Laserová depozice tenkých vrstev



Podobné dokumenty
Tenké vrstvy pro lékařství 1. Laserové vrstvy ( metody přípravy vrstev, laser, princip metody pulzní laserové depozice PLD, růst vrstev, )

Lasery v mikroelektrotechnice. Soviš Jan Aplikovaná fyzika

Vakuové metody přípravy tenkých vrstev

Vybrané technologie povrchových úprav. Metody vytváření tenkých vrstev Doc. Ing. Karel Daďourek 2008

REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV. Jan VALTER HVM Plasma s.r.o.

Diamantu podobné uhlíkové vrstvy pro pokrytí kloubních náhrad

Plazmová depozice tenkých vrstev oxidu zinečnatého

galvanicky chemicky plazmatem ve vakuu Vrstvy ve vakuu MBE Vakuová fyzika 2 1 / 39

Využití plazmových metod ve strojírenství. Metody depozice povlaků a tenkých vrstev

Pracoviště se dlouhodbě zabývá přípravou a charakterizací biokompatibilních nanovrstev a nanokompozitních materiálů pro biomedicínské aplikace.

Plazmatické metody pro úpravu povrchů

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj

Plazmové metody Materiály a technologie přípravy M. Čada

TENKÉ VRSTVY. 1. Modifikací povrchu materiálu (teplem, okysličením, laserem,.. 2. Depozicí (nanášením)

Technologie a vlastnosti tenkých vrstev, tenkovrstvé senzory

Laserové depoziční metody - obecná charakteristika

Iradiace tenké vrstvy ionty

Uhlíkové struktury vázající ionty těžkých kovů

Metody depozice povlaků - CVD

Přehled metod depozice a povrchových

Lasery. Biofyzikální ústav LF MU. Projekt FRVŠ 911/2013

Nanokrystalické tenké filmy oxidu železitého pro solární štěpení vody

Přednáška 3. Napařování : princip, rovnovážný tlak par, rychlost vypařování.

FYZIKA VE FIRMĚ HVM PLASMA

Laserové technologie v praxi I. Přednáška č.2. Základní konstrukční součásti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011

Vytváření tenkých speciálních vrstev metodou plazmochemické depozice z plynné fáze

INTERAKCE IONTŮ S POVRCHY II.

Vakuová technika. Výroba tenkých vrstev vakuové naprašování

Tenká vrstva - aplikace

Základní typy článků:

Plynové lasery pro průmyslové využití

ODŮVODNĚNÍ VEŘEJNÉ ZAKÁZKY

Fyzikální metody nanášení tenkých vrstev

Anotace přednášek LŠVT 2015 Česká vakuová společnost. Téma: Plazmové technologie a procesy. Hotel Racek, Úštěk, 1 4. června 2015

DOUTNAVÝ VÝBOJ. Magnetronové naprašování

Metody charakterizace

Plazma v technologiích

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

Vybrané spektroskopické metody

TECHNOLOGICKÉ PROCESY PŘI VÝROBĚ POLOVODIČOVÝCH PRVKŮ III.

PRINCIPY ZAŘÍZENÍ PRO FYZIKÁLNÍ TECHNOLOGIE (FSI-TPZ-A)

Návod pro laboratorní úlohu: Závislost citlivosti plynových vodivostních senzorů na teplotě

Glass temperature history

Měření charakteristik pevnolátkového infračerveného Er:Yag laseru

Studentská 1402/ Liberec 1 tel.: cxi.tul.cz. Technologická zařízení

ELEKTROTERMICKÁ ATOMIZACE. Electrothermal atomization AAS (ETA-AAS)

Techniky mikroskopie povrchů

Laserové technologie v praxi I. Přednáška č.8. Laserové zpracování materiálu. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011

Lasery optické rezonátory

ANALÝZA POVLAKOVANÝCH POVRCHŮ ŘEZNÝCH NÁSTROJŮ

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec

Fotokatalytická oxidace acetonu

J = S A.T 2. exp(-eφ / kt)

Ionizační manometry. Při ionizaci plynu o koncentraci n nejsou ionizovány všechny molekuly, ale jenom část z nich n i = γn ; γ < 1.

Chemické metody plynná fáze

Západočeská univerzita v Plzni fakulta Strojní

Vytržení jednotlivých atomů, molekul či jejich shluků bombardováním terče (targetu) ionty s vysokou energií (~kev)

3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické).

TEPLOTNÍ ODOLNOST PVD VRSTEV VŮČI LASEROVÉMU POVRCHOVÉMU OHŘEVU

Průmyslové lasery pro svařování

Metody depozice tenkých vrstev pomocí nízkoteplotního plazmatu

Světlo jako elektromagnetické záření

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ

Přednáška 8. Chemické metody a fyzikálně-chemické metody : princip CVD, metody dekompozice, PE CVD

Monika Fialová VAKUOVÁ FYZIKA II. ZÍSKÁVÁNÍ NÍZKÝCH TLAKŮ

Návod pro laboratorní úlohu: Komerční senzory plynů a jejich testování

Elektronová Mikroskopie SEM

Základy Mössbauerovy spektroskopie. Libor Machala

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ

Mechanická modifikace topografie strojních součástí

Plazmové depozice povlaků. Plazmový nástřik Plasma Spraying

Příprava grafénu. Petr Jelínek

Studium tenkých mazacích filmů spektroskopickou reflektometrií

VYUŽITÍ AKTIVÁTORŮ ABSORPCE MIKROVLNNÉHO ZÁŘENÍ PŘI TERMICKÉ DESORPCI

Ochrana obalem před změnami teploty a úloha obalu při tepelných procesech v technologii potravin. Sdílení tepla sáláním. Balení pro mikrovlnný ohřev

Charakteristiky laseru vytvářejícího světelné impulsy o délce několika pikosekund

Depozice tenkých vrstev I.

Typy interakcí. Obsah přednášky

Víme, co vám nabízíme

TENKOVRSTVÁ TECHNOLOGIE HYDROGENOVANÉHO KŘEMÍKU PRO FOTOVOLTAICKÉ APLIKACE. oddělení tenkých vrstev F Y Z I K Á L N Í Ú S T A V A V Č R P R A H A

Automatizace výrobních procesů ve strojírenství a řemesel, CZ.1.07/1.1.30/ , Přednáška - KA 5

Úpravy brýlových čoček. LF MU Brno Brýlová technologie

Biomateriály na bázi kovů. L. Joska Ústav kovových materiálů a korozního inženýrství

IONTOVÉ ZDROJE. Účel. Požadavky. Elektronové zdroje. Iontové zdroje. Princip:

Využití technologie Ink-jet printing pro přípravu mikro a nanostruktur II.

Co je litografie? - technologický proces sloužící pro vytváření jemných struktur (obzvláště mikrostruktur a nanostruktur)

Otázky pro samotestování. Téma1 Sluneční záření

ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY

Svařování svazkem elektronů

Zdroje optického záření

Bezpečnostní inženýrství. - Detektory požárů a senzory plynů -

Katedra materiálu.

Mikro a nanotribologie materiály, výroba a pohon MEMS

Chemické metody přípravy tenkých vrstev

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

Centrum základního výzkumu LC Příprava, modifikace a charakterizace materiálů energetickým zářením. Jaroslav Pavlík, KF PřF UJEP, Ústí n. L.

Nano a mikrotechnologie v chemickém inženýrství. Hi-tech VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMICKÉHO INŽENÝRSTVÍ

FOTOAKUSTIKA. Vítězslav Otruba

Spektrometrické metody. Reflexní a fotoakustická spektroskopie

Tajemství ELI - nejintenzivnějšího laseru světa

Transkript:

Laserová depozice tenkých vrstev Tomáš Kocourek 1,2, Miroslav Jelínek 1,2 1) Fyzikální ústav AV ČR, Na Slovance 2, Praha 8, 182 21 2) Fakulta biomedicínského inženýrství ČVUT, nám. Sítná 3105, Kladno, 272 01

Laserová depozice tenkých vrstev LASEROVÁ DEPOZICE TENKÝCH VRSTEV Mechanismus PLD Mechanismus MAPLE EXPERIMENTÁLNÍ TECHNIKA PLD Hybridní PLD MAPLE APLIKACE LASEROVÝCH TENKÝCH VRSTEV Vlnovodové lasery Čidla plynů Tenké vrstvy v lékařství Organické tenké vrstvy

TV technologie Vrstvy modifikace povrchu, depozice (nanášení) Depozice PVD, CVD, PECVD (PACVD) PVD napařování (termické, vakuové,..) naprašování (diodové, magnetronové, ECR, supersonická tryska, ) iontové plátování plazmový nástřik laserová depozice

Laserové vrstvy LASER pro ohřev, pyrolýzu, fotodisociaci Povrchová modifikace materiálů (kovová skla, rekrystalizace, legování, laserová nástřik) Laser CVD laserem stimulovaná chemická depozice Laser PA CVD laserem stimulovaná plazmochemická depozice Pulzní laserová depozice (PLD)

PLD 1 Základní experimentální uspořádání pro laserovou depozici tenkých vrstev : 3 2 vakuová depoziční komora, držák podložek umožňující ohřev podložek a přesné měření teploty, materiál terče a laser. Fokusovaný laserový svazek dopadá na terč, vysokou hustotou záření se materiál terče převede do plazmového obláčku a následně materiál kondenzuje na podložce, umístěné nad terčem. Procesy probíhající během PLD zahrnují v podstatě tři vzájemně provázané druhy interakce : laserové záření - pevná látka, plasma - pevná látka, plasma - laserové záření. 8 6 5 Schéma pulsní laserové depozice (1- laserový svazek, 2- odražeč, 3- čočka, 4- vstupní okno depoziční komory, 5- karusel s terči, 6- topný stolek s podložkou, 7- vakuový čerpací systém, 8,9- vakuové měrky 7 4 9

PLD topný držák laser vzorek plasma terč

Depoziční parametry ovlivňují růst, tloušťku, plochu a kvalitu deponovaných vrstev 1. Parametry laseru: vlnová délka (absorpční tloušťka ) délka impulsu (objem zahřátého materiálu) opakovací frekvence (nukleace a růst vrstvy) 2. Interakce laserového záření s terčem: hustota výkonu laserového svazku (tvar plumu, plocha a homogenita vrstvy, energiečástic plumu, růst vrstvy krystalinita, hustota) materiálové vlastnosti terče (tepelná vodivost, objemová hustota terče, absorpce, odrazivost, elektrická vodivost x rychlost šíření rozvod tepla v terči, velikost absorbovaného výkonu, objem zahřátého materiálu x tvorba kuliček x hladký povrch vrstvy)

Depoziční parametry ovlivňují růst, tloušťku, plochu a kvalitu deponovaných vrstev velikost stopy laserového svazku (tvar plumu, plochu a homogenitu vrstvy) 3. Interakce plasmového plumu s plynným prostředím a s podložkou: tlak a výběr plynu v depoziční komoře (tvar plumu, rychlost částic, rozklad plynu, excitace, ionizace x hustota, morfologie, krystalinita a složení vrstvy) vzdálenost terč- podložka (množství dopadajících částic, geometrie vrstvy)

Depoziční parametry ovlivňují růst, tloušťku, plochu a kvalitu deponovaných vrstev 4. Parametry podložky: mřížkové parametry (režim růstu vrstvy) tepelná vodivost (napětí ve vrstvě, homogenita složení vrstvy) koeficient tepelné roztažnosti (napětí ve vrstvě) teplota podložky (vazby, krystalinita) 5. Režim růstu vrstvy: depoziční rychlost frekvence opakování pulsů tloušťka vrstvy

Interakce laserového záření s terčem I 0 RI 0 S x terč α 1 L(τ) Tepelný model absorpce energie laserového záření v terči. I 0 - hustota výkonu dopadající na terč RI 0 - odraženáčást S - plocha svazku α 1 - tloušt ka, kde je absorbováno záření L(τ) - tloušt ka zahřátí terče X - vzdálenost měřená od povrchu terče D - koeficient difúze τ - délka jednoho pulsu m - hmotnost zahřáté vrstvy ρ - hustota terčového materiálu U - sublimační teplo na jednotku hmotnosti Absorbovaný výkon Zahřátí vrstvy tloušťky Objem ohřátého matriálu Energie potřebná k vypaření I( x) = I 0 (1 R) e L( τ ) = 2Dτ V = L( τ ) S αx E = mu = V ρu = SρU 2Dτ C

Transport vypařeného materiálu z terče na podložku terč v x φ θ h v z laserový svazek x z podložka Rozložení oblaku je možné popsat funkcí cos θ s exponentem n měnícím se v intervalu 8<n<12 n Úhel plasmového obláčku 1. Atomy a molekuly v základním stavu Po odpaření materiálu z terče začíná plasmový obláček během několika prvních mikrosekund expandovat s rychlostí ~ 10 km/s. 2. Excitované atomy a molekuly 3. Ionty 4. Elektrony 5. Kuličky

PLD šíření materiálu CCD fotografie charakterizujícíčasový rozvoj plasmového obláčku po dopadu laserového svazku na terč (YBaCuO terč, 10 Pa O 2 v komoře). Zpoždění : a) 0.5 µs, b) 2µs, c) 3µs, d) 8 µs. CCD fotografie interakce plasmového obláčku s podložkou včasovém zpoždění : a) 6 µs, b) 8 µs, c) 10 µs, d) 50 µs. Plazmový obláček se šíří k terči zleva (následně se odráží od podložky).

PLD šíření materiálu CCD fotografie charakterizující plasmový obláček pro různé tlaky pracovní atmosféry: 5 900 mtorr

Výhody Přednosti a nevýhody PLD 1. stechiometrická depozice i vícesložkových materiálů (za vhodných depozičních podmínek) 2. vysoká rychlost depozice (~ 1 nm/sec) 3. laser je umístěn vně vakuové komory pouze místní ohřátí a odpaření materiálu 4. jednoduchost, flexibilita a univerzálnost experimentálního zařízení, relativně nízká cena systému 5. malý a geometricky jednoduchý terč, malá spotřeba materiálu, nízká cena 6. vytváření epitaxních vrstev za relativně nízkých teplot 7. možnost vytváření vrstev a multivrstvových struktur různých a vícesložkových materiálů 8. PLD proces je charakterizován rychlým a čistým lokálním ohřevem povrchu terče, což minimalizuje kontaminaci vytváření vrstev

Přednosti a nevýhody PLD Nedostatky PLD Problém homogenního pokrytí velké plochy z důvodu úzkého úhlového rozložení částice emitovaných z terče (ALE i pokrytí podložek až o průměru 5 10 cm) Povrch deponované vrstvy může být pokryt kuličkami materiálu (ALE lze vytvářet i multivrstvy a vlnovodové vrstvy)

MAPLE (Matrix Assisted Pulsed laser Evaporation) topný stolek pro uchycení podložky podložka laser organická molekula rotující držák terče chlazený tekutým N 2 těkavé rozpouštědlo

Experimentální technika PLD

Experimentální technika PLD

Experimentální technika PLD

Experimentální technika PLD

TV PLD hybridní systémy RF výboje - 13.56 MHz (mezi elektrodami, elektroda - komora, výboj v duté katodě) PLD + magnetronové naprašování + RF Výsledek - monokrystalické, polykrystalické, nanokrystalické a amorfní vrstvy - gradientní vrstvy, nano-kompozitní vrstvy

TV β C 3 N 4 (grant INCO Copernicus) RF + pulsní modulace laserový svazek (λ=248 nm, 5 ev) podložka živá elektroda elektroda N 2, N, N +, N 2 + C, C +, C + 2, C ++, C + 3 10 8-10 12 W/cm 2 grafitový terč

TV β C 3 N 4 (grant INCO Copernicus)

Depoziční proces PLD s RF výbojem

TV β C 3 N 4 (grant INCO Copernicus) podložka uzemněná elektroda N 2 uzemněná elektroda podložka N 2 živá elektroda živá elektroda

TV β C 3 N 4 (grant INCO Copernicus)

Tenké vrstvy TiC, TiCN, SiC (PLD + magnetron)

PLD + magnetron

PLD + magnetron

Gradientní vrstvy C Ti Si Vzorek TD 5, laser- magnetron

MAPLE komora vakuová měrka napouštěcí ventil zásobník tekutého N 2 rotující chlazený držák terče ventil optická lavice pro fokusující optiku vstupní okno pro laserový svazek turbomolekulární pumpa topný stolek pro uchycení podložky jehlové ventily měření průtoku plynu elektrická průchodka

MAPLE komora

Aktivní vlnovodové vrstvy Pro planární a kanálkové vlnovodové lasery Ti:safír, Nd:YAG (YAP), Nd:sklo, Er:YAG (YAP), Nd:KGW, Pr:GGG, Yb:GGG, čerpací svazek reflexní zrcadlo planární vlnovod s dopantem výstupní zrcadlo generované záření čočka Ti:safír vlnovodový laser, délka 3.8 mm, výst. výkon 350 mw

Pasivní vlnovodové vrstvy -optickáčidla plynů (NANOPHOS) Svazek je zaveden do vlnovodu prizmou. Vazba je dána úhlem dopadu θ S. Při rezonanční vazbě laserového svazku s vlnovodem, při specifickém úhlu, se objeví v odraženém svazku tmaváčára (m- line). dark line bright line laser beam prism θ S reflected spot in the far field region n W, t W n L, t L n Λ, t Λ } layers

TV čidla plynů optická (NANOPHOS IST) 0,14 1 2 3 4 1 2 3 1 3 4 1 3 Signál fotodiody (V) tension (V) 0,12 0,1 0,08 0,06 0,04 0,02 0 A : repeatability 0 200 400 600 800 1000 1200 1400 1600 1800 t (s) t (s) B : no pressure effects butane, V=0.1V N2, V=0.09 V N 2 vakuum vacuum, V=0.065 V 1 : vacuum vakuum 2 : N2 N 2 3 : N2 N 2butanu + 1000 ppm butane 4 : N2 N 2 ZnO vrstva detekce butanu

PLD - vlnovodové vrstvy (velké plochy)

PLD - vlnovodové vrstvy

TV čidla plynů - odporová Ω Pt kontakty vrstva podložka topná spirála Čidla obsahují aktivní vrstvu, dopanty (materiály obsahující ionty- Ni 2+, Fe 3+, Cu 2+, atd.), katalyzátory (Pt, Pd, Ni, Fe, atd.) a povrchové membrány (SiO 2, polytetrafluoroethylen atd.).

TV čidla plynů- odporová Závislost odporu (R) a citlivosti (S) na teplotě pro SnO 2 /Pd senzor. Max. citlivost S =1093 docílena při 284 C (1000 ppm H 2 x vzduch).

PLD -čidla plynů - odporová

Vrstvy v lékařství (grant MPO) Srdeční chlopeň

Srdeční chlopeň Vrstvy v lékařství (grant MPO)

Vrstvy v lékařství (nový grant MPO) Cévní náhrady, anastomické štíty, příchytky

Proces pokrytí cévní náhrady (grant MPO)

Proces pokrytí cévní náhrady (grant MPO)

Proces pokrytí cévní náhrady (grant MPO)

Cévní náhrada pokrytá DLC vrstvou (l= 30 cm)

Vrstvy v lékařství Depozice HA vrstvy na zubní implantát CO 2 laser KrF laser implantát HA terč

Vrstvy v lékařství

Vrstvy v lékařství Zubní protéza Ca 10 (PO 4 ) 6 (OH) 2

Osteointegrace DLC/Ti protézy Vrstvy v lékařství

Vrstvy v lékařství Spodníčelist miniprasátka, nezatížená osteointegrace

Zatížená osteointegrace Vrstvy v lékařství

MAPLE - depoziční proces

Organické vrstvy - MAPLE technologie Testován: fibrinogen, pullulan, polyvinylalkohol, kryoglobulin, InAcAc, ftalocyaniny (PhNi a PhCo) a porfyrin (CuTTP). Studium povrchu (AFM) a vazeb (FTIR a Ramanovská spektroskopie). Při optimálních depozičních podmínkách bylo docíleno shody vlastností mezi terčem a vlastnostmi vrstev. Tenké vrstvy kryoglobulinu deponované MAPLE technologií FTIR spektra

Děkuji za pozornost

Ceramic heart valve - alumina 1986 2004 : 500 000 valves has been implanted Carbomedics prosthesis has a solid pyrolyse carbon housing and flat leaflets of pyrolitic carbon coated graphite that is impregnated with tungsten. CARBON x HEART VALVE (90 results) Pyrolitic carbon/graphite composites used in heart- valve prostheses TiO2 thin films to improve anti-coagulalibility of pyrolysis carbon applied to artificial heart valve COATING and HEART VALVE (40 results) Heart valve coating with horseradish peroxidase a-c: H : Si and a- C : H silver coated Silzone ( ) heart valve prosthesis protein adsorption and platelet attachement and activation, on TiN, TiC and DLC coating on titanium for cardiovascular applications mechanical valve with silver coating silver coated heart valve polyurethane heart valve haemocompatibility of DLC and TiC- TiN interlayers on titanium silver coated (Silzone ) infection resistant polyester fabric against a biofilm-producing bacteria. Silver- modified polyester for antimicrobial protection of prosthetic valves Pyrolitic carbon heart valve Pyrolitic carbon coated graphite mechanical heart valve prostheses Polyurethane heart walve prothesis Controlled- release drug delivery of diphosphonates to inhibit bioprostetic heart valve calcification release rate modulation with silicone matrices via drug solubility and membrane coating Reduction of surface thrombogenicity modification on polyethuyleneterephthalate (PET) and polytetrafluoroethylene (PTFE). COLA 05, Canada : Eureka (Major, Metalurgický ústav Krakow a Lackner, Laser Centrum Leoben) nový typ chlopně, Ti6Al4V, TiO2, DLC. Vyrobeno PLD. CN, SiC, BN,.bylo uvažováno

PODÍL Laboratoř PLD od roku 1989 1. článek v zahraničním časopise 1990 Stuff : Ing. Miroslav JELÍNEK, DrSc Dr. Ing. Jiří BULÍŘ post- doc od r. 1992 Ing. Ján LANČOK, PhD post- doc - 1992 Ing. Michal NOVOTNÝ PhD student - 2000 Ing. Martin PAVELKA PhD student- 2000 Ing. Tomáš KOCOUREK PhD student - 1996 Petra MAŠÍNOVÁ student Jan REMSA student Veronika Picková- student Leopold Cudzík- student Dr. Rumen, Tomov, Dr. Rodica Cristescu, Dr.Ing. Vladimír Olšan, Dr.Ing. Vítězslav Trtík, Ing. Jan Šonský, Ing. Martin Klečka, Ing. Michal Němec, atd

PODÍL 2 x KrF excimer laser, 7 depozičních komor Lasery, vakuum, RF, VN, materiály, optika, plyny, atd. Supravodiče, feroelektrika, magnetika, DLC, vlnovody, biokompatibilní materiály, chalkogenidy, termoelektrické materiály, tvrdé vrstvy, organika, optické materiály, kvazikrystaly, dopované vrstvy, multivrstvy, aplikace, atd. Talystep, XRD, WDX, SEM, FTIR, Ramanovská spektroskopie XPS, RBS, AFM, PIXE, elektrické vlastnosti mechanické vlastnosti, biomedicínské vlastnosti, atd. Granty: Více než 117 publikací v mezinárodních recenzovaných časopisech (MJ první autor 33 x)

Varianta k DLC chlopně, cévní náhrady Umělé srdeční chlopně Mechanické (vysoká životnost, antikolagulační terapie) Bioprotetické (životnost méně než 10 let) 225 000 náhrad ročně Titan, silikonová guma, polyester, polypropylen, nerezová ocel Pyrolytický uhlík (pyrolytic carbon) jaderná energetika, 1966 Hladký, tvrdý, keramika křehký, tažný (grafitová podložka), s křemíkem (3-8 wt.%), CVD Syntetizován při vysokých teplotách, podpovrchové mikrotrhlinky (mikrometry) 60 tepů/min, 40 mil. cyklů/rok Na 1 milion chlopní asi 50 neúspěchů 4 miliony implantátů na 25 různých tvarů chlopní (18 milion pacient/roků)

Varianta k DLC chlopně, cévní náhrady Další : a-sic:h (PECVD) zvýšená hemokompatibilita, Německo Polymerní materiály blízké k tkáni Polyetylen (Ultra High Molecular Poly Ethylene), Indie, dobrá kompatibilita k tkání a krvi Stříbro(Silzone) místní antimikrobové činidlo, od. r. 1997, 35 000 pacientů Kořenová peroxidáza (Horse redish peroxide) do procesu polymerizace, zvýšení adheze polyethylen glykolu TiO 2, a-c:h, a-c:h:si, TiN, TiC, CN, SiC, BN,. COLA 05, Canada : Eureka (B. Major, Metalurgický ústav Krakow aj. Lackner, Laser Centrum Leoben) umělé srdce, Ti6Al4V, TiO 2, DLC. Cévní náhrady Teflon, DLC, heparin, DNA, polysacharidy (aktivátory)