Etherifikace alkoholů na kyselých heterogenních katalyzátorech v plynné fázi



Podobné dokumenty
LABORATOŘ OBORU I. Testování katalyzátorů pro přípravu prekurzorů vonných látek. Umístění práce:

LABORATOŘ OBORU. Hydrogenace na heterogenizovaných katalyzátorech. Umístění práce:

Využití faktorového plánování v oblasti chemických specialit

Destilace

ALKOHOLY, FENOLY A ETHERY. b. Jaké zdroje cukru znáte a jak se nazývají produkty jejich kvašení?

Výzkum vlivu přenosových jevů na chování reaktoru se zkrápěným ložem katalyzátoru. Petr Svačina

Selektivní dvoufázová hydrogenace kyseliny sorbové. Radka Malá

Úvod Obecný vzorec alkoholů je R-OH.

Heterogenně katalyzovaná hydrogenace při syntéze léčiv

Stanovení fotokatalytické aktivity vzorků FN1, FN2, FN3 a P25 dle metodiky ISO :2013

Ethery, thioly a sulfidy

VYHODNOCOVÁNÍ CHROMATOGRAFICKÝCH DAT

Příprava materiálu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253

Fotokatalytická oxidace acetonu

TVORBA UHLÍKATÝCH PRODUKTŮ PŘI I PYROLÝZE UHLOVODÍKŮ

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová

Hydrogenace sorbového. alkoholu pomocí toru. tická. Školitel: Ing. Eliška. Leitmannová

Autokláv reaktor pro promíchávané vícefázové reakce

Vysoká škola chemicko-technologická v Praze. Ústav organické technologie. Václav Matoušek

Ropa Kondenzované uhlovodíky

Ethery. dimethylether tetrahydrofuran. O R O R O R ortoester R 1 O R R 2 O R. acetal

Separační metody v analytické chemii. Plynová chromatografie (GC) - princip

Synthesia, a.s. SBU Organická chemie. Ing. Viktorie Rerychová

Měření při najíždění bloku. (vybrané kapitoly)

HYDROXYDERIVÁTY. Alkoholy Fenoly Bc. Miroslava Wilczková

Použití přírodních vápenců z lomů v České republice v technologii vysokoteplotní sorpce oxidu uhličitého ze spalin

Rychlost chemické reakce A B. time. rychlost = - [A] t. [B] t. rychlost = Reakční rychlost a stechiometrie A + B C; R C = R A = R B A + 2B 3C;

Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru. Předmět: Vícefázové reaktory Jméno: Veronika Sedláková

VY_32_INOVACE_29_HBENO5

CHEMICKÉ TECHNOLOGIE PRO PROCESNÍ INŽENÝRSTVÍ N VÝROBA MTBE

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1

Autoři: Pavel Zachař, David Sýkora Ukázky spekter k procvičování na semináři: Tento soubor je pouze prvním ilustrativním seznámením se základními prin

Sol gel metody. Si O Si + H 2 O (2)

Analýza kofeinu v kávě pomocí kapalinové chromatografie

zpracování těžkých frakcí na motorová paliva (mazut i vakuový zbytek)

Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru. Roman Snop

Sešit pro laboratorní práci z chemie

Sada 7 Název souboru Ročník Předmět Formát Název výukového materiálu Anotace

Laboratoř oboru. Rektifikace. Ústav organické technologie (111) Vedoucí práce: Ing. Tomáš Sommer Umístění práce: budova A, místnost S31

Obsah Chemická reakce... 2 PL:

Kyslíkaté deriváty. 1) Hydroxyderiváty: a) Alkoholy b) Fenoly. řešení. Dle OH = hydroxylová skupina

Přímé měření produktů methan, ethan, ethen při reduktivní dehalogenaci kontaminované vody

Reaktory pro systém plyn-kapalina

1. nitrosloučeniny R-NO 2 CH 3 -NO aminosloučeniny R-NH 2 CH 3 -NH 2

PRŮMYSLOVÉ PROCESY. Přenos hmoty Kolony

ANORGANICKÁ ORGANICKÁ

Příloha č. 6 k zadávací dokumentaci na veřejnou zakázku "Pokusná jednotka pro pyrolýzní procesy"

10. Chemické reaktory

INTERPRETACE HMOTNOSTNÍCH SPEKTER

Aldolová kondenzace při syntéze léčivých látek

Karbonylové sloučeniny

ORGANICKÁ CHEMIE II pro bakalářský stud. program (Varianta A) Jméno a příjmení... Datum... Kroužek/Fakulta.../... Vyučující na semináři...

H H C C C C C C H CH 3 H C C H H H H H H

METODY SUŠENÍ ROSTLINNÉHO OLEJE PŘED TRANSESTERIFIKACÍ

nenasycené uhlovodíky nestálé, přeměňují se na karbonyly

AMINOKYSELINY REAKCE

TECHNOLOGIE KE SNIŽOVÁNÍ EMISÍ (SEKUNDÁRNÍ OPATŘENÍ K OMEZOVÁNÍ EMISÍ)

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM transport vodní páry

METODY ČIŠTĚNÍ ORGANICKÝCH LÁTEK

EU peníze středním školám digitální učební materiál

Asymetrická transfer hydrogenace při syntéze prekurzorů farmaceutických substancí

na stabilitu adsorbovaného komplexu

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu:

Testování fotokatalytické aktivity nátěrů FN z hlediska jejich schopnosti odbourávání polutantů ze vzduchu dle následujících ISO standardů:

STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ

REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI

POLOŽKOVÝ ROZPOČET - shrnutí. Aparáty R35 - Kotel 0. MaR R35 - Kotel 0

LEE: Stanovení viskozity glycerolu pomocí dvou metod v kosmetickém produktu

Zpracování ropy doc. Ing. Josef Blažek, CSc. 5. přednáška

kde k c(no 2) = 2, m 6 mol 2 s 1. Jaká je hodnota rychlostní konstanty v rychlostní rovnici ? V [k = 1, m 6 mol 2 s 1 ]

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU SEMDURAMICINU METODOU HPLC

VLIV ROZPOUŠTĚDLA NA KINETIKU HYDROGENACE ALKYLANTHRACHINONŮ

Hydroxysloučeniny Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje Únor

Klinická a farmaceutická analýza. Petr Kozlík Katedra analytické chemie

Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli

LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) Použití GC-MS spektrometrie

NÁZEV ZAŘÍZENÍ: EXPERIMENTÁLNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH

Sešit pro laboratorní práci z chemie

Preparativní anorganická chemie

Ministerstvo školství, mládeže a tělovýchovy Ústřední komise Chemické olympiády. 46. ročník 2009/2010. KRAJSKÉ KOLO kategorie D

Látky, jejich vlastnosti, skupenství, rozpustnost

Obsah. 2. Mechanismus a syntetické využití nejdůležitějších organických reakcí Adiční reakce Elektrofilní adice (A E

UHLOVODÍKY A HALOGENDERIVÁTY

Metody separace. přírodních látek

Inovace profesní přípravy budoucích učitelů chemie

Metodika stanovení kyselinové neutralizační kapacity v pevných odpadech

Energie v chemických reakcích

Nauka o materiálu. Přednáška č.10 Difuze v tuhých látkách, fáze a fázové přeměny

ÚSTAV ORGANICKÉ TECHNOLOGIE

STANOVENÍ KONCENTRACE PLYNNÝCH ŠKODLIVIN NA VÝSTUPU ZE SPALOVACÍCH ZAŘÍZENÍ

1 Tlaková ztráta při toku plynu výplní

Ing. Radovan Nečas Mgr. Miroslav Hroza

Průtokové metody (Kontinuální měření v proudu kapaliny)

III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Inovace výuky na GSN prostřednictvím ICT

CHEMIE - Úvod do organické chemie

Superkritická fluidní extrakce (SFE) Superkritická fluidní extrakce

1. ročník Počet hodin

ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ

Cvičení k předmětu Metody studia fotochemických procesů (KTEV / 2MSFP) (prozatímní učební text, srpen 2012)

Transkript:

Etherifikace alkoholů na kyselých heterogenních katalyzátorech v plynné fázi 1 Úvod Ethery jsou skupinou látek s širokým spektrem využití, a to jak v minulosti (anestetika diethylether) tak především v současnosti (rozpouštědla dimetylether (DME), dietylether (DEE); vysokovroucí rozpouštědla v chemických výrobách včetně farmaceutických; hnací plyny do sprejů dimetylether, fluorovaný dimetylether; antidetonační přísady do benzínu metyltercbutylether (MTBE), etyltercbutylether (ETBE), tercamylmetylether (TAME); výchozí látky pro výrobu speciálních chemikálií barev, léčiv, agrochemikálií, lubrikantů, katalyzátory pro výrobu PU hmot bis(dimethylaminoethyl)ether). Ethery lze v zásadě vyrábět třemi různými způsoby: 1) Williamsonova syntéza 2) Adice alkoholu na alken 3) Dehydratace alkoholů Existují i další metody přípravy etherů např. reakce alkoholů s estery anorganických kyselin (alkohol + dimethylsulfát) nebo reakcí alkoholů s diazosloučeninami. Tyto postupy jsou však drahé, dimetylsulfát je jedovatý a diazosloučeniny tepelně nestálé. Z těchto a dalších důvodů se průmyslově nevyužívají. Williamsova syntéza byla vyvinuta W. Williamsonem roku 1850, jedná se o reakci alkalických alkoholátů s alkylhalogenidy (dalšími typickými reaktanty jsou dialkylsulfáty a alkylsulfonáty) S N 2 mechanismem. Jedná se o historicky významnou reakci, protože jí byla prokázána struktura etherů. Touto metodou lze připravit jak symetrické tak i nesymetrické ethery, syntéza nesymetrických je však upřednostňována. Nejlépe ji lze použít pro syntézu etherů z primárních alkoholů, u sekundárních dochází k eliminaci E 2 za vzniku alkenů. Reakce 2 a 3 jsou kysele katalyzovány a široce využívány v chemickém a palivářském průmyslu. Adice alkoholů na alkeny jsou možné jen v případě, že dvojná vazba je substituována, takže dochází ke vzniku sekundárního nebo terciárního karbokationtu. Tyto 1

adice mají velký význam pro výrobu MTBE, ETBE a TAME, které jsou aditivy zvyšujícími oktanové číslo benzínu. Naproti tomu intermolekulární dehydratace alkoholů je vhodná jak pro získávání symetrických etherů z primárních alkoholů, ačkoli je možné ji použít i pro syntézu z alkoholů sekundárních (zde je však obtížné dosáhnout vyšší selektivity na ether v důsledku intramolekulární dehydratace alkoholu za vzniku alkenů), tak pro syntézu cyklických etherů (např. tetrahydrofuran) z diolů. Jako kyselý homogenní katalyzátor byla (a stále je) využívána kyselina sírová: R-H + H 2 S 4 --> R-S 2 -H + H 2 R-S 2 -- + H-R --> R--R + H 2 S 4 S její pomocí bylo dosahováno relativně vysoké selektivity na ether (>80-85%). Její použití je však problematické z několika důvodů: je třeba užívat koncentrovanou kyselinu, která je korozivní, je třeba ji separovat od produktu a neutralizovat a ačkoliv produkce alkenů není příliš vysoká, dochází ke vzniku těžších produktů např. alkylsulfátů. Aby byly překonány uvedené problémy, přistoupilo se k používání kationických ionexů. Tyto látky vykazují vysokou aktivitu i selektivitu, jsou ale nestabilní za reakčních podmínek používaných při syntéze etherů a při teplotách nad 120 C se rychle deaktivují. Kromě výše uvedených byly testovány další heterogenní katalyzátory např. zeolity, pilířové hlinky, alumina, amorfní aluminosilikáty, oxidy kovů IV. skupiny s imobilizovanou alkylsulfonovou kyselinou, oxidy Ti, Zn, Sn, Zr atd., perfluorované sulfopolystyrenové iontoměniče, heterogenizovaná kyselina fosforečná, heteropolykyseliny a další. 2 Aparatura Aparatura je tvořena nosnou konstrukcí, rozdělenou do tří horizontálních sekcí. V nejvyšší sekci (1) jsou umístěny regulátory topení a další ovládací prvky, ve střední (2) rotametry, tenzní dávkovače, připouštěcí kulové ventily a reaktor s topným pláštěm. V nejnižší sekci (3) je umístěn plynový chromatograf a počítač. 2

(1) Z tlakových lahví pro vodík a dusík (a) jsou plyny pomocí kapilár vedeny (b) (d) (g) jednak do chromatografu (h) (vodík a dusík) a jednak jako nosný plyn (dusík) do systému rozvodu plynů pro (f) samotnou experimentální část. Dusík prochází přes některý (v případě (c) (2) potřeby i více) rotametr (b) a dále kapilárou přes kohout (d) do tzv. tenzního dávkovače (c), kde je do rovnováhy nasycen příslušnou látkou (v našem případě alkoholem). Takto nasycený plyn je dále veden temperovanou částí (g) do reaktoru. (3) Cílem temperování je zabránit kondenzaci alkoholu z nosného plynu. (h) (h) Reaktor je opatřen topným pláštěm (f) a je tvořen skleněnou trubičkou ve tvaru písmene U. Blokové schéma je uvedeno dále: br. 1.: nákres aparatury 3

(d) (e) (c) (a) (b) (g) (h) (f) br. 2.: blokové schéma aparatury (a) zdroje plynů, (b) průtokoměry, (c) tenzní dávkovače, (d) temperovaná sekce s ventily (e) tlakové čerpadlo pro kapaliny, (f) reaktor s topným pláštěm, (g) temperovaná sekce s vícecestnými ventily, (h) on-line plynový chromatograf. 4

Nákres a způsob plnění reaktoru je uveden níže: 1 1 br. 3.: reaktor 2 3 5 1 spojky Swagelok 2 křemenná vata 3 katalyzátor 4 skleněná drť 5 skleněné kuličky (ø 2 mm) 4 Plyn prochází nejprve čtyřcestným ventilem, který umožňuje buďto aby plyn reaktor obešel ( B ) nebo byl veden do reaktoru ( R ). Po průchodu bypassem nebo reaktorem vstupuje plyn do šesticestného ventilu. Zde buďto prochází dávkovací smyčkou nebo odchází přímo do odplynu. Během reakce je plyn veden přes smyčku ( L ) a jen v okamžiku, kdy chceme analyzovat vzorek reakční směsi, je ventil přepnut do druhé polohy ( I ). Poté je již vzorek nastříknut na plynový chromatograf Labio s nepolární kolonou HP- PNA. Výstup je realizován pomocí osobního počítače vybaveného chromatografickým software Clarity Lite. 5

3 Cíle práce Cílem této práce je seznámit se s vedením chemické reakce v plynné fázi v laboratorních podmínkách. Dílčí cíle jsou: seznámit se s aparaturou provést výpočty nutné k další práci uskutečnit experimenty podle pokynů vedoucího práce vyhodnocení výsledků a zpracování protokolu V úvahu při této práci z důvodu náročnosti připadají etherifikace dvou alkoholů: ethanolu a butan-1-olu. V obou případech vznikají příslušné ethery, alkeny a voda, podle následujících schémat pro případ 1) ethanolu a 2) butan-1-olu: + H 2 1) 2 H H + + H 2 + 2 H 2 + H 2 2 H H + + H 2 2) 2 + 2 H 2 Jak je zřejmé, reakce ethanolu je jednodušší, protože eliminací vzniká pouze ethylen, kdežto v případě butan-1-olu dochází k isomeraci vznikajícího butenu. 6

4 Postup měření Po příchodu do laboratoře budou již všechny trasy temperovány a chromatograf připraven k měření. Nejprve budete detailně seznámeni s celou aparaturou a přezkoušeni. Poté si naplníte tenzní dávkovač příslušným alkoholem a reaktor dle obrázku 1, katalyzátor bude určen vedoucím práce. Reaktor připojíte k aparatuře, připojíte termočlánek a topný plášť a nastavíte reakční teplotu. Reakce bude vedena při dvou teplotách a několika různých zatíženích katalyzátoru, čímž získáte konverzní křivky a závislosti koncentrací na faktoru hmotnostního zatížení katalyzátoru W/F a [g kat.h/g alk ], kde W je hmotnost katalyzátoru v gramech a F je hmotnostní nástřik alkoholu v gramech za hodinu. Po naměření příslušných dat vypnete topení pláště, sejmete jej a ochlazený reaktor sundáte, opět naplníte jiným katalyzátorem a postup opakujete. Hmotnostní nástřik alkoholu závisí na tenzi, která je dána jeho teplotou v tenzním dávkovači podle Antoinova vztahu: Bi ln pi Ai, kde pi je parciální tlak, A i, B i, C i jsou empirické konstanty, T je teplota. C T i Hodnoty parciálních tlaků ethanolu a butan-1-olu jsou uvedeny v příloze. Hmotnostní nástřik F a je pak dán vztahem: FN pa pa (1 ). p p F a. M RT a, kde F a hmotnostní nástřik alkoholu, p a parciální tlak alkoholu, p atmosférický tlak, F N průtok dusíku, R univerzální plynová konstanta, T- teplota alkoholu.!!! veškeré operace na aparatuře provádějte pouze v přítomnosti vedoucího práce!!! 7

Konverze je definována takto: X ( papoc pa) p apoc.100, kde p apoc je tlak alkoholu v nástřiku, p je tlak alkoholu v reakční selektivita: směsi, s p eth p eth p olef.100, kde p eth je parciální tlak etheru, p olef parciální tlak alkenů. Výsledkem práce jsou tabulky s naměřenými daty (zatížení, koncentrace jednotlivých látek, konverze, selektivita vztažená na ether) a grafy zobrazující závislost koncentrací látek na W/F a a konverzní křivka. 8

5 Přílohy TEMP PRESS TEMP PRESS C Pa C Pa 0 1596,51 60,41 47881,51 1,63 1790,98 62,04 51470,54 3,27 2006 63,67 55283,04 4,9 2243,4 65,31 59329,84 6,53 2505,11 66,94 63622,09 8,16 2793,23 68,57 68171,31 9,8 3109,97 70,2 72989,36 11,43 3457,71 71,84 78088,48 13,06 3838,96 73,47 83481,23 14,69 4256,41 75,1 89180,57 16,33 4712,9 76,73 95199,81 17,96 5211,44 78,37 101553 19,59 5755,25 80 108253 21,22 6347,69 22,86 6992,35 24,49 7692,99 26,12 8453,62 27,76 9278,41 29,39 10171,79 31,02 11138,39 32,65 12183,09 34,29 13311,02 35,92 14527,53 37,55 15838,23 39,18 17249,01 40,82 18766,01 42,45 20395,65 44,08 22144,62 45,71 24019,89 47,35 26028,75 48,98 28178,76 50,61 30477,78 52,24 32934,01 53,88 35555,92 55,51 38352,33 57,14 41332,37 58,78 44505,5 Tabulka 1: závislost tenze par ethanolu na teplotě 9

PL Pa 20000,0 40000,0 60000,0 80000,0 100000,0 120000,0 PL vs Temperature LIQUID ETHANL 0,0 5,0 10,0 15,0 20,0 25,0 30,0 35,0 40,0 45,0 50,0 55,0 60,0 65,0 70,0 75,0 80,0 Temperature C Graf 1: závislost tenze par ethanolu na teplotě 10

TEMP LIQUID TEMP LIQUID C Pa C Pa 0 118,89 100,41 52876,14 2,45 147,81 102,86 58271,23 4,9 182,9 105,31 64107,8 7,35 225,28 107,76 70411,92 9,8 276,24 110,2 77210,47 12,24 337,25 112,65 84531,07 14,69 410 115,1 92402,12 17,14 496,39 117,55 100853 19,59 598,59 120 109913 22,04 719 24,49 860,37 26,94 1025,73 29,39 1218,48 31,84 1442,38 34,29 1701,6 36,73 2000,73 39,18 2344,83 41,63 2739,43 44,08 3190,6 46,53 3704,92 48,98 4289,57 51,43 4952,32 53,88 5701,54 56,33 6546,3 58,78 7496,31 61,22 8562,01 63,67 9754,55 66,12 11085,82 68,57 12568,5 71,02 14216,05 73,47 16042,72 75,92 18063,61 78,37 20294,61 80,82 22752,49 83,27 25454,84 85,71 28420,14 88,16 31667,7 90,61 35217,72 93,06 39091,24 95,51 43310,17 97,96 47897,26 Tabulka 2: závislost tenze par butan-1-olu na teplotě 11

PL Pa 20000 40000 60000 80000 100000 120000 PL vs Temperature LIQUID NBUTANL 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 Temperature C Graf 2: závislost tenze par butan-1-olu na teplotě 12