Derivations Systems of Transparent Intensional Logic

Podobné dokumenty
Entailment and Deduction in Transparent Intensional Logic

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Database systems. Normal forms

Gymnázium, Brno, Slovanské nám. 7, SCHEME OF WORK Mathematics SCHEME OF WORK. cz

Využití hybridní metody vícekriteriálního rozhodování za nejistoty. Michal Koláček, Markéta Matulová

Třída vlastnost pojem

Inteligentní systémy (TIL) Přednáška 2 Marie Duží

WORKSHEET 1: LINEAR EQUATION 1

Derivation Systems and Verisimilitude (An Application of Transparent Intensional Logic)

A Light Introduction to Transparent Intensional Logic and its Application in Semantics

Solution to Semantic Paradoxes in Transparent Intensional Logic

From Frege s Semantic Triangle to the Semantic Square of Transparent Intensional Logic

Litosil - application

USING VIDEO IN PRE-SET AND IN-SET TEACHER TRAINING

Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Teacher: Student:

VY_32_INOVACE_06_Předpřítomný čas_03. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace

Compression of a Dictionary

Dynamic Development of Vocabulary Richness of Text. Miroslav Kubát & Radek Čech University of Ostrava Czech Republic

Právní formy podnikání v ČR

Introduction to MS Dynamics NAV

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

CZ.1.07/1.5.00/ Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT

Britské společenství národů. Historie Spojeného království Velké Británie a Severního Irska ročník gymnázia (vyšší stupeň)

Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT

Transportation Problem

EXACT DS OFFICE. The best lens for office work

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

CHAIN TRANSMISSIONS AND WHEELS

GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA

Základy teorie front III

Tabulka 1 Stav členské základny SK Praga Vysočany k roku 2015 Tabulka 2 Výše členských příspěvků v SK Praga Vysočany Tabulka 3 Přehled finanční

Aplikace matematiky. Dana Lauerová A note to the theory of periodic solutions of a parabolic equation

2 Axiomatic Definition of Object 2. 3 UML Unified Modelling Language Classes in UML Tools for System Design in UML 5

Inteligentní systémy (TIL)

On large rigid sets of monounary algebras. D. Jakubíková-Studenovská P. J. Šafárik University, Košice, Slovakia

Just write down your most recent and important education. Remember that sometimes less is more some people may be considered overqualified.

EU peníze středním školám digitální učební materiál

II_ _Listening Pracovní list č. 2.doc II_ _Listening Pracovní list č. 3.doc II_ _Listening Řešení 1,2.doc

SEZNAM PŘÍLOH. Příloha 1 Dotazník Tartu, Estonsko (anglická verze) Příloha 2 Dotazník Praha, ČR (česká verze)... 91

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Chapter 7: Process Synchronization

WYSIWYG EDITOR PRO XML FORM

Czech Republic. EDUCAnet. Střední odborná škola Pardubice, s.r.o.

ANGLICKÁ KONVERZACE PRO STŘEDNĚ POKROČILÉ

History. Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín. Datum vytvoření Ročník Stručný obsah Způsob využití

LOGBOOK. Blahopřejeme, našli jste to! Nezapomeňte. Prosím vyvarujte se downtrade

Zelené potraviny v nových obalech Green foods in a new packaging

Configuration vs. Conformation. Configuration: Covalent bonds must be broken. Two kinds of isomers to consider

Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Inovace a individualizace výuky

Výukový materiál zpracovaný v rámci projektu EU peníze do škol. illness, a text

POSLECH. Cinema or TV tonight (a dialogue between Susan and David about their plans for tonight)

DATA SHEET. BC516 PNP Darlington transistor. technický list DISCRETE SEMICONDUCTORS Apr 23. Product specification Supersedes data of 1997 Apr 16

Informace o písemných přijímacích zkouškách. Doktorské studijní programy Matematika

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost

Výuka odborného předmětu z elektrotechniky na SPŠ Strojní a Elektrotechnické

DOPLNĚK K FACEBOOK RETRO EDICI STRÁNEK MAVO JAZYKOVÉ ŠKOLY MONCHHICHI

II/2 Inovace a zkvalitnění výuky cizích jazyků na středních školách

Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Inovace a individualizace výuky

Jednoduché polookruhy. Katedra algebry

Partiality and Transparent Intensional Logic

Problém identity instancí asociačních tříd

VYSOKÁ ŠKOLA HOTELOVÁ V PRAZE 8, SPOL. S R. O.

dat 2017 Dostupný z Licence Creative Commons Uveďte autora-zachovejte licenci 4.0 Mezinárodní

Russell s Propositional Functions from the Viewpoint of Tichý s Type Theory

Název projektu: Multimédia na Ukrajinské

PC/104, PC/104-Plus. 196 ept GmbH I Tel. +49 (0) / I Fax +49 (0) / I I

Digitální učební materiál

Invitation to ON-ARRIVAL TRAINING COURSE for EVS volunteers

1 st International School Ostrava-mezinárodní gymnázium, s.r.o. Gregorova 2582/3, Ostrava. IZO: Forma vzdělávání: denní

TKGA3. Pera a klíny. Projekt "Podpora výuky v cizích jazycích na SPŠT"

LOGOMANUÁL / LOGOMANUAL

CZ.1.07/1.5.00/

DC circuits with a single source

CZ.1.07/1.5.00/

Instrukce: Cvičný test má celkem 3 části, čas určený pro tyto části je 20 minut. 1. Reading = 6 bodů 2. Use of English = 14 bodů 3.

Číslo materiálu: VY 32 INOVACE 29/18. Číslo projektu: CZ.1.07/1.4.00/

Aktuální trendy ve výuce a testování cizích jazyků v akademickém prostředí

VŠEOBECNÁ TÉMATA PRO SOU Mgr. Dita Hejlová

Vánoční sety Christmas sets

Od Czech POINTu k vnitřní integraci

Angličtina v matematických softwarech 2 Vypracovala: Mgr. Bronislava Kreuzingerová

Příručka ke směrnici 89/106/EHS o stavebních výrobcích / Příloha III - Rozhodnutí Komise

2. Entity, Architecture, Process

AJ 3_16_Prague.notebook. December 20, úvodní strana

Ministerstvo školství, mládeže a tělovýchovy Karmelitská 7, Praha 1 tel.: msmt@msmt.cz

Střední odborná škola stavební a Střední odborné učiliště stavební Rybitví

AIC ČESKÁ REPUBLIKA CZECH REPUBLIC

Třída: VI. A6 Mgr. Pavla Hamříková VI. B6 RNDr. Karel Pohaněl Schváleno předmětovou komisí dne: Podpis: Šárka Richterková v. r.

Pojem problému z hlediska teorie konstrukcí

Caroline Glendinning Jenni Brooks Kate Gridley. Social Policy Research Unit University of York

Příručka ke směrnici 89/106/EHS o stavebních výrobcích / Příloha III - Rozhodnutí Komise

CZ.1.07/1.5.00/

Univerzita Pardubice Fakulta filozofická. Franz Kafka: Pojetí systému v Proměně. Lukáš Vavrečka

Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Dynamic programming. Optimal binary search tree

Jak importovat profily do Cura (Windows a

Výukový materiál v rámci projektu OPVK 1.5 Peníze středním školám

Čtvrtý Pentagram The fourth Pentagram

Communication of Intelligent Agents Integrated to GIS

Transkript:

Derivations Systems of Transparent Intensional Logic Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) doc. PhDr. Jiří Raclavský, Ph.D. (raclavsky@phil.muni.cz) Department of Philosophy, Masaryk University, Brno

1 Abstract Materna s explication of the notion of conceptual system in Transparent Intensional Logic is insufficient for explication of our conceptual scheme even after improving his proposal by several ways. We have not only concepts at our disposal, we do reason with concepts. The entities consisting in rules operating on the domain of concepts will be called derivation systems. In formulation of the notion of derivation system we employ Tichý s system of deduction. Derivation systems differ from conceptual systems especially in including derivation rules. This enables us to show close connections among the realms of objects, their concepts, and reasoning with concepts. Derivations systems thus differ from conceptual systems as Peano s arithmetic from class of natural numbers.

2 Content I. Concepts from extensional to hyperintensional conceptions II. Elements of Transparent Intensional Logic (TIL) III. Materna s theory of concepts IV. (Materna s) Conceptual systems V. Derivations systems VI. Concluding remarks

3 I. Concepts from extensional to hyperintensional conceptions

4 I. Logical theory of concepts (a selective history) - classical tradition concept is general, extension/intension of concept, etc. - Bolzano (Wissenschaftslehre) concepts as abstract (non-psychological) entities, concepts need not to be general, structure of compound concepts - Frege (Funktion und Begriff) concept is an abstract entity, concept is predicative (i.e. general), falling under concept, concepts modelled as (Frege s) functions? - Church (Introduction to Math. Logic) generalizing Frege s conception (more below), concept need not to be general - modern tradition concepts modelled by means of set-theoretical entities - Bealer (Quality and Concept) concepts modelled as (Bealer s) intensions - late Materna (Concepts and Objects) concepts modelled as Tichý s hyperintensions

5 I. From extensional to intensional theory of concepts - a common philosophical construal: - an expression expresses a concept of a property (which has an extension); e.g. man expresses MAN, which determines the property BE A MAN, having an extension such as {Alan, Bill, } - in extensional set-theoretical conception of concept (classical first-order logic), concept as well as property as well as extension of a property is explicated as a set, which is a very strong reduction - inadequacy: lack of distinguishing between empirical, e.g. MAN, an non-empirical, e.g. PRIMES, concepts, i.e. ignorance of modal (and temporal) variability (while the extension of a non-empirical concept is modally stable, the extension of an empirical concept varies)

6 I. From intensional to hyperintensional theory of concepts - intensional logic offers tools for modelling of modal (and temporal) variability viz. intensions - intensions are set-theoretical objects they are functions from possible worlds (and time-moments) - thus intensional logic can model property as distinct from its extensions, namely as an intension having classes of objects (i.e. extensions of the property) as their values - possible modelling of concepts by means of intensional logic - success of intensional theory of meaning (propositional attitudes, intensional transitives, etc.) in 1970 s; its failures (paradox of omniscience) recognized mainly in 1980 s; the quest for hyperintensional entities

7 I. Towards hyperintensional theory of concepts - Bolzano s lesson: a concept does not have a set-theoretical structure, it has a structure finer than a set (sum) of its parts - Bolzano s example (evoked by Pavel Materna): A LEARNED SON OF AN UNLEARNED FATHER vs. AN UNLEARNED SON OF A LEARNED FATHER; the two concepts have the same content {UN-, LEARNED, SON, FATHER} - mathematical examples: THREE DIVIDED BY TWO vs. TWO DIVIDED BY THREE (content={2,2, }), or 1 2=3-1 vs. 1=3-(2 1) (content={1,2,3,-, }) - (what is symptomatic of a composition of a compound concept, i.e. of its complexity?)

8 I.. Church s theory of concepts - semantic scheme (Introduction to Mathematical Logic, ) an expression expresses concept (sense) determines (an expression denotes) object (denotation) - lack of intensional variability in the modern sense, i.e. not distinguishing between empirical and non-empirical concepts - modelling concepts; a concept of an individual is a member of ι 1, (an individual is a member of ι 0 ), a concept of such concept is a member of ι 2 (analogously up); this means that concepts are modelled in a trivial way (i.e. their internal structure is wholly neglected)

9 II. Tichý s logical framework

10 II. I. Tichý s logical framework: Transparent intensional logic and meaning - from 1971 (see Tichý 2004, Collected Papers) - constructions are abstract, hyperintensional entities, procedures (more below) - semantic scheme: an expression E expresses (means) in L a construction (i.e. the meaning of E in L) constructs an intension / non-intension / nothing (cf. 3 0 ) (i.e. the denotatum of E in L) - the value of an intension in possible world W at time-moment T is the referent of an empirical expression E in L (the denotatum and referent of a non-empirical expression are identical)

11 II. I. Tichý s logical framework: on the nature of constructions - the very same function (as mapping): : : 1-2 2 1 3 6 : : can be reached by many different albeit equivalent procedures written as λx[[x x] 3], λx [[x + x 2 ] [3 + x]], etc. - Tichý s constructions, exactly defined in Tichý 1976-1988, are such procedures - they are akin to algorithms - one may view them as objectual correlates of lambda terms - they are extralinguistic entities; they are not expressions (not even λ-terms!) - they are not set-theoretical entities; they are not classes or any other functions

12 II.. Tichý s logical framework: Simplified definition of constructions 1) a variable x k is a construction which constructs, dependently on valuation v, the entity which is the k-th member of the sequence of entities which is v 2) if X is an object or construction, trivialization of X, 0 X, is a construction which constructs X ( 0 X takes X and leave it as it is) 3) if C, C 1,, C n are constructions, then their composition [C C 1 C n ] (v-)constructs the value (if any) of the function constructed by C on the respective argument constructed by C 1,, C n ; otherwise it (v-)constructs nothing (is v-improper) 4) a variable x occurring in C can be abstracted upon; the construction λxc is an x- closure of C and it constructs a function from possible values of x to entities constructed (on the respective valuations for x) by C - thus constructions are specified as ways of constructing objects

13 II. Tichý s logical framework: deduction - Tichý s pioneering and excellent work on the deduction in partial type theory (1982, 1986; originally 1976) - the deduction system is a system of sequents, which is, again, fully objectual, i.e. not amenable to model-theoretic (or other) interpretation - the basic entities are so-called matches X:C where X is a (trivialization) of an object v-constructed by C or a variable ranging over such objects; sequents are made from matches and derivation rules are made from sequents - derivation rules are made from constructions and objects, which leads to the fact that derivation rules display properties of objects (JR+PK 2011)

14 III II. Materna s Concepts

15 III. I. Materna s theories of concept (1. 1.) - Pavel Materna s proposal (1989) according to which (empirical) concepts are intensions was criticized (in a review of his book) by Pavel Cmorej who suggested utilizing Tichý s notion of construction - next proposal by Materna (after 1989, til 1998): concept is a class of α- and η- (or pre-1998: γ-) convertible closed constructions - Aleš Horák (2002): concept is a closed construction is a α- and η-normal form; this was adopted by Materna (2004) - after 2004 (with Duží, Jespersen): various attempt to define a convenient procedural isomorphism, i.e. congruency of concepts imagined by Church in his various Alternatives

16 III. I. Materna s theories of concept (2.) - Materna adopted Church s 1956 scheme: expressions expresses concepts, etc. - being entirely so, Materna s concepts would be the same as Tichý s constructions; the demand of closeness and α- and η-normal forms is nothing but the way how to differentiate concepts from constructions, i.e. concepts from meanings - some important philosophical applications are developed by Materna (e.g. emptiness of concepts), some are still missing (e.g. a Frege-like falling under concept)

17 III.. Materna s theories of concept (3.) - some details of Materna s 1998 key idea - a concept is a Tichý s construction which is: i) closed because, e.g., [ 0 Man wt x] is hardly a concept, only the closed construction 0 Man is one ii) in α- and η- (but not β-) normal form because the difference between α- (e.g. λn [n 0 > 0 7] vs. λm [m 0 > 0 7]) or η- equivalent (e.g. λwλt [λx [ 0 Man wt x]] vs. 0 Man) constructions is minimal and perhaps somehow artificial - since concepts are constructions, concepts are abstract structured procedures; most expressions express concepts

18 III.. Materna s theories of concept (4.) - most Materna s applications are in principle acceptable to us, e.g.: - simple / compound concepts (Materna: primitive/ derived) due to the definition of subconstructions - concepts are equivalent iff they construct one and the same object - a concept C is empirical iff C determines (i.e. constructs) an intension (C is nonempirical otherwise) - emptiness of concepts more versions (strict: THREE DIVIDED BY ZERO, normal : ROUND SQUARE, empirical: UNICORNS, PEGASUS, THE KING OF FRANCE) - an intension of a concept C = a class of simple subconcepts of C - an extension of C (in W,T) = a class of objects falling (in W,T) under C (i.e. the value of the function constructed by C)

19 IV. Materna s conceptual systems

20 IV. Materna s conceptual systems (1.) - simple version in Materna (1998) - conceptual system is CS = SC CS CC CS, whereas - SC CS (Materna: primitive concepts ) is a class of some 1st order simple concepts (i.e. trivializations), and - CC CS (Materna: derived concepts ) is a class of all compound concepts made from members of SC CS and variables by ways of forming constructions (e.g. by trivializing) - any CS is uniquely given just by SC CS

21 IV. Materna s conceptual systems (2.) - Materna 1998 (with a slight modification) - an object O is dealt by CS iff at least one concept of CS determines O - a class S is the area of CS iff S is the class of all concepts dealt by CS - classification of conceptual systems: empirical/non-empirical systems (an empirical system deals at least one non-trivial intension), etc. - comparing conceptual systems w.r.t. their areas (in more details in Materna 2004): weaker than/stronger than, equivalent to, being a part of, independent of, being an (possibly: essential) extension-expansion of, etc. - many Materna s results are acceptable for us

22 IV. Materna s conceptual systems (3.) - critical remarks on Materna s theory of conceptual systems: - a. for each CS, there is just 1 relation operating on (SC CS CC CS ) (i.e. the concept domain of that CS), namely BEING BUILT ONLY FROM ; yet even more relations operating on the concept domain are thinkable - b. each CS has a concept domain of the same cardinality which is counterintuitive - c. the cardinality of every CS is infinite which seems also counter-intuitive - d. each CS contains concepts of concepts (these conceptualized conceptual systems can be seen as only some of conceptual system there are) - e. moreover, each CS contains an infinite number of definitions which is counterintuitive; (according to Materna, every compound concept is a definition of the object determined by it) - f. some problems related to CSs cannot be even formulated in Materna s theory

23 IV. Materna s conceptual systems (4.) - JR+PK (2011): CC is in fact a class of compound concepts, not derived concepts (as Materna suggests); SC is class of simple concepts, not primitive concepts (as Materna suggests) - thus JR+PK (2011): especially the CC-part can be changed and the notion of CS could be even more fruitful; for example: CS=<{primitive concepts}, {ordering relations}> (JR+PK 2010 in Toruń, not in our 2011-paper where it was omitted) - possible ordering relations being a simple (alternatively: compound) concept, being a subconcept of, having only C 1,..., C n as its subconcepts, being empirical, being definable (in this or that derivable system) by means of, etc. - the same modification is welcome also for Materna s second proposal

24 IV. Conceptual Systems: Materna s second proposal (3.) - Materna s more complicated explication (2004) - it utilizes Tichý s 1988 idea that a system of construction is only defined over a welldefined system of objects; to illustrate (JR+PK 2011) two such systems can differ significantly; imagine arithmetic without or with the number 0, whereas numbers are in an atomic type: the function is or is not partial, thus [3 0 3 0] is an abortive procedure of only the first system CS = < <1. atomic types, 2.Tichý s definition of type theory>, <3.{SCs over atomic types}, 4.{modes of forming constructions}, (arbitrary?) 5. definitions of α- and η-normalization> > - JR+PK (2011): the part 4. {modes of forming constructions} is redundant because it is covered already by Tichý s definition of type theory

25 V. Derivation systems

26 V. Derivation systems: the basic idea - the greatest disadvantage of Materna s TIL is a complete ignorance of Tichý s deduction - Materna s conceptual systems are only fields for deduction - though it is certainly true that we have concepts collected in conceptual systems, it is also hardly deniable that we ratiocinate with these concepts; framed within a conceptual system, we perform operations - including inferences - with concepts, exploiting various derivation rules - from 2009, I call the entities involving both concepts and rules derivation systems - derivation systems differ from conceptual systems the same way as Peano s arithmetic from the quite uninteresting set {1,2,, +, Succ, }

27 V. Derivation systems: the simple proposal - a simple definition useful for many purposes (already JR 2007): DS=<C DS, R DS >, where C DS is a class of constructions (not only concepts; the aim: a generality and thus also fruitfulness of the notion) and R DS a class of derivation rules operating on C DS - (Materna s CSs are at best certain DSs having 0 derivation rules) - key idea: derivation systems DSs are tools for stating and proving facts about objects which are constructed by members of C DS

28 V. Derivation systems: the definition - jointly with P. Kuchyňka, who developed the notion independently, a precization was made - derivation system DS is a quintuple: <OB DS, deftt, PC DS, Q DS, R DS >, where: OB DS is a particular objectual basis (aka atomic types, but see Tichý) deftt is the definition of Tichý s theory of types PC DS ( primitive concepts ) is a particular class of trivializations, a subclass of the class AC of all constructions over OB DS

29 V. Derivation systems: the definition (cont. cont.) DS=<OB DS, deftt, PC DS, Q DS, R DS > Q DS is a particular class of qualities of constructions from AC (i.e. properties such as HAVING THE ORDER K, HAVING C AS ITS SUBCONSTRUCTION, HAVING THE COMPLEXITY-RANK R), the conjunction of all these qualities characterizes the class CR DS (= non-primitive constructions occurring in rules) which is that subclass of AC which contains all constructions occurring in members of R DS R DS is a particular class of derivation rules whereas sequents involved in these rules are made from matches of form X:C where X is a variable or a member of PC DS and C is a member of CR DS

30 VI. Concluding remarks

31 VI. Concluding remarks: general impact of derivation systems on for the study of concepts and conceptual systems - in DSs, implicit relations between constructions (or objects) are made explicit, which is inevitable if we need to move from our intuitive use of concepts towards their conscious reflection - DSs are thus important for the study of concepts (and other constructions) especially from the methodological point of view, because they enable us to precisely specify conceptual systems and to prove claims about them - they yield rigorous and controllable results, nothing is left to guessing (Frege) - for applications of derivations systems see my slides Interaction of Semantics and Deduction in Transparent Intensional Logic and Derivation Systems and Verisimilitude (An Application of Transparent Intensional Logic)

32 Key references Raclavský, J., Kuchyňka, P. (2011): Conceptual and Derivation Systems. Logic and Logical Philosophy, 20, 1-2, 159-174.

33 References Church, A. (1956): Introduction to Mathematical Logic. Princeton University Press. Duží, M., Jespersen, B., Materna, P. (2010): Procedural Semantics for Hyperintensional Logic: Foundations and Applications of Transparent Intensional Logic. Springer Verlag. Horák, A. (2002): The Normal Translational Algorithm in Transparent Intensional Logic for Czech. Disertační práce, Brno: Fakulta informatiky Masarykovy univerzity v Brně. Materna, P., Pala, K., Zlatuška, J. (1989): Logická analýza přirozeného jazyka. Praha: SNTL. Materna, P. (1998): Concepts and Objects. Helsinki: Acta Philosophica Fennica. Materna, P. (2004): Conceptual Systems. Berlin: Logos. Raclavský, J. (2007): Conceptual Dependence of Verisimilitude (Against Miller s Translation Invariance Demand). Organon F 14(3): 334-353. Raclavský, J. (2007a): The Procedural Conception of Language and Fact. In: J. Šuch, M. Taliga (eds.), Problém hraníc medzi filozofiou, umením a vedou, Banská Bystrica: Univerzita Mateje Bela, 137-146. Raclavský, J. (2008): Conceptual Dependence of Verisimilitude Vindicated. A Farewell to Miller s Argument. Organon F 15(3): 369-382. Raclavský, J. (2008a): Miller s and Taliga s Fallacies about Verisimilitude Counting. Organon F 15(4): 477-484. Raclavský, J. (2009): Names and Descriptions: Logico-Semantical Investigations (in Czech). Olomouc: Nakladatelství Olomouc. Raclavský, J. (2009a): Structured Language Meanings and Structured Possible Worlds. In: V.A. Munz, K. Puhl, J. Wang (eds.), Language and the World. Wien: Austrian Ludwig Wittgenstein Society, 349-350. Raclavský, J. (2012): Je Tichého logika logikou? (O vztahu logické analýzy a dedukce). Filosofický časopis 60(2): 245-254. Raclavský, J. (2013): Explikace a dedukce: od jednoduché k rozvětvené teorii typů. Organon F 20 (Supplementary Issue 2): 37-53.

34 Raclavský, J. (2014): On Interaction of Semantics and Deduction in Transparent Intensional Logic (Is Tichý's Logic a Logic?). Logic and Logical Philosophy, 23, 1, 57-68. Raclavský, J., Kuchyňka, P. (2011): Conceptual and Derivation Systems. Logic and Logical Philosophy 20(1-2): 159-174. Tichý, P. (1976): Introduction to Intensional Logic. Unpublished ms. Tichý, P. (1982): Foundations of Partial Type Theory. Reports on Mathematical Logic 14, 57-72. Tichý, P. (1986): Indiscernibility of Identicals. Studia Logica 45, 3, 257-273. Tichý, P. (1988): The Foundations of Frege s Logic. Walter de Gruyter. Tichý, P. (2004): Pavel Tichý s Collected Papers in Logic and Philosophy. Svoboda, V., Jespersen, B., Cheyne, C. (eds.), Dunedin: University of Otago Publisher, Prague: Filosofia.