlazením během komprese; Povrchové chlazení (tzv. vnitřní); Turbokompresory s mezichlazením; Chlazení vstřikováním kapaliny do pracovního plynu; Pohon a regulace turbokompresorů; Charakteristiky turbokompresorů (se změnou otáček a parametrů); Výrobci a dodavatelé turbokompresorů 28. Plynová turbína (spalovaci turbina) v technologickém celku Tepelná účinnost soustrojí se spalovací turbínou; Vliv tlakových ztrát; Carnotizace Braytonova oběhu; Vliv tlaku pracovního plynu za turbokompresorem na tepelnou účinnost; Komprese s mezichlazením; Vliv teploty pracovního plynu před turbínou na tepelnou účinnost; Zvýšení tepelné účinnosti pomocí regenerace tepla; Dělení expanze a dvojí ohřátí pracovního plynu; Komprese s mezichlazením; Spalovací komory; Regulace plynových turbín a jejich charakteristiky; Výrobci a dodavatelé plynových turbín Pístový parní motor 29. Pístový parní motor (Parní stroj) Využívání pístového parního motoru; Popis a princip činnosti; Rozdělení pístových parních motorů; Základy konstrukce; Energetické toky Turbocompressor in technological unit Gas turbine in technological unit Steam piston engine Steam piston engine Using of steam piston engine; Description and principle of operation; Types of steam piston engines; Fundamentals of design; Energy flows
Obsah-9 30. Termodynamický návrh pístového parního motoru Ideální p-v diagram; Indikátorový (reálný) p V diagram; Přímá (direktní) spotřeba páry v motoru; Celková spotřeba páry v motoru; Vnitřní termodynamická účinnost pístového parního motoru; Zvýšení vnitřní termodynamické účinnosti rozdělením expanze páry 31. Vyšetření pohybu a rozměrů šoupátka Mechanismus pohybu šoupátka; Hlavní rozměry šoupátka; Konstrukce diagramu L s L; Rozvodové okamžiky v diagramu L s L; Odečet hlavních rozměrů šoupátka z diagramu L s -L; Důsledky špatného seřízení a návrhu šoupátka 32. Základní rovnice klikového mechanismu parního motoru Rovnice polohy pístu spojeného s klikovým mechanismem; Rozklad sil působících na píst; Kroutící moment; Nerovnoměrnost chodu velikost setrvačných hmot soustrojí 33. Pístový parní motor v technologickém celku Článek je zatím neveřejný. Stirlingův motor 34. Stirlingův motor Využívání Stirlingova motoru; Stirlingův motor a jeho princip; Základní modifikace Stirlingova motoru; Základy konstrukce Stirlingova motoru; Regenerátor Stirlingova motoru; Ohřívák Stirlingova motoru; Chladič Stirlingova motoru; Energetické toky ve Stirlingově motoru Thermodynamic design of steam piston engine Calculation of move and dimensions of slide valve Essential equations of crank mechanism of steam engine Piston steam engine in technological unit The article is not public yet. Stirling engine Stirling engine Using of Stirling engine; Stirling engine and its principle of operation; Main configurations of Stirling engine; Fundamentals of Stirling engine design; Regenerator of Stirling engine; Heater of Stirling engine; Cooler of Stirling engine; Energy flows inside Stirling engine
Obsah-10 35. Oběh Stirlingova motoru Tlak ve Stirlingově motoru; Exponent polytropy a stupeň izotermizace; p-φ a p-v diagram Stirlingova motoru s klikovým mechanismem; Změna teploty pracovního plynu ve Stirlingově motoru; Stirlingův oběh a Schmidtova idealizace; Další porovnávací oběhy Stirlingova motoru; Na závěr 36. Energetická bilance oběhu Stirlingova motoru Zjednodušující předpoklady; Vnitřní práce Stirlingova motoru; Tepelná bilance teplé strany, studené strany motoru a regenerátoru; Vnitřní tepelná účinnost Stirlingova motoru; Regenerované teplo v regenerátoru Stirlingova motoru; Entropie pracovního plynu v motoru; Množství pracovního plynu v motoru 37. Ztráty ve Stirlingových motorech Podobnosti Stirlingových motorů; Termodynamické ztráty oběhu Stirlingova motoru; Ztráta netěsností pístních kroužků Proudění 38. Škrcení plynů a par Ideální proudění plynu; Vznik trvalé tlakové ztráty při škrcení; Rozdíly při škrcení ideálního a reálného plynu; Využití efektu škrcení pro těsnění hřídelůlabyrintová ucpávkaregulace tlaku škrcením-redukční stanice; Regulace průtoku škrcením; Regulace tlaku hořlavého plynu; Škrcení v proudových měřidlech průtoku (Venturiho trubice, clona, dýza); Záměrné vytváření tlakové ztráty pomocí škrcení Stirling Engine Cycle Pressure inside Stirling engine; Polytropic index and isothermal ratio; p φ and p V diagram of Stirling engine with crankshaft; Stirling cycle and Schmidt theory; Temperature change of working gas inside Stirling engine; Other comparative cycle for Stirling engine; On conclusion Energy balance of Stirling engine cycle Assumptions of solution; Internal work of Stirling engine; Heat balance of hot side, cold side and regenerator of engine; Internal efficiency of Stirling engine; Regenerated heat inside regenerator of Stirling engine; Entropy of working gas; Amount of working gas inside engine Losses in Stirling engines Similarities of Stirling engines; Thermodynamics losses of Stirling engine cycle; Losses through leaks of piston rings Flow Throttling of gases and steam
Obsah-11 39. Vznik tlakové ztráty při proudění tekutiny Laminární proudění viskozita; Proudění turbulentní Reynoldsovo číslo; Tlaková ztráta v potrubí nejen kruhového průřezu; Tlaková ztráta v místních odporech; Charakteristika potrubního systému 40. Efekty při proudění vysokými rychlostmi Machovo číslo; Šíření zvukových vln při pohybu zdroje tlakové poruchy; Hugoniotův teorém (charakteristická rovnice proudění stlačitelné látky); Kolmá (přímá) rázová vlna; Šikmá rázová vlna; λ-rázová vlna; Obtékání tupého úhlu vysokou rychlostí (expanzní vlny); Charakteristika obtékání tělesa vysokou rychlostí 41. Proudění plynů a par dýzou/tryskou Zužující se dýza (konvergentní tryska); Stav za ústím dýzy; Lavalova dýza (konvergentně-divergentní tryska); Proudění Lavalovou dýzou při nenávrhových stavech; Proudění v šikmo seříznuté dýze; Proudění dýzou se ztrátami 42. Některé aplikace teorie dýzy/trysky Nenávrhové stavy ventilu s difuzorem; Lavalova dýza jako lopatkový kanál; Raketový motor; Náporový motor; Průtok skupinou dýz, skupinou stupňů turbín Teoretické základy 43. Aplikace vektorového počtu v mechanice kontinua Gradient skalárního pole-gradient funkce; Potenciální (konzervativní) vektorové pole; Transformace do válcových souřadnic; Rotace vektoru, vírové a nevírové proudění; Divergence vektoru Rise of pressure drop during fluid flow Effects at high velocity flow Flow of gases and steam through nozzle Converging nozzle; State at exit of nozzle; De Laval Nozzle (convergingdiverging nozzle, CD nozzle); Flow in de Laval nozzle at non-design states; Flow through oblique cut nozzle; Flow in nozzle with loss A few applications of nozzle theory Theoretically essentials Application of vector calculus in continuum mechanics
Obsah-12 44. Přenos energie elektromagnetickým zářením Vlastnosti fotonu; Vyzařovaná energie tělesa ve formě elektromagnetického záření; Bilance dopadajícího elektromagnetického záření 45. Jaderná energie Složení atomového jádra a základní pojmy; Vazebná energie; Štěpení jader atomů; Jaderná syntéza 46. Radioaktivita a vliv ionizujícího záření Ionizující záření; Radioaktivita; Účinky ionizujícího záření; Biologické účinky ionizujícího záření 47. Aplikace zákonů termodynamiky při transformaci energie Čtyři zákony termodynamiky; Teplota, práce, energie a teplo; Vztah mezi vnitřní tepelnou energií a dalšími druhy energie, zákon zachování energie; Tepelný oběh a jeho realizace; Energetická bilance průtočných strojů; Účinnost transformace, entropie, i-s a T-s diagram Transmission of energy by electromagnetic radiation Nuclear energy Radioactivity and influence of ionizing radiation Aplication of laws of thermodynamics at transformation of energy Jiří Škorpík, LICENCE