ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
|
|
- Tomáš Pokorný
- před 6 lety
- Počet zobrazení:
Transkript
1 ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK
2 PŘEHLED TESTŮ rozdělení normální spojité alternativní / diskrétní populační parametr (o čem je hypotéza) populační průměr populační medián (distribuční funkce) pravděpodobnost jevu / (ne)závislost / poměr šancí jeden výběr jednovýběrový t-test jednovýběrový Wilcoxonův test znaménkový test test proporcí výběr dvojic párový t-test párový Wilcoxonův test znaménkový test McNemarův test dvouvýběrový t-test Mann-Whitney (dvouvýběrový Wilcoxon) Kolmogorov-Smirnov Fisherův exaktní test c2-test analýza rozptylu (jednoduché třídění, F-test) Kruskal-Wallis Fisherův exaktní test c2-test lineární regrese zobecněná lineární regrese (speciální případy) jádrová regrese (kernel smoothing)... logistická regrese multinomiální logistická regrese dva nezávislé výběry (třídění na dvě kategorie / závislost na binární proměnné) k nezávislých výběrů (závislost na kategoriální proměnné) závislost na spojité proměnné opakovaná měření smíšená lineární regrese (mixed models) smíšená zobecněná lineární regrese
3 PŘEHLED TESTŮ rozdělení normální spojité alternativní / diskrétní populační parametr (o čem je hypotéza) populační průměr populační medián (distribuční funkce) pravděpodobnost jevu / (ne)závislost / poměr šancí jeden výběr jednovýběrový t-test jednovýběrový Wilcoxonův test znaménkový test test proporcí výběr dvojic párový t-test párový Wilcoxonův test znaménkový test McNemarův test dvouvýběrový t-test Mann-Whitney (dvouvýběrový Wilcoxon) Kolmogorov-Smirnov Fisherův exaktní test c2-test analýza rozptylu (jednoduché třídění, F-test) Kruskal-Wallis Fisherův exaktní test c2-test lineární regrese zobecněná lineární regrese (speciální případy) jádrová regrese (kernel smoothing)... logistická regrese multinomiální logistická regrese dva nezávislé výběry (třídění na dvě kategorie / závislost na binární proměnné) k nezávislých výběrů (závislost na kategoriální proměnné) závislost na spojité proměnné opakovaná měření smíšená lineární regrese (mixed models) smíšená zobecněná lineární regrese
4 PŘEHLED TESTŮ rozdělení normální spojité alternativní / diskrétní populační parametr (o čem je hypotéza) populační průměr populační medián (distribuční funkce) pravděpodobnost jevu / (ne)závislost / poměr šancí jeden výběr jednovýběrový t-test jednovýběrový Wilcoxonův test znaménkový test test proporcí výběr dvojic párový t-test párový Wilcoxonův test znaménkový test McNemarův test dvouvýběrový t-test Mann-Whitney (dvouvýběrový Wilcoxon) Kolmogorov-Smirnov Fisherův exaktní test c2-test analýza rozptylu (jednoduché třídění, F-test) Kruskal-Wallis Fisherův exaktní test c2-test lineární regrese zobecněná lineární regrese (speciální případy) jádrová regrese (kernel smoothing)... logistická regrese multinomiální logistická regrese dva nezávislé výběry (třídění na dvě kategorie / závislost na binární proměnné) k nezávislých výběrů (závislost na kategoriální proměnné) závislost na spojité proměnné opakovaná měření smíšená lineární regrese (mixed models) smíšená zobecněná lineární regrese
5 HODNOCENÍ KVALITATIVNÍCH ZNAKŮ znaky v nominálním měřítku (neuspořádané hodnoty) existují techniky i pro ordinální měřítko: více struktury = přesněji zacílené testy příklady počet osob s krevní skupinou A, B, AB, 0 počet dětí narozených v jednotlivých měsících v roce v Praze vzdělání matky novorozence (ZŠ, SŠ, VŠ) statistické jednotky třídíme podle hodnoty znaku do k neslučitelných skupin výsledkem je k-tice (náhodný vektor) četností modelem pro tento vektor je multinomické rozdělení
6 MULTINOMICKÉ ROZDĚLENÍ důležitý předpoklad!
7 HODNOCENÍ KVALITATIVNÍCH ZNAKŮ Co nás zajímá? A. u jedné proměnné: jsou pravděpodobnosti výskytu jednotlivých kategorií takové, jaké očekáváme? ekvivalent otázky na polohu spojitého rozdělení test typu goodness-of-fit B. u dvou (nebo více) populací: jsou pravděpodobnosti výskytu jednotlivých kategorií u obou skupin stejné? ekvivalent otázky na stejný parametr polohy (dvouvýběrový test) test homogenity C. dvou proměnných (znaků): jsou na sobě závislé? ekvivalent korelačního koeficientu nebo regrese test nezávislosti
8 c -TEST 2 ve všech třech případech vede na c2-test porovnání vzdálenosti mezi pozorovanou hodnotou a očekávanou hodnotou nezapomeň, že očekávané četnosti musí být alespoň 5
9 A. TEST DOBRÉ SHODY chisq.test(x = c(56,72,54,18),p = c(0.35,0.35,.20,.10))
10 A. TEST DOBRÉ SHODY chisq.test(x = c(56,72,54,18),p = c(0.35,0.35,.20,.10))
11 B. TEST HOMOGENITY tedy jakoby ve skutečnosti pocházejí z jedné populace
12 B. TEST HOMOGENITY
13 B. TEST HOMOGENITY splněn předpoklad použití testu chisq.test(rbind(c(121,120,79,33),c(118,95,121,30)))
14 A1. HYPOTÉZA O STRUKTUŘE očekávané četnosti zatím vycházely z populačních dat nebo přímo z naměřených dat co když chceme testovat nějakou vlastnost, strukturu? příklad: Hardy-Weinbergova rovnováha fenotypy AA, Aa, aa předpoklad (který testujeme) je, že odpovídají rozložení genotypů za předpokladu nezávislého křížení a absence selekce jaké očekáváme rozložení? pravděpodobnosti parametrizujeme četností jedné z alel násobení pravděpodobností je ta nezávislost
15 METODA MAXIMÁLNÍ VĚROHODNOSTI multinomické rozdělení 2x četnost AA + 1x četnost Aa děleno počtem všech alel tedy počet alel A na počet všech míst pro alely
16 A1. HYPOTÉZA O STRUKTUŘE 1 st. volnosti, nelze použít chisq.test, napsat nebo v balíku
17 C. TESTOVÁNÍ NEZÁVISLOSTI DVOU ZNAKŮ řádky sloupce
18 C. TESTOVÁNÍ NEZÁVISLOSTI DVOU ZNAKŮ
19 C. TESTOVÁNÍ NEZÁVISLOSTI DVOU ZNAKŮ lze na to nahlížet i jako na populaci nekuřáků atd.
20 D. TESTOVÁNÍ SYMETRIE ( PÁROVOST )
21 D. TESTOVÁNÍ SYMETRIE ( PÁROVOST )
22 2x2 TABULKA
23 2x2 TABULKA Princip Fisherova testu: pravděpodobnost vzniku konkrétní tabulky při pevných marginálních četnostech
24 FISHERŮV EXAKTNÍ TEST pravděpodobnost realizace tabulky II.:
25 RR = RISK RATIO = PODÍL RIZIK 20 a více odběrů 10 a méně odběrů onkologické onemocnění a c nemá onkol. onemocnení b d a+b c+d celkem R 20 = riziko o.o., pokud 20 a více odběrů = a / (a+b) R 10 = riziko o.o, pokud 10 a méně odběrů = c / (c+d) RR = risk ratio = podíl rizik = R 20 / R 10 RR < 1... riziko je menší pro osoby s 20 a více odběry RR > 1... riziko je větší pro osoby s 20 a více odběry data slouží k odhadu skrytého skutečného RR odhad je vždy zatížený možností náhody = je tu možnost chyby
26 RR = RISK RATIO = PODÍL RIZIK 20 a více odběrů 10 a méně odběrů onkologické onemocnění nemá onkol. onemocnení celkem R 20 = riziko o.o., pokud 20 a více odběrů = 31 / 267 = 11.6 % R 10 = riziko o.o, pokud 10 a méně odběrů = 14 / 265 = 5.3 % RR = risk ratio = R 20 / R 10 = 2.2 RR > 1... riziko je větší pro osoby s 20 a více odběry RR < 1... riziko je menší pro osoby s 20 a více odběry 95 % konfidenční interval , p-hodnota = data slouží k odhadu skrytého skutečného RR odhad je vždy zatížený možností náhody = je tu možnost chyby
27 OR = ODDS RATIO = PODÍL ŠANCÍ 20 a více odběrů 10 a méně odběrů onkologické onemocnění a c nemá onkol. onemocnení b d a+b c+d celkem O 20 = šanci mít o.o. při 20 a více odběrech = a : b (tedy a / b) O 10 = šanci mít o.o. při 10 a méně odběrech = c : d (tedy c / d) OR = odds ratio = podíl šancí = O 20 / O 10 = ad / bc OR < 1... šance je menší pro osoby s 20 a více odběry OR > 1... šance je větší pro osoby s 20 a více odběry pro vzácné jevy je OR dobré přiblížení RR vhodný vždy když nemáme výběr z populace a při modelování
28 OR = ODDS RATIO = PODÍL ŠANCÍ 20 a více odběrů 10 a méně odběrů onkologické onemocnění nemá onkol. onemocnení celkem R 20 = riziko o.o., pokud 20 a více odběrů = 31 / 236 = R 10 = riziko o.o, pokud 10 a méně odběrů = 14 / 251 = RR = risk ratio = R 20 / R 10 = RR > 1... riziko je větší pro osoby s 20 a více odběry RR < 1... riziko je menší pro osoby s 20 a více odběry 95 % konfidenční interval , p-hodnota = data slouží k odhadu skrytého skutečného RR odhad je vždy zatížený možností náhody = je tu možnost chyby
29 PŘEHLED TESTŮ rozdělení normální spojité alternativní / diskrétní populační parametr (o čem je hypotéza) populační průměr populační medián (distribuční funkce) pravděpodobnost jevu / (ne)závislost / poměr šancí jeden výběr jednovýběrový t-test jednovýběrový Wilcoxonův test znaménkový test test proporcí výběr dvojic párový t-test párový Wilcoxonův test znaménkový test McNemarův test dvouvýběrový t-test Mann-Whitney (dvouvýběrový Wilcoxon) Kolmogorov-Smirnov Fisherův exaktní test c2-test analýza rozptylu (jednoduché třídění, F-test) Kruskal-Wallis Fisherův exaktní test c2-test lineární regrese zobecněná lineární regrese (speciální případy) jádrová regrese (kernel smoothing)... logistická regrese multinomiální logistická regrese dva nezávislé výběry (třídění na dvě kategorie / závislost na binární proměnné) k nezávislých výběrů (závislost na kategoriální proměnné) závislost na spojité proměnné opakovaná měření smíšená lineární regrese (mixed models) smíšená zobecněná lineární regrese
30 OR = ODDS RATIO = PODÍL ŠANCÍ má vlastnost nemá vlastnost má onemocnění a c nemá onemocnění b d a+b c+d celkem Omá = šance mít o. když má vlastnost = a : b (tedy a / b) Onemá = šance mít o. když nemá vlastnost = c : d (tedy c / d) OR = odds ratio = podíl šancí = Omá / Onemá = ad / bc OR < 1... šance je menší pro osoby, které mají podmínku OR > 1... šance je větší pro osoby, které mají podmínku pro vzácné jevy je OR dobré přiblížení RR vhodný vždy když nemáme výběr z populace a při modelování
31 OD OR K LOGISTICKÉ REGRESI Y/X má onemocnění nemá onemocnění celkem má vlastnost nemá vlastnost P(Y = 1, X = 1) = π1 P(Y = 1, X = 0) = π0 P(Y = 0, X = 1) = 1 - π1 P(Y = 0, X = 0) = 1 - π0 P(X = 1) P(X = 0) OY X = 1 = šance mít o. když má vlastnost = π1 / (1 - π1 ) OY X = 0 = šance mít o. když nemá vlastnost = π0 / (1 - π0 ) πi / (1 - πi ) nabývá hodnot mezi 0 a + předpokládáme, že není πi nulová log(πi / (1 - πi )) nabývá hodnot mezi - a + to už se dá dobře modelovat nějakou křivkou!
32 LOGISTICKÁ REGRESE Y je binární proměnná, Y1,.., Yn nezávislé, má binomiální rozdělení B(ni,πi) nebo také potom
33 LOGISTICKÁ REGRESE X může být binární, kategoriální, faktor nebo spojitá z modelu logistické regrese vypadávají přímo log(or) v podobě koeficientů b hodnota b vyjadřuje podíl šancí pro osobu s hodnotou vysvětlující proměnné x+1 oproti osobě s x (za podmínky, že všechno ostatní je stejné, jako v obvyklé regresi) b < 0 odpovídá OR < 1, b > 0 odpovídá OR > 1 konfidenční, intervaly, testy nulovosti b,... odhady optimalizací podle metody maximální věrohodnosti
34 LOGISTICKÁ REGRESE - PŘÍKLAD plánování těhotenství různí charakteristiky matky primipara věk rodičky vzdělání rodičky podrobnější ukázky viz cvičení 7a.R
35 DĚKUJI ZA POZORNOST
ANALÝZA DAT V R 5. ZÁKLADNÍ STATISTICKÉ TESTY. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 5. ZÁKLADNÍ STATISTICKÉ TESTY Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz PRINCIPY STATISTICKÉ INFERENCE identifikace závisle proměnné
PŘÍPRAVA BAKALÁŘSKÉ PRÁCE 4. METODIKA A VÝSLEDKY
PŘÍPRAVA BAKALÁŘSKÉ PRÁCE 4. METODIKA A VÝSLEDKY Mgr. Markéta Pavlíková www.biostatisticka.cz VÝZKUM x BAKALÁŘKA VÝZKUM 1. Pozorování 2. Vytvoření hypotéz 3. Design studie 4. Sběr dat 5. Analýza 6. Interpretace
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně
Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, TESTY DOBRÉ SHODY (angl. goodness-of-fit tests)
Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, např. hmotnost a pohlaví narozených dětí. Běžný statistický postup pro ověření závislosti dvou veličin je zamítnutí jejich
Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
Cvičení 12: Binární logistická regrese
Cvičení 12: Binární logistická regrese Příklad: V roce 2014 konalo státní závěrečné zkoušky bakalářského studia na jisté fakultě 167 studentů. U každého studenta bylo zaznamenáno jeho pohlaví (0 žena,
Návod na vypracování semestrálního projektu
Návod na vypracování semestrálního projektu Následující dokument má charakter doporučení. Není závazný, je pouze návodem pro studenty, kteří si nejsou jisti výběrem dat, volbou metod a formou zpracování
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
Základy biostatistiky (MD710P09) ak. rok 2007/2008
1(208) Základy biostatistiky (MD710P09) ak. rok 2007/2008 Karel Zvára karel.zvara@mff.cuni.cz http://www.karlin.mff.cuni.cz/ zvara katedra pravděpodobnosti a matematické statistiky MFF UK (naposledy upraveno
Základy biostatistiky (MD710P09) ak. rok 2008/2009
1(229) Základy biostatistiky (MD710P09) ak. rok 2008/2009 Karel Zvára karel.zvara@mff.cuni.cz http://www.karlin.mff.cuni.cz/ zvara katedra pravděpodobnosti a matematické statistiky MFF UK (naposledy upraveno
1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,
KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce
PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz
PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,
Mann-Whitney U-test. Znaménkový test. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
10. Neparametrické y Mann-Whitney U- Wilcoxonův Znaménkový Shrnutí statistických ů Typ srovnání Nulová hypotéza Parametrický Neparametrický 1 skupina dat vs. etalon Střední hodnota je rovna hodnotě etalonu.
Jana Vránová, 3. lékařská fakulta UK
Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace
Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan
1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
Úvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
VYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová
VYBRANÉ DVOUVÝBĚROVÉ TESTY Martina Litschmannová Obsah přednášky Vybrané dvouvýběrové testy par. hypotéz test o shodě rozptylů (F-test), testy o shodě středních hodnot (t-test, Aspinové-Welchův test),
Pracovní adresář. Nápověda. Instalování a načtení nového balíčku. Importování datového souboru. Práce s datovým souborem
Pracovní adresář getwd() # výpis pracovního adresáře setwd("c:/moje/pracovni") # nastavení pracovního adresáře setwd("c:\\moje\\pracovni") # nastavení pracovního adresáře Nápověda?funkce # nápověda pro
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Statistické metody uţívané při ověřování platnosti hypotéz
Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy
II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal
Základy navrhování průmyslových experimentů DOE II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal! Testování statistických hypotéz kvalitativní odezva kvantitativní chí-kvadrát test homogenity,
Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika. 1 Úvodní poznámky. Verze: 13. června 2013
Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika Podrobnější rozpis okruhů otázek pro třetí část SZZ Verze: 13. června 2013 1 Úvodní poznámky 6 Smyslem SZZ by nemělo být toliko
Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně
Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný
Statgraphics v. 5.0 STATISTICKÁ INDUKCE PRO JEDNOROZMĚRNÁ DATA. Martina Litschmannová 1. Typ proměnné. Požadovaný typ analýzy
Dichotomická proměnná (0-1) Spojitá proměnná STATISTICKÁ INDUKCE PRO JEDNOROZMĚRNÁ DATA Typ proměnné Požadovaný typ analýzy Ověření variability Předpoklady Testy, resp. intervalové odhad Test o rozptylu
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Statistika. Testování hypotéz statistická indukce Neparametrické testy. Roman Biskup
Statistika Testování hypotéz statistická indukce Neparametrické testy Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika by
příklad: předvolební průzkum Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008 příklad: souvisí plánované těhotenství se vzděláním?
Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008 Karel Zvára karel.zvara@mff.cuni.cz http://www.karlin.mff.cuni.cz/ zvara (naposledy upraveno 17. prosince 2007) 1(249) závislost kvalitativních znaků
IBM SPSS Exact Tests. Přesné analýzy malých datových souborů. Nejdůležitější. IBM SPSS Statistics
IBM Software IBM SPSS Exact Tests Přesné analýzy malých datových souborů Při rozhodování o existenci vztahu mezi proměnnými v kontingenčních tabulkách a při používání neparametrických ů analytici zpravidla
PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 1
PRAVDĚPODOBNOST A STATISTIKA Neparametrické testy hypotéz čast 1 Neparametrické testy hypotéz - úvod Neparametrické testy statistických hypotéz se používají v případech, kdy neznáme rozdělení pozorované
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 3 Jak a kdy použít parametrické a
Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou
Úvod.................................................................. 11 Kapitola 1 Než začneme.................................................................. 17 1.1 Logika kvantitativního výzkumu...........................................
Přednáška X. Testování hypotéz o kvantitativních proměnných
Přednáška X. Testování hypotéz o kvantitativních proměnných Testování hypotéz o podílech Kontingenční tabulka, čtyřpolní tabulka Testy nezávislosti, Fisherůvexaktní test, McNemarůvtest Testy dobré shody
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 5 Jak analyzovat kategoriální a binární
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci
Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické
Název testu Předpoklady testu Testová statistika Nulové rozdělení. ( ) (p počet odhadovaných parametrů)
VYBRANÉ TESTY NEPARAMETRICKÝCH HYPOTÉZ TESTY DOBRÉ SHODY Název testu Předpoklady testu Testová statistika Nulové rozdělení test dobré shody Očekávané četnosti, alespoň 80% očekávaných četností >5 ( ) (p
Pokročilejší metody: výběr. Začínáme otázkami na povahu vysvětlované proměnné a končíme otázkami na povahu vysvětlujících proměnných
Výběr metody Jak vybrat správnou statistickou metodu pro moje data a pro otázku, kterou si kladu Neexistuje žádná náhražka za zkušenost nejlepší metoda, jak vědět co dělat, je použít stejnou správnou metodu
Kontingenční tabulky, korelační koeficienty
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Budeme předpokládat, že X a Y jsou kvalitativní náhodné veličiny, obor hodnot X obsahuje r hodnot (kategorií,
Porovnání dvou výběrů
Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů
PSY117/454 Statistická analýza dat v psychologii Přednáška 10
PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot
VŠB-TU OSTRAVA, FAKULTA ELEKTROTECHNIKY A INFORMATIKY, KATEDRA APLIKOVANÉ MATEMATIKY. Statistika. Vzorce a tabulky
VŠB-TU OSTRAVA, FAKULTA ELEKTROTECHNIKY A INFORMATIKY, KATEDRA APLIKOVANÉ MATEMATIKY Statistia Vzorce a tabuly Martina Litschmannová 3. března 05 Oficiální vzorce a tabuly KOMBINATORIKA Bez opaování Uspořádané
Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1
Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA 2018 4. dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1 Typy proměnných nominální (nominal) o dvou hodnotách lze říci pouze
Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy
Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy Relativní riziko a poměr šancí Princip korelace dvou náhodných veličin Korelační koeficienty Pearsonůva Spearmanův Korelace a kauzalita
Intervaly spolehlivosti
Intervaly spolehlivosti = intervalové odhady neznámého parametru (odhad pro π, µ, σ 2, ), odvozují se z příslušné CLV spolehlivost = 1 α = pravděpodobnost, že neznámá hodnota parametru je intervalem pokryta;
Fisherův exaktní test
Katedra pravděpodobnosti a matematické statistiky Karel Kozmík Fisherův exaktní test 4. prosince 2017 Motivace Máme kontingenční tabulku 2x2 a předpokládáme, že četnosti vznikly z pozorování s multinomickým
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky
Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
Jana Vránová, 3. lékařská fakulta, UK Praha
Jana Vránová, 3. lékařská fakulta, UK Praha Byla navržena v 60tých letech jako alternativa k metodě nejmenších čtverců pro případ, že vysvětlovaná proměnná je binární Byla především používaná v medicíně
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests), : veličiny X, Y jsou nezávislé nij eij
Testy dobré shody Máme dvě veličiny a předpokládáme, že jsou nezávislé (platí nulová hypotéza nezávislosti). Často chceme naopak prokázat jejich závislost. K tomu slouží: TESTY DOBRÉ SHODY (angl. goodness-of-fit
INDUKTIVNÍ STATISTIKA
10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Statistické testování hypotéz II
PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 4 Jak a kdy použít parametrické a
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 7 Jak hodnotit vztah spojitých proměnných
Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup
Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009
Jednostranné intervaly spolehlivosti
Jednostranné intervaly spolehlivosti hledáme jen jednu z obou mezí Princip: dle zadání úlohy hledáme jen dolní či jen horní mez podle oboustranného vzorce s tou změnou, že výraz 1-α/2 ve vzorci nahradíme
Kontingenční tabulky, korelační koeficienty
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu
Seminář 6 statistické testy
Seminář 6 statistické testy Část I. Volba správného testu Chceme zjistit, zda se Ježkovy a Širůčkovy seminární skupiny liší ve výsledcích v. průběžné písemce ze statistiky. Chceme zjistit, zda 1. průběžná
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Aplikovaná statistika v R - cvičení 2
Aplikovaná statistika v R - cvičení 2 Filip Děchtěrenko Matematicko-fyzikální fakulta filip.dechterenko@gmail.com 5.6.2014 Filip Děchtěrenko (MFF UK) Aplikovaná statistika v R 5.6.2014 1 / 18 Přehled Rkových
Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu)
Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Frank Wilcoxon (1892 1965): Americký statistik a chemik Nechť X 1,..., X n je náhodný výběr ze
Opakování. Neparametrické testy. Pořadí. Jednovýběrový Wilcoxonův test. t-testy: hypotézy o populačním průměru (střední hodnoty) předpoklad normality
Opakování Opakování: Testy o střední hodnotě normálního rozdělení 1 jednovýběrový t-test 2 párový t-test 3 dvouvýběrový t-test jednovýběrový Wilcoxonův test párový Wilcoxonův test dvouvýběrový Wilcoxonův
Analýza dat z dotazníkových šetření
Analýza dat z dotazníkových šetření Cvičení 6. Rozsah výběru Př. Určete minimální rozsah výběru pro proměnnou věk v souboru dovolena, jestliže 95% interval spolehlivost průměru proměnné nemá být širší
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi,
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost
Korelační a regresní analýza
Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná
12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží Zdeněk Karpíšek Jsou tři druhy lží: lži, odsouzeníhodné lži a statistiky. Statistika je logická a přesná metoda, jak nepřesně
Úvod do analýzy rozptylu
Úvod do analýzy rozptylu Párovým t-testem se podařilo prokázat, že úprava režimu stravování a fyzické aktivity ve vybrané škole měla vliv na zlepšené hodnoty HDLcholesterolu u školáků. Pro otestování jsme
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1
Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Testy o proporci a testy v multinomickém rozdělení
Testy o proporci a testy v multinomickém rozdělení 18.12.2017 Úvodní nastavení. Z internetové stránky www.karlin.mff.cuni.cz/~hudecova/education/ si můžete stáhnout zdrojový kód cviceni12.r. Otevřete si
MÍRY ZÁVISLOSTI (KORELACE A REGRESE)
zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky
Jednofaktorová analýza rozptylu
Jednofaktorová analýza rozptylu David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5 7 8 2015 Tato
Statistika, Biostatistika pro kombinované studium. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování
Test dobré shody v KONTINGENČNÍCH TABULKÁCH
Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
ADDS cviceni. Pavlina Kuranova
ADDS cviceni Pavlina Kuranova Testy pro dva nezávislé výběry Mannův Whitneyho test - Založen na Wilcoxnově statistice W - založen na pořadí jednotlivých pozorování (oba výběry spojeny do jednoho celku)
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Poznámky k předmětu Aplikovaná statistika, 11. téma
Poznámky k předmětu Aplikovaná statistika, 11. téma Testy založené na χ 2 rozdělení V přehledu významných rozdělení jsme si uvedli, že Poissonovým rozdělením se modeluje počet událostí, které nastanou
Kontingenční tabulky a testy shody
Kontingenční tabulky a testy shody 4.1.2018 Kontingenční tabulky 1. Tabulka 1 shrnuje osudy pasažérů lodě Titanic, která tragicky ztroskotala v roce 1912. Zajímá nás, zda existuje nějaká souvislost mezi
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
Cvičení ze statistiky - 5. Filip Děchtěrenko
Cvičení ze statistiky - 5 Filip Děchtěrenko Minule bylo.. Začali jsme pravděpodobnost Klasická a statistická definice pravděpodobnosti Náhodný jev Doplněk, průnik, sjednocení Podmíněná pravděpodobnost
Pravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.
Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní
Cvičení 9: Neparametrické úlohy o mediánech
Cvičení 9: Neparametrické úlohy o mediánech Úkol 1.: Párový znaménkový test a párový Wilcoxonův test Při zjišťování kvality jedné složky půdy se používají dvě metody označené A a B. Výsledky: Vzorek 1
Matematická statistika Zimní semestr Testy o proporci
Testy o proporci 18.12.2018 Jednovýběrový problém pro binární data. V roce 2008 se v České republice živě narodilo 119 570 dětí, z toho 58 244 dívek a 61 326 chlapců (zdroj ČSÚ). Zajímá nás, zda je pravděpodobnost
Předmluva S o u h rn... 89
Obsah Předmluva... 17 1 Ú v o d... 2 1 1.1 Empirický výzkum a jeho etap y... 23 1.2 Význam teorie pro v ý zk u m... 27 1.2.1 Konstrukty a jejich operacionalizace... 27 1.2.2 Role teorie ve v ý zk u m u...
Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet
Aplikovaná statistika v R - cvičení 3
Aplikovaná statistika v R - cvičení 3 Filip Děchtěrenko Matematicko-fyzikální fakulta filip.dechterenko@gmail.com 5.8.2014 Filip Děchtěrenko (MFF UK) Aplikovaná statistika v R 5.8.2014 1 / 10 Lineární
5. Závislost dvou náhodných veličin různých typů (kategoriální a metrická veličina)
5. Závislost dvou náhodných veličin různých typů (kategoriální a metrická veličina) Cílem tématu je správné posouzení a výběr vhodného testu v závislosti na povaze metrické a kategoriální veličiny. V následující