PŘÍPRAVA BAKALÁŘSKÉ PRÁCE 3. DESIGN STUDIE A SBĚR DAT
|
|
- Štěpánka Renata Marková
- před 6 lety
- Počet zobrazení:
Transkript
1 PŘÍPRAVA BAKALÁŘSKÉ PRÁCE 3. DESIGN STUDIE A SBĚR DAT Mgr. Markéta Pavlíková
2 VÝZKUM x BAKALÁŘKA VÝZKUM 1. Pozorování 2. Vytvoření hypotéz 3. Design studie 4. Sběr dat 5. Analýza 6. Interpretace a srovnání 7. Publikace 8. Příprava nového experimentu BAKALÁŘKA 1. Úvod a teoretická část 2. Hypotézy Metodika Výsledky 6. Diskuse 7. Závěr + obhajoba 8. Magisterské :), ale i praxe
3 VÝZKUM x BAKALÁŘKA VÝZKUM 1. Pozorování 2. Vytvoření hypotéz 3. Design studie 4. Sběr dat 5. Analýza 6. Interpretace a srovnání 7. Publikace 8. Příprava nového experimentu BAKALÁŘKA 1. Úvod a teoretická část 2. Hypotézy Metodika Výsledky 6. Diskuse 7. Závěr + obhajoba 8. Magisterské :), ale i praxe
4 VÝZKUM x BAKALÁŘKA VÝZKUM 1. Pozorování 2. Vytvoření hypotéz 3. Design studie 4. Sběr dat 5. Analýza 6. Interpretace a srovnání 7. Publikace 8. Příprava nového experimentu BAKALÁŘKA 1. Úvod a teoretická část 2. Hypotézy Metodika Výsledky 6. Diskuse 7. Závěr + obhajoba 8. Magisterské :), ale i praxe
5 VÝZKUMNÁ OTÁZKA X FORMULACE HYPOTÉZY obecně nadhozený dojem nijak neotestujete, a tedy ani nepotvrdíte ani nevyvrátíte dobrá výzkumná otázka a dobrá hypotéza jsou základ pro dobře postavený výzkum výzkumná otázka a hypotéza vychází z vašeho hlubšího poznání problému výzkumná otázka vs. hypotéza: obecnější pohled vs. konkrétní formulace
6 VÝZKUMNÁ OTÁZKA Chyby ve formulaci výzkumné otázky: stanovena pouze oblast výzkumu ( Problémy ve fyzioterapii nemocných s X ) odpověď známá / triviální ( zlepšuje se chůze v období po operaci kyčle? )
7 VÝZKUMNÁ OTÁZKA Typy výzkumných otázek: deskriptivní: klademe si otázku typu Jaké to je? a zjišťujeme a popisujeme situaci, stav, výskyt jevu... relační: ptáme se, zda existuje vztah mezi zkoumanými jevy a jak je vztah těsný (viz. asociace, průřezová studie, korelace) kauzální: ptáme se, zda jeden jev přímo ovlivňuje druhý (experiment umožňující rozlišit kauzální vazby)
8 HYPOTÉZA Pravidla pro formulaci hypotézy: Hypotéza je oznamovací věta nezaměňovat je s výzkumnou otázkou (problémem) Hypotéza vyjadřuje vztah alespoň dvou proměnných vztah je třeba jasně a explicitně vyjádřit je vhodné proměnné porovnávat: rozdíly (víc, častěji, silněji, výš, odlišné), vztahy (pozitivní, negativní souvislost, korelace) či následky (čím tím, jestliže pak, jak tak, když pak..). Hypotéza musí být testovatelná, musí se dát potvrdit nebo vyvrátit. Proměnné se musí dát měřit nebo kategorizovat.
9 PŘÍKLAD výzkumná otázka: Zlepšuje fyzioterapie Y statickou rovnováhu nemocných s X? hypotéza: Pacienti s X mají po tříměsíční terapii Y Berg-balance score vyšší než před zahájením terapie. oznamovací věta statická rovnováha je kvantifikovaná BBS uveden vztah s časem uvedena očekávaná změna lze změřit a následně statisticky vyhodnotit a testovat
10 DALŠÍ HYPOTÉZY výzkumná otázka má obvykle širší záběr a je řada faktorů, které mohou vazbu zformulovanou v hlavní hypotéze modifikovat vedlejší hypotézy toto mohou brát do úvahy Příklad: výzkumná otázka 2: Jaké jsou další faktory, které ovlivňují změnu statické rovnováhy? hypotéza 2: Pacienti s vyšším EDSS mají vyšší změnu BBS. během analýzy mohou vyvstat ještě další souvislosti, které pokrývá výzkumná otázka, ale už ne konkrétní hypotézy. To nevadí :)
11 VÝZKUM x BAKALÁŘKA VÝZKUM 1. Pozorování 2. Vytvoření hypotéz 3. Design studie 4. Sběr dat 5. Analýza 6. Interpretace a srovnání 7. Publikace 8. Příprava nového experimentu BAKALÁŘKA 1. Úvod a teoretická část 2. Hypotézy Metodika Výsledky 6. Diskuse 7. Závěr + obhajoba 8. Magisterské :), ale i praxe
12 KDY PŘEMÝŠLET O DATECH Už ve chvíli, kdy o studii teprve uvažujeme Co budeme sbírat? Co s tím pak budeme chtít dělat? K čemu budou výsledky užitečné? Jak budeme sbírat? Na kom to budeme měřit / sledovat / zjišťovat? Kolik toho bude? Bude to stačit? Jak to pak budeme analyzovat?
13 DESIGN STUDIE KOHO A JAK? Jak a na kom budeme měřit? popisujeme jen stav nebo porovnáváme intervence? vzorek pacientů z ambulance / hospitalizace volba zda a jaká kontrolní skupina: zdraví lidé / jiná terapie koho náš vzorek reprezentuje? zobecnitelné? jdeme do minulosti? case-control studie, průřezová studie retrospektivně z dokumentace? registr? jdeme do budoucnosti? (observace, randomizovaný experiment)
14 DESIGN STUDIE KOHO A KOLIK? děláme průzkum? je vzorek respondentů reprezentativní? oslovení pacientů v ambulanci výzva na internetu: riziko samovýběru extrémů Kolik toho budeme měřit? cílový počet respondentů / vyšetřených ideálně stanoveny z výpočtů síly studie (power study) na základě hypotézy a navrženého testu uskutečnitelné? realistický odhad
15 DESIGN STUDIE CO A JAK MĚŘIT? Co budeme měřit? jevy zmíněné v naší hypotéze/hypotézách jevy, které by ty výše uvedené mohly nějak ovlivňovat dobře si rozmyslete, které: na základě rešerší a vlastní zkušenosti relevantní k danému problému uměřeně zatěžující pacienta
16 DESIGN STUDIE CO A JAK MĚŘIT? Co budeme měřit? výskyt jevu (ano/ne např. výskyt AI onemocnění) odběr a hodnoty z laboratoře (např. koncentrace kappa-lambda FLC) popis stavu pomocí škály nebo skóre (MMSE pro Alzheim. nemoc) cílený test (např. TUG test) doba od do nějaké události (např. od operace do úmrtí/propuštění) dotazníkové šetření (např. kvalita života) minimalizace zátěže pacienta při maximalizaci informace Vždy evidujeme i relevantní demografické / anamnestické proměnné
17 DESIGN STUDIE CO A JAK MĚŘIT? při průzkumu: vhodné množství otázek pečlivá formulace otázek a předvýběr odpovědí, možnost vlastní volby pilotně otestovat, zda něco nechybí, nedává smysl, zda výsledky odpovídají na vaši otázku minimalizace zátěže respondenta při maximalizaci informace
18 SBĚR DAT Kvalitně sebraná a připravená data umožňují včasnou detekci problémů významně urychlují analýzu omezují riziko chyby při analýze lze lépe interpretovat, činit závěry s větší jistotou lze snadno doplňovat pro budoucí použití, lze se k nim vracet s minimem nároků na čas porozumí jim i někdo jiný a může vaši práci převzít
19 SBĚR DAT Jak budeme data uchovávat? příprava datového formuláře Access, Excel, Calc jasný identifikátor jedince, posléze anonymizovaný, ale přiřazení zaheslované uložit pro budoucí referenci proměnná s kategoriemi: definice, zařazení do skupin, názvy skupin proměnná s hodnotami: možné limity hodnot, jednotky přehlednost, popis na zvláštním listě databázi pak může použít i někdo jiný než já sám při opisu z karet zapsat vše, co mohu nezahazovat primární informaci (BMI: nechat i výšku i hmotnost)
20 TYPY PROMĚNNÝCH Základní dva typy proměnných (veličin) kategoriální proměnná omezené množství hodnot pohlaví, NYHA klasifikace, typ DM, genotyp,... podtyp binární proměnná (ano/ne) přítomnost onemocnění, pozitivita testu,... spojitá proměnná spojité množství hodnot BMI, glykemie, ph, věk,...
21 KATEGORIÁLNÍ PROMĚNNÁ Omezené množství hodnot znak přítomen / nepřítomen výběr z rovnocenných (neseřaditelných) možností: umístění nádoru, druh terapie,... hodnoty lze seřadit: úroveň vzdělání, stupeň závažnosti onemocnění,... Povaha kategorií přirozené (žena/muž, barva, diagnóza,...) umělé: vznikají pojmenováním nějakých intervalů spojité proměnné podváha / normální váha / nadváha / obezita / morbidní obezita ve skutečnosti je to BMI rozsekané na kousky Umělé kategorie znamenají ztrátu informace obsaženou ve spojité proměnné Lepší zaznamenat tu, pokud to jde, kategorizace se dá vytvořit vždycky
22 KATEGORIÁLNÍ PROMĚNNÁ Na co si dát pozor, když zapisuji kategoriální proměnnou jasně definovaná množina hodnot, kterých faktor nabývá pokud slovně, dávám pozor na překlepy, mezery pokud číselně, uchovávám si bokem správné přiřazení číselných kódů a názvů ideálně si v databázi nastavím povolené hodnoty, když chci napsat něco jiného, zařve pokud vytvořena uměle, uchovávám i původní proměnnou
23 SPOJITÁ PROMĚNNÁ má zpravidla jednotky má logická rozmezí ph krve = 4 je spíše chyba než reálná hodnota BMI = 10 nebo BMI = 100 tyto informace v seznamu proměnných poslouží skvěle při kontrole dat a analýze jednotky nepíšu do dat, ale bokem pozor na desetinnou tečku / čárku
24 UKÁZKA DAT CO JE ŠPATNĚ? ukážeme si data společně budeme identifikovat, co je špatně ukážeme si, co to udělá při natažení do R ukážeme si, jak to napravit
25 UKÁZKA DAT CO JE ŠPATNĚ? pozn.: data v Excelu
26 UKÁZKA DAT CO JE ŠPATNĚ?
27 UKÁZKA DAT CO JE ŠPATNĚ? věk není číslo ale text! Hezké, ale nepoužitelné.
28 UKÁZKA DAT CO JE ŠPATNĚ?
29 UKÁZKA DAT CO JE ŠPATNĚ? text uprostřed čísel, navíc nenesoucí příliš informace
30 UKÁZKA DAT CO JE ŠPATNĚ?
31 UKÁZKA DAT CO JE ŠPATNĚ? prázdné pole: je to NE nebo chybějící pozorování?
32 UKÁZKA DAT CO JE ŠPATNĚ?
33 UKÁZKA DAT CO JE ŠPATNĚ? desetinná čárka a desetinná tečka zároveň
34 UKÁZKA DAT CO JE ŠPATNĚ?
35 UKÁZKA DAT CO JE ŠPATNĚ? nesmyslná hodnota obvykle nenajdeme na první pohled
36 UKÁZKA DAT CO JE ŠPATNĚ?
37 UKÁZKA DAT CO JE ŠPATNĚ? tři informace (přítomnost, typ, terapie) naráz, takto neanalyzovatelné
38 UKÁZKA DAT NÁPRAVA
39 UKÁZKA DAT NÁPRAVA věk přepočítán (zaokrouhlení vizuální, jinak des. číslo)
40 UKÁZKA DAT NÁPRAVA čárka opravena na tečku, nejsou texty; NA je ekvivalentní prázdnému poli
41 UKÁZKA DAT NÁPRAVA rozlišeno ne a chybějící, poznámka je vedle
42 UKÁZKA DAT NÁPRAVA rozděleno na výskyt a poznámku
43 UKÁZKA DAT NÁPRAVA rozlišen výskyt, typ, terapie do samostatných proměnných
44 přehledný seznam slouží jako reference pro autora databáze pro analytika pro návrat v budoucnosti snižuje riziko chyby, záměny, nepochopení
45 DĚKUJI ZA POZORNOST
ANALÝZA DAT V R 1. JAK SPRÁVNĚ PŘIPRAVIT A NAČÍST DATA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK
ANALÝZA DAT V R 1. JAK SPRÁVNĚ PŘIPRAVIT A NAČÍST DATA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz JAK VZNIKÁ VĚDECKÁ STUDIE JAK VZNIKÁ VĚDECKÁ
MĚŘENÍ, TYPY VELIČIN a TYPY ŠKÁL
MĚŘENÍ, TYPY VELIČIN a TYPY ŠKÁL Matematika a stejně i matematická statistika a biometrie s námi hovoří řečí čísel. Musíme tedy vlastnosti nebo intenzitu vlastností jedinců změřit kvantifikovat. Měřením
Proces marketingového výzkumu - jednotlivé fáze, význam, stručná charakteristika. Výběr a formulace výzkumného problému. Vztahy mezi proměnnými.
Proces marketingového výzkumu - jednotlivé fáze, význam, stručná charakteristika. Výběr a formulace výzkumného problému. Projekt. Jednotky analýzy. Proměnné. Vztahy mezi proměnnými. Téma č. 2 Cíle marketingového
1. PŘÍPRAVA A ZADÁNÍ DIPLOMOVÉ PRÁCE
Diplomová práce 1. PŘÍPRAVA A ZADÁNÍ DIPLOMOVÉ PRÁCE VÝBĚR TÉMATU DIPLOMOVÉ PRÁCE zájem o danou problematiku, odbornost školitele Vnese má diplomová práce do dané problematiky něco nového? Přemýšlejte
Statistická šetření - PROČ? Žádná věda není skutečnou vědou, není-li podložena matematickými principy. (L.da Vinci)
Statistická šetření - PROČ? Žádná věda není skutečnou vědou, není-li podložena matematickými principy. (L.da Vinci) Statistická šetření - na kom / čem? statistické jednotky (S.J.) 1 respondent (pacient,
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická
GEN104 Koncipování empirického výzkumu
GEN104 Koncipování empirického výzkumu Hypotézy Proměnné Konceptualizace Operacionalizace Měření Indikátory Využity podklady Mgr. K. Nedbálkové, Ph.D. etapy výzkumu I Formulace problému (čtu, co se ví,
Kvantitativní metody výzkumu v praxi PRAKTIKUM. Příprava výzkumného projektu
UK FHS Řízení a supervize v sociálních a zdravotnických organizacích (LS 2007) Kvantitativní metody výzkumu v praxi PRAKTIKUM část 1 Příprava výzkumného projektu Jiří Šafr jiri.safr@seznam.cz vytvořeno
STATISTIKA 1. RNDr. K. Hrach, Ph.D. Zápočet: 75% docházka na cvičení. + odevzdání seminární práce (úkoly na PC)
STATISTIKA 1 RNDr. K. Hrach, Ph.D. Zápočet: 75% docházka na cvičení + odevzdání seminární práce (úkoly na PC) Zkouška: písemná (bez kalkulačky, bez vzorců) KONZULTACE Není hanba, že nevíš, ale že se neptáš.
MODERNÍ MARKETINGOVÝ VÝZKUM
KOZEL Roman MODERNÍ MARKETINGOVÝ VÝZKUM Obsah O hlavním autorovi... 9 Slovo úvodem...11 1. Marketingové prostředí...13 1.1 Charakteristika prostředí...14 1.2 Makroprostředí...16 1.2.1 Demografické prostředí...18
DIABETOLOGIČTÍ PACIENTI V REGIONECH ČESKA
DIABETOLOGIČTÍ PACIENTI V REGIONECH ČESKA Luděk Šídlo Boris Burcin 49. konference České demografické společnosti Demografie město venkov 23. května 2019, Lednice Příspěvek zpracován v rámci projektu TAČR
PŘÍPRAVA BAKALÁŘSKÉ PRÁCE 4. DISKUSE, ZÁVĚR, OBHAJOBA
PŘÍPRAVA BAKALÁŘSKÉ PRÁCE 4. DISKUSE, ZÁVĚR, OBHAJOBA Mgr. Markéta Pavlíková www.biostatisticka.cz VÝZKUM x BAKALÁŘKA VÝZKUM BAKALÁŘKA 1. Pozorování 2. Vytvoření hypotéz 3. Design studie 4. Sběr dat 5.
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi,
Studie EHES - výsledky. MUDr. Kristýna Žejglicová
Studie EHES - výsledky MUDr. Kristýna Žejglicová Výsledky studie EHES Zdroje dat Výsledky byly převáženy na demografickou strukturu populace ČR dle pohlaví, věku a vzdělání v roce šetření. Výsledky lékařského
METODY VÝZKUMU GENDEROVÉ PROBLEMATIKY
METODY VÝZKUMU GENDEROVÉ PROBLEMATIKY BLOK 1: epistemologie BLOK 2: principy kvantitativního přístupu BLOK 3: principy kvalitativního přístupu etapy výzkumu I Formulace problému (čtu, co se ví, jak se
Diagnostická činnost
VÝZKUMNÉ METODY V PSYCHOLOGII Diagnostická činnost Diagnostická činnost je souhrn postupů a technik jejichž cílem je stanovit diagnózu (psychický stav jedince). Jejím cílem může být např.:. Diagnostická
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 7 Jak hodnotit vztah spojitých proměnných
Pojem a úkoly statistiky
Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby
CEBO: (Center for Evidence Based Oncology) Incidence Kostních příhod u nádorů prsu PROJEKT IKARUS. Neintervenční epidemiologická studie
CEBO: (Center for Evidence Based Oncology) Incidence Kostních příhod u nádorů prsu PROJEKT Neintervenční epidemiologická studie PROTOKOL PROJEKTU Verze: 4.0 Datum: 26.09.2006 Strana 2 PROTOKOL PROJEKTU
Posudek oponenta diplomové práce
Univerzita Karlova, Fakulta tělesné výchovy a sportu Laboratoř sportovní motoriky Posudek oponenta diplomové práce Název diplomové práce: Tělesné složení u pacientů s diagnózou idiopatické zánětlivé myopatie
Varianty výzkumu Kroky výzkumu Výběrový soubor
Varianty výzkumu Kroky výzkumu Výběrový soubor Dvě cesty k poznání. Technické kroky ve výzkumu. Zdroje zkreslení výzkumu. Jak vytvořit výběrový soubor. Varianty výzkumu-kvalitativní a kvantitativní Kvalitativní
Sázíte-li v loterii, je to hazard. Hrajete-li poker, je to zábava. Obchodujete-li na burze, je to ekonomie. Vidíte ten rozdíl?
1.1 Základní statistické pojmy a metody Sázíte-li v loterii, je to hazard. Hrajete-li poker, je to zábava. Obchodujete-li na burze, je to ekonomie. Vidíte ten rozdíl? 1 Co se dozvíte Co je to statistika
ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz PŘEHLED TESTŮ rozdělení normální spojité alternativní / diskrétní
Fáze a techniky marketingového výzkumu
VY_32_INOVACE_MAR_91 Fáze a techniky marketingového výzkumu Ing. Dagmar Novotná Obchodní akademie, Lysá nad Labem, Komenského 1534 Dostupné z www.oalysa.cz. Financováno z ESF a státního rozpočtu ČR. Období
Metodologie Kinantropologie
Metodologie Kinantropologie Sbírka studijních materiálů Mgr. Martin Sebera, Ph.D. Fakulta sportovních studií MU 2012 Doporučená literatura a zdroje Disman, M. Jak se vyrábí sociologická znalost. Eco, U.
Sociologický výzkum (stručný úvod) Michal Peliš
Sociologický výzkum (stručný úvod) Michal Peliš vědy exaktní X sociální tvrzení deterministického charakteru univerzální platnost experiment prokazování kauzality tvrzení pravděpodobnostního charakteru
Analytické znaky laboratorní metody Interní kontrola kvality Externí kontrola kvality
Analytické znaky laboratorní metody Interní kontrola kvality Externí kontrola kvality RNDr. Alena Mikušková FN Brno Pracoviště dětské medicíny, OKB amikuskova@fnbrno.cz Analytické znaky laboratorní metody
VÝBĚR A JEHO REPREZENTATIVNOST
VÝBĚR A JEHO REPREZENTATIVNOST Induktivní, analytická statistika se snaží odhadnout charakteristiky populace pomocí malého vzorku, který se nazývá VÝBĚR neboli VÝBĚROVÝ SOUBOR. REPREZENTATIVNOST VÝBĚRU:
Analýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
Výsledky ankety uživatelé NSHNU ( sběr dat)
Výsledky ankety uživatelé NSHNU (3. 12. 2014 sběr dat) Metodika zpracování dat Sběr dat dotazníkové šetření N = 64 respondentů (z 85 PZS 75,3 %) Respondenti se většinou rekrutovali z řad manažerů kvality
Pohybová aktivita a životospráva u adolescentů
Oponentský posudek bakalářské práce Pohybová aktivita a životospráva u adolescentů Pavlína Blatná studentka III. ročníku bakalářského studia ošetřovatelství, prezenční forma studia Období dospívání je
Projekt výzkumu v graduační práci
Projekt výzkumu v graduační práci Základní manuál Prof. PhDr. Beáta Krahulcová, CSc. Fáze výzkumu Přípravná, teoretická fáze (výsledek kumulovaného poznání,precizace výzkumného úkolu, formulace vědecké
Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1
Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA 2018 4. dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1 Typy proměnných nominální (nominal) o dvou hodnotách lze říci pouze
Kalkulace závažnosti komorbidit a komplikací pro CZ-DRG
Kalkulace závažnosti komorbidit a komplikací pro CZ-DRG Michal Uher a analytický tým projektu DRG Restart Ústav zdravotnických informací a statistiky ČR, Praha Institut biostatistiky a analýzy, Lékařská
Zpracování chybějících dat a dat mimo rozsah
StatSoft Zpracování chybějících dat a dat mimo rozsah V tomto článku si představíme jeden z možných postupů, jak se rychle a snadno vypořádat s detekcí chybějících dat a dat mimo stanovený rozsah. Načtení
PROHLOUBENÍ NABÍDKY DALŠÍHO VZDĚLÁVÁNÍ NA VŠPJ A SVOŠS V JIHLAVĚ
Projekt č. CZ.1.07/3.2.09/03.0015 PROHLOUBENÍ NABÍDKY DALŠÍHO VZDĚLÁVÁNÍ NA VŠPJ A SVOŠS V JIHLAVĚ http://www.vspj.cz/skola/evropske/opvk Tento projekt je spolufinancován Evropským sociálním fondem a státním
Omnibus Smrčkova 2485/ Praha 8
Omnibus 2018 info@stemmark.cz Smrčkova 2485/4 180 00 Praha 8 Omnibusová šetření jsou šetření probíhající pravidelně měsíčně, do kterých jsou podle objednávky klientů zařazovány moduly otázek týkajících
Název Autor Vedoucí práce Oponent práce
POSUDEK BAKALÁŘSKÉ / MAGISTERSKÉ PRÁCE VEDOUCÍ PRÁCE Název Autor Vedoucí práce Oponent práce Preference uživatelů marihuany: indoor versus outdoor Veronika Havlíčková Ing. Jiří Vopravil, Ph.D. Mgr. Jaroslav
Access Tabulka letní semestr 2013
MS Access Tabulka letní semestr 2013 Tvorba nové tabulky importem dat propojením externího souboru pomocí Průvodce v návrhovém zobrazení Návrh struktury tabulky Tabulka záznam pole záznamu Jmeno RodCislo
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 6 Jak analyzovat kategoriální a binární
Závislost na počítačových hrách u žáků druhého stupně vybraných základních škol
POSUDEK BAKALÁŘSKÉ / MAGISTERSKÉ PRÁCE OPONENT Název Závislost na počítačových hrách u žáků druhého stupně vybraných základních škol Autor Bc. Jiří Zatřepálek Vedoucí práce Mgr. Jaroslav Vacek Oponent
EPOSS výsledky interim analýzy. Jan Maláska za kolektiv investigátorů projektu EPOSS
EPOSS výsledky interim analýzy Jan Maláska za kolektiv investigátorů projektu EPOSS K čemu slouží interim analýza Jde o testování primární hypotézy v průběhu projektu Testování souboru stran interní validity
Ing. Alena Šafrová Drášilová, Ph.D.
Rozhodování Ing. Alena Šafrová Drášilová, Ph.D. Rozhodování??? video Obsah typy rozhodování principy rozhodování rozhodovací fáze základní pojmy hodnotícího procesu rozhodovací podmínky rozhodování v podmínkách
Omnibus 2015. info@stemmark.cz Chlumčanského 497/5 180 00 Praha 8
Omnibus 2015 info@stemmark.cz Chlumčanského 497/5 180 00 Praha 8 Omnibusová šetření jsou šetření probíhající pravidelně měsíčně, do kterých jsou podle objednávky klientů zařazovány moduly otázek týkajících
ANALÝZA DAT V R 2. POPISNÉ STATISTIKY. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 2. POPISNÉ STATISTIKY Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz CO SE SKRÝVÁ V DATECH data sbíráme proto, abychom porozuměli
PhDr. Dana Petrýdesová Krajská vědecká knihovna v Liberci
PhDr. Dana Petrýdesová Krajská vědecká knihovna v Liberci Zjistit a zlepšit spokojenost uživatelů Získat informace k nějakému problému a jeho řešení (ověření hypotéz) Provést změny ve službách, Proč chci
Vztah mezi obtěžováním hlukem a vybranými ukazateli zdravotního stavu. MUDr. Zdeňka Vandasová Mgr. Ondřej Vencálek Ph.D.
Vztah mezi obtěžováním hlukem a vybranými ukazateli zdravotního stavu MUDr. Zdeňka Vandasová Mgr. Ondřej Vencálek Ph.D. Zkoumání vztahů mezi hlukem a jeho zdravotními účinky Vztah mezi hlukem a výskytem
Jak psát maturitní práci? Marie Břendová
Jak psát maturitní práci? Marie Břendová Hlavní kroky Fáze koncepční Fáze návrhu a plánování Fáze empirická Fáze analytická Fáze diseminační Jak začít? KONCEPČNÍ FÁZE 1) formulace a vymezení problému ujasnit
Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet
Škály podle informace v datech:
Škály podle informace v datech: Různé typy dat znamenají různou informaci, resp. různé množství informace Data nominální Rovná se? x 1 = x 2 Data ordinální Větší, menší? x 1 < x 2 Data intervalová O kolik?
1. Statistická analýza dat Jak vznikají informace Rozložení dat
1. Statistická analýza dat Jak vznikají informace Rozložení dat J. Jarkovský, L. Dušek, S. Littnerová, J. Kalina Význam statistické analýzy dat Sběr a vyhodnocování dat je způsobem k uchopení a pochopení
Výzkumný problém. Přednášky ze Základů pedagogické metodologie Kateřina Vlčková, PdF MU Brno
Výzkumný problém Přednášky ze Základů pedagogické metodologie Kateřina Vlčková, PdF MU Brno 1 Formulace výzkumného problému Výzkum musí začít vymezením výzkumného problému toho, co chceme řešit, které
různé typy přehledových studií integrativní typ snaha o zobecnění výsledků z množství studií
Meta-analýza přehledové studie, definice postup meta-analýzy statistické techniky ověření homogenity studií, agregace velikosti účinku, moderující proměnné, analýza citlivosti, publikační zkreslení přínosy
Metodologie pedagogického výzkumu Téma číslo 2 Koncipování vlastního výzkumu
Metodologie pedagogického výzkumu Téma číslo 2 Koncipování vlastního výzkumu pedagogického výzkumu 1 Příprava výzkumu Teoretický rozbor literární rešerše (úprava, vyvarování se chyb, inspirace ) Zdroje:
Cíle korelační studie
Korelační studie Cíle korelační studie cíle výzkumu v psychologii deskripce predikce explanace kontrola korelační studie popisuje vztah (ko-relaci) mezi proměnnými cíle - deskripce, příp. predikce První
Výuka s ICT na SŠ obchodní České Budějovice Šablona III/2:
Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: CZ.1.07/1.5.00/34.0536 Název projektu školy: Výuka s ICT na SŠ obchodní České Budějovice Šablona
Metodika analýzy návštěvnosti horských středisek v České republice. Ondřej Špaček 11. listopadu 2015
Metodika analýzy návštěvnosti horských středisek v České republice Ondřej Špaček 11. listopadu 2015 Přístup k řešení projektu Etapy projektu Výstupy z jednotlivých etap Postup v jednotlivých etapách Část
Statistika. Základní pojmy a cíle statistiky. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .
Statistika Základní pojmy a cíle statistiky Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Statistika Pojmy a cíle
Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou
Úvod.................................................................. 11 Kapitola 1 Než začneme.................................................................. 17 1.1 Logika kvantitativního výzkumu...........................................
Systém monitorování zdravotního stavu obyvatelstva ve vztahu k životnímu prostředí
Systém monitorování zdravotního stavu obyvatelstva ve vztahu k životnímu prostředí Subsystém 6 Zdravotní stav Výsledky studie Zdraví dětí 2016 Rizikové faktory kardiovaskulárních onemocnění Úvod Prevalenční
Jana Vránová, 3. lékařská fakulta UK
Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace
Zpráva o výsledcích výzkumu postojů rodičů žáků 5. ročníku k otázkám spravedlivého přístupu ke vzdělávání a překonávání školního neúspěchu
Zpráva o výsledcích výzkumu postojů rodičů žáků 5. ročníku k otázkám spravedlivého přístupu ke vzdělávání a překonávání školního neúspěchu Technická zpráva z šetření Překonávání školního neúspěchu v České
Studie Hluk a zdraví sledování zdravotních účinků hluku. MUDr. Zdeňka Vandasová
Studie Hluk a zdraví sledování zdravotních účinků hluku MUDr. Zdeňka Vandasová Účinky hluku na člověka Orgánové účinky Sluchový aparát: akustické trauma (120 140 db), poruchy sluchu (70 db) Kardiovaskulární
DOBRÉ VĚCI MOHOU VZNIKAT VE STAVU TĚLESNÉ, DUŠEVNÍ A SOCIÁLNÍ POHODY.
FIRMA PRO FIRMA ZDRAVÍ PRO ZDRAVÍ DOBRÉ VĚCI MOHOU VZNIKAT VE STAVU TĚLESNÉ, DUŠEVNÍ A SOCIÁLNÍ POHODY. KDO JSME... INSPIRUJEME ZAMĚSTAVATELE NA TÉMA ZDRAVÍ VÍME JAK NA TO MÁME METODIKU PROGRAMY EKONOMICKÉ,
Souběžná validita testů SAT a OSP
Souběžná validita testů SAT a OSP www.scio.cz 15. ledna 2013 Souběžná validita testů SAT a OSP Abstrakt Pro testování obecných studijních dovedností existuje mnoho testů. Některé jsou všeobecně známé a
Role statistiky ve výzkumu
Statistika - úvod vymezení statistiky úloha statistiky v psychologickém výzkumu základní pojmy - měření, proměnné; popisná a induktivní statistika; populace a vzorek příprava dat před analýzou Definice
Doktorské studium na FPH VŠE. Martin Lukeš proděkan pro vědu, výzkum a doktorské studium
Doktorské studium na FPH VŠE Martin Lukeš proděkan pro vědu, výzkum a doktorské studium 3.10.2016 1 1. Proč studovat doktorské studium Chtít přicházet věcem (korektním a metodicky správným způsobem) na
Nadváha a obezita u populace v ČR MUDr. Věra Kernová Státní zdravotní ústav Praha
Nadváha a obezita u populace v ČR MUDr. Věra Kernová Státní zdravotní ústav Praha Tisková konference 30.7. 2010 Evropská strategie pro prevenci a kontrolu chronických neinfekčních onemocnění Východiska:
Spokojenost se životem
SEMINÁRNÍ PRÁCE Spokojenost se životem (sekundárních analýza dat sociologického výzkumu Naše společnost 2007 ) Předmět: Analýza kvantitativních revize Šafr dat I. Jiří (18/2/2012) Vypracoval: ANONYMIZOVÁNO
5. PŘÍLOHY. Příloha č. 1 Seznam tabulek. Příloha č. 2 Seznam obrázků. Příloha č. 3 Seznam zkratek
5. PŘÍLOHY Příloha č. 1 Seznam tabulek Příloha č. 2 Seznam obrázků Příloha č. 3 Seznam zkratek PŘÍLOHA Č. 1 SEZNAM TABULEK Číslo tabulky Název tabulky Strana Tabulka 1 Nejčastější obsahy obsesí a s nimi
Rubrika Zajímavostí ze zahraničního obchodu končí, ostatní zdroje získávání dat zůstávají
31. 12. 2015 Rubrika Zajímavostí ze zahraničního obchodu končí, ostatní zdroje získávání dat zůstávají Oznamujeme příznivcům rubriky Zajímavosti ze zahraničního obchodu (ZO), že od 1. ledna 2016 dochází
METODOLOGIE I - METODOLOGIE KVANTITATIVNÍHO VÝZKUMU
METODOLOGIE I - METODOLOGIE KVANTITATIVNÍHO VÝZKUMU vyučující doc. RNDr. Jiří Zháněl, Dr. M I 4 Metodologie I 7. ANALÝZA DAT (KVANTITATIVNÍ VÝZKUM) (MATEMATICKÁ) STATISTIKA DESKRIPTIVNÍ (popisná) ANALYTICKÁ
Marketingová analýza trhu
Marketingová analýza trhu Prezentuje: Ing. Michaela Vavrečková Cíl semináře Seznámení se strukturou marketingové analýzy trhu jakou součástí studie proveditelnosti Obsah 1. Analýza prostředí 2. Definování
Ošetřovatelský proces
Je těžké měnit lidi, ale je možné změnit systém práce v organizaci. J.Kersnik - Medical Tribune Ošetřovatelský proces Simona Saibertová LF, MU Ošetřovatelský proces je racionální vědecká metoda poskytování
Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.
Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní
Závěrečná zpráva z výzkumu
Zhodnocení kampaně Březen měsíc Internetu Závěrečná zpráva z výzkumu v rámci akce: Březen - měsíc Internetu připravil: Heřmanova 22, 17 PRAHA 7 Tel.: 2 19 58, Fax: 2 19 59 E-Mail: INBOX@MARKENT.CZ Duben
III. Kontingenční tabulky II Grafy Dotazník
III. Kontingenční tabulky II Grafy Dotazník Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek, M. Cvanová, T. Hodásová Ukázka kontingenční tabulky Kontingenční tabulka
Návrh opatření ke kultivaci zdrojových dat a zvýšení kvality interpretace budoucích analýz. Ing. Markéta Bartůňková, jménem týmu projektu
Návrh opatření ke kultivaci zdrojových dat a zvýšení kvality interpretace budoucích analýz Ing. Markéta Bartůňková, jménem týmu projektu 1 Závěr analýzy Autor analýzy konstatuje, že se podařilo: jednotné
Přehled výzkumných metod
Přehled výzkumných metod Kateřina Vlčková Přednášky k Základům pedagogické metodologie PdF MU Brno 1 Definice výzkumné metody Výzkumná metoda Obecný metodologický nástroj k získávání a zpracování dat Systematický
Jan Krajhanzl, Tomáš Chabada, Renata Svobodová Katedra environmentálních studií Fakulty sociálních studií Masarykova univerzita, leden 2018
Jan Krajhanzl, Tomáš Chabada, Renata Svobodová Katedra environmentálních studií Fakulty sociálních studií Masarykova univerzita, leden 2018 Sběr dat probíhal od 10. listopadu do 10. prosince 2017 formou
Název Autor Jitka Debnárová Vedoucí práce Mgr. Petra Vondráčková, Ph.D. Oponent práce Mgr. Lenka Reichelová
Název Autor Jitka Debnárová Vedoucí práce Mgr. Petra Vondráčková, Ph.D. Oponent práce Mgr. Lenka Reichelová Vztahová vazba u osob se závislostí na pervitinu POSUDEK BAKALÁŘSKÉ / MAGISTERSKÉ PRÁCE VEDOUCÍ
Časný záchyt chronické obstrukční plicní nemoci v rizikové populaci
Časný záchyt diabetické retinopatie a makulárního edému u pacientů s diabetem 1. nebo 2. typu CZ.03.2.63/0.0/0.0/15_039/0008165 Časný záchyt chronické obstrukční plicní nemoci v rizikové populaci PreVon
Zpracoval: Ondřej Malina Centrum pro výzkum veřejného mínění, Sociologický ústav AV ČR, v.v.i. Tel.:
Tisková zpráva Postoje obyvatel České republiky k politickým stranám září 216 Majorita obyvatel České republiky si myslí, že se o ně politické strany zajímají pouze v době voleb. Mladí lidé ve věku 15
Informace o studiu. Životní prostředí a zdraví Matematická biologie a biomedicína. studijní programy pro zdravou budoucnost
Informace o studiu Životní prostředí a zdraví Matematická biologie a biomedicína studijní programy pro zdravou budoucnost Proč RECETOX? Výzkumné centrum RECETOX poskytuje vzdělání v zajímavých oborech
Metody a techniky využitelné pro sociální zjišťování na venkově
Metody a techniky využitelné pro sociální zjišťování na venkově Sociologický empirický výzkum (SEV) nástroj pro zjišťování odpovědí na otázky o existenci, rozsahu a vývoji společenských jevů a procesů
DATABÁZE MS ACCESS 2010
DATABÁZE MS ACCESS 2010 KAPITOLA 5 PRAKTICKÁ ČÁST TABULKY POPIS PROSTŘEDÍ Spuštění MS Access nadefinovat název databáze a cestu k uložení databáze POPIS PROSTŘEDÍ Nahoře záložky: Soubor (k uložení souboru,
Sociálně vyloučené lokality v ČR
Sociálně vyloučené lokality v ČR Karel Čada Fakulta sociálních věd Univerzity Karlovy Praha, 9. 11. 2017, Spravedlivost ve vzdělávání Nerovnosti v českém vzdělávacím systému Co je to sociální vyloučení?
Konzumace piva v České republice v roce 2007
TISKOVÁ ZPRÁVA Centrum pro výzkum veřejného mínění Sociologický ústav AV ČR, v.v.i. Jilská 1, Praha 1 Tel./fax: 26 40 129 E-mail: jiri.vinopal@soc.cas.cz Konzumace piva v České republice v roce 2007 Technické
časovém horizontu na rozdíl od experimentu lépe odhalit chybné poznání reality.
Modelování dynamických systémů Matematické modelování dynamických systémů se využívá v různých oborech přírodních, technických, ekonomických a sociálních věd. Použití matematického modelu umožňuje popsat
Doporučená pohybová aktivita po prodělání CHOPN exacerbace
Doporučená pohybová aktivita po prodělání CHOPN exacerbace Mgr. Kateřina Neumannová, Ph.D. Katedra fyzioterapie, Fakulta tělesné kultury, Univerzita Palackého, Olomouc Co může ovlivňovat úroveň pohybových
Renáta Bednárová STATISTIKA PRO EKONOMY
Renáta Bednárová STATISTIKA PRO EKONOMY ZÁKLADNÍ STATISTICKÉ POJMY Statistika Statistický soubor Statistická jednotky Statistický znak STATISTIKA Vědní obor, který se zabývá hromadnými jevy Hromadné jevy
Význam inovací pro firmy v současném období
Význam inovací pro firmy v současném období Jan Heřman 25. říjen 2013 Uváděné údaje a informace vychází z výzkumného projektu FPH VŠE "Konkurenceschopnost" (projekt IGA 2, kód projektu VŠE IP300040). 2
Registr rizik. Dopad kvantifikujeme podle matice níže. 2 Malý dopad. 3 Střední dopad. 4 Vysoký dopad. 5 Velmi vysoký dopad. malý dopad.
Registr rizik Co je Registr rizik a k čemu slouží S každým projektem jsou spojena určitá rizika, tedy nejisté události, které mohou nastat a ovlivnit (zpravidla negativně) průběh. Analýza rizik je samostatnou
Metodologie pedagogického výzkumu Téma číslo 4 Validita a reliabilita
Metodologie pedagogického výzkumu Téma číslo 4 Validita a reliabilita pedagogického výzkumu 1 Validita = platnost Měříme skutečně to, co se domníváme, že měříme??? Z výsledku vědomostního testu usuzujeme
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní
Tabulka 1. Výběr z datové tabulky
1. Zadání domácího úkolu Vyberte si datový soubor obsahující alespoň jednu kvalitativní a jednu kvantitativní proměnnou s alespoň 30 statistickými jednotkami (alespoň 30 jednotlivých údajů). Zdroje dat
Metodologie vědecké práce v rehabilitaci
Metodologie vědecké práce v rehabilitaci Medicína založená na důkazech EBM Medicína založená na důkazech Evidence based medicine = využití vedle osobní zkušenosti i zkušeností většiny lékařů/zdravotníků
INOVATIVNÍ MANAŽER MARKETINGU: INOVATIVNÍ BUSINESS INTELLIGENCE
INOVATIVNÍ MANAŽER MARKETINGU: INOVATIVNÍ BUSINESS INTELLIGENCE E-LEARNING Jan Novák 15. července 2014 Obsah Proč mít data? Zdroje dat (externí a interní) Typy dat tvrdá a měkká Nejčastější chyby při přípravě
Aktualizace klasifikačního systému CZ-DRG
Aktualizace klasifikačního systému CZ-DRG T. Pavlík, Z. Bortlíček, M. Uher, P. Klika, M. Bartůňková, P. Kovalčíková, M. Hlostová, J. Linda, V. Těšitelová, M. Zvolský, I. Rubešová, L. Dušek Ústav zdravotnických