STATISTIKA 1. RNDr. K. Hrach, Ph.D. Zápočet: 75% docházka na cvičení. + odevzdání seminární práce (úkoly na PC)
|
|
- Miloš Sedláček
- před 6 lety
- Počet zobrazení:
Transkript
1 STATISTIKA 1 RNDr. K. Hrach, Ph.D. Zápočet: 75% docházka na cvičení + odevzdání seminární práce (úkoly na PC) Zkouška: písemná (bez kalkulačky, bez vzorců)
2 KONZULTACE Není hanba, že nevíš, ale že se neptáš. (Turecké přísloví)
3 STATISTIKA Činnost vedoucí k získávání dat Instituce zajišťující tuto činnost Jakákoli shromažďovaná data Údaje získané výpočtem z dat Matematická teorie o chování dat
4 STATISTIKA DESKRIPCE (popis) ANALÝZA (modely, odhady, testy)
5 Základní pojmy STATISTICKÁ JEDNOTKA = = na kom (čem) zjišťujeme STATISTICKÉ ŠETŘENÍ = = jak zjišťujeme STATISTICKÁ VELIČINA = = co zjišťujeme
6 STATISTICKÁ JEDNOTKA s.j. = např. každý(á/é) ptačí vejce (hmotnost v g?); snůška (počet vajec?); územní celek - obec; region; ; záměrně selektovaný čtverec (% zalesnění?); respondent (dotazníkové šetření)
7 STATISTICKÉ ŠETŘENÍ ÚPLNÉ informace od všech stat.jednotek (od celé populace) VÝBĚROVÉ informace od vybraných stat. jednotek (od výběru ) nevýhody versus výhody výběru? * neúplnost informace * rychlejší a levnější informace
8 VÝBĚROVÉ ŠETŘENÍ!!! NEREPREZENTATIVNOST!!!
9 VÝBĚROVÉ ŠETŘENÍ!!! REPREZENTATIVNOST!!! (zajištěna např. NÁHODNÝM výběrem)
10 VÝBĚROVÉ ŠETŘENÍ - výběr zcela náhodný systematický stratifikovaný
11 VÝBĚROVÉ ŠETŘENÍ - průběh vlastní měření s.j. je objekt anketa s.j. je subjekt (i dále): řízený rozhovor vyplnění dotazníku
12 Jak jinak získat data (např. k BP)? JIŽ HOTOVÁ (tj. sebraná), NAPŘ OD: ČSÚ (www stránky) Eurostatu (www stránky) úřadů státní (samo)správy firem (?)
13 Zpracování dat a) ručně b) pomocí SW MS Excel STATISTICA, SPSS, freeware (R-project)
14 DOTAZNÍK pro zaměstnance firmy JMÉNO DOBA ÚKOL POHLAVÍ VZDĚLÁNÍ VĚK POBOČKA POČET DĚTÍ
15 DOTAZNÍK pro zaměstnance firmy JMÉNO identifikátor DOBA veličina (značena např. X) ÚKOL veličina (značena např. Q) POHLAVÍ VZDĚLÁNÍ VĚK POBOČKA POČET DĚTÍ veličina (značena např. Y)
16 DOTAZNÍK pro zaměstnance firmy možné hodnoty : JMÉNO textový řetězec DOBA 1,2, (počet dní proškolení) ÚKOL ano / ne (splněn nový úkol?) POHLAVÍ m / z VZDĚLÁNÍ z, s, v (nejvyšší dosažené) VĚK v rocích POBOČKA a,b,c (1 ze 3 poboček firmy) POČET DĚTÍ 0,1,2,
17 DOTAZNÍK - příklad vyplnění (1. statistická jednotka) JMÉNO Frank DOBA 14 ÚKOL ne POHLAVÍ m VZDĚLÁNÍ z VĚK 30 POBOČKA a POČET DĚTÍ 1
18 DOTAZNÍK data (začátek)
19 DOTAZNÍK data (dokončení)
20 Značení dat (pozorování) Např. veličina X DOBA: 1. pozorování: x 1 =14 2. pozorování: x 2 =29 n. (poslední) pozorování: x n = x 25 = 8 n značí počet pozorování (rozsah souboru), zde n=25
21 DOTAZNÍKY - značení a data
22 TYPY VELIČIN (X, Y, ) (proměnných; znaků; angl.variable) KATEGORIÁLNÍ alternativní (2 možnosti: 0-1) např. POHL (m/z), UKOL (splněn: ano/ne) slovní neuspořádané (nominální) např. POBOCKA (a, b, c) slovní uspořádané (ordinální) např. VZDEL (z < s < v) číselné (diskrétní) např. DETI (počet dětí)
23 TYPY VELIČIN (X, Y, ) (proměnných; znaků) NEKATEGORIÁLNÍ číselné (spojité) např. DOBA (počet dní výcviku), VĚK (v rocích), HMOTNOST (kg), PLAT (tis.kč) v příkladech je údaj vlastně zaokrouhlen, záleží na zvolené přesnosti; lze převést na kategoriální typ (jak, jaký?)
24 DOTAZNÍKY příklad zpracování (Y)
25 DOTAZNÍKY příklad zpracování (Y) POZOR NA PODOBNÉ ZNAČENÍ: a) pro jednotlivá pozorování veličiny Y bylo y 1 =1, y 2 =3,, y 25 =0 (n =25) b) pro kategorie veličiny Y bylo y 1 =0, y 2 =1,, y 6 =5 (K=6) V praxi je rozdíl v použití jasný z kontextu.
26 ČETNOSTI ABSOLUTNÍ n i počet výskytů i-té kategorie, i=1 K Σ n i = n RELATIVNÍ p i rel. výskyt i-té kategorie, i=1 K p i = n i /n Σ p i =1 p i = (n i /n) 100% Σ p i =100 (%) Oba typy lze určit u každé kategoriální veličiny (K=počet kategorií).
27 ČETNOSTI Příklad 1. Y - známky žáka. Popořadě: 3, 4, 2, 3, 2, 3, 3, 3. Tabulka četností: i suma y i xxx n i p i 0,250 0,625 0,125 1,000
28 ČETNOSTI KUMULOVANÉ ABSOLUTNÍ n i* počet výskytů do i-té kategorie včetně, n i* = n 1 + +n i KUMULOVANÉ RELATIVNÍ p i* rel. výskyt do i-té kategorie včetně, p i* = p 1 + +p i p i* = n i* /n Oba typy mají smysl jen u veličin ordinálních či diskrétních.
29 ČETNOSTI Příklad 1 - pokračování. i suma y i xxx n i p i 0,250 0,625 0,125 1,000 n * i xxx p * i 0,250 0,875 1,000 xxx
30 ČETNOSTI MODUS (skloňujeme: bez modu,,s modem) Je (jsou) kategorie s největší četností (samozřejmě nikoli kumulovanou). Značen ŷ (se stříškou). Lze určit u každé kategoriální veličiny. Příklad 1 pokračování: ŷ=3 (druhá kategorie se vyskytla nejčastěji, a to pětkrát; nejčastější známkou byla trojka)
STATISTIKA 1. RNDr. K. Hrach, Ph.D. Zápočet: odevzdání seminární práce (úkoly na PC) Zkouška: písemná (bez kalkulačky, bez vzorců)
STATISTIKA 1 RNDr. K. Hrach, Ph.D. Zápočet: odevzdání seminární práce (úkoly na PC) Zkouška: písemná (bez kalkulačky, bez vzorců) STATISTIKA Činnost vedoucí k získávání dat Instituce zajišťující tuto činnost
Statistická šetření - PROČ? Žádná věda není skutečnou vědou, není-li podložena matematickými principy. (L.da Vinci)
Statistická šetření - PROČ? Žádná věda není skutečnou vědou, není-li podložena matematickými principy. (L.da Vinci) Statistická šetření - na kom / čem? statistické jednotky (S.J.) 1 respondent (pacient,
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická
Statistika I (KMI/PSTAT)
Statistika I (KMI/PSTAT) Cvičení první aneb Sumační symbolika, úvod do popisné statistiky Statistika I (KMI/PSTAT) 1 / 15 Obsah hodiny Po dnešní hodině byste měli být schopni: správně používat sumační
Charakteristiky kategoriálních veličin. Absolutní četnosti (FREQUENCY)
Charakteristiky kategoriálních veličin Absolutní četnosti (FREQUENCY) Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky
Sázíte-li v loterii, je to hazard. Hrajete-li poker, je to zábava. Obchodujete-li na burze, je to ekonomie. Vidíte ten rozdíl?
1.1 Základní statistické pojmy a metody Sázíte-li v loterii, je to hazard. Hrajete-li poker, je to zábava. Obchodujete-li na burze, je to ekonomie. Vidíte ten rozdíl? 1 Co se dozvíte Co je to statistika
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi,
MĚŘENÍ, TYPY VELIČIN a TYPY ŠKÁL
MĚŘENÍ, TYPY VELIČIN a TYPY ŠKÁL Matematika a stejně i matematická statistika a biometrie s námi hovoří řečí čísel. Musíme tedy vlastnosti nebo intenzitu vlastností jedinců změřit kvantifikovat. Měřením
Pojem a úkoly statistiky
Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby
Škály podle informace v datech:
Škály podle informace v datech: Různé typy dat znamenají různou informaci, resp. různé množství informace Data nominální Rovná se? x 1 = x 2 Data ordinální Větší, menší? x 1 < x 2 Data intervalová O kolik?
Statistika. Základní pojmy a cíle statistiky. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .
Statistika Základní pojmy a cíle statistiky Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Statistika Pojmy a cíle
Klinický výzkum odpovědi
Klinický výzkum odpovědi Statistická šetření - PROČ? Žádná věda není skutečnou vědou, není-li podložena matematickými principy. (L.da Vinci) Statistická šetření - na kom / čem? statistické jednotky (S.J.)
1. cvičení 4ST201. Základní informace: Vyučující: Obsah: Informace o kurzu Popisná statistika Úvod do SASu
cvičící 1. cvičení 4ST201 Informace o kurzu Popisná statistika Úvod do SASu Obsah: Vysoká škola ekonomická 1 Vyučující: Základní informace:» Konzultační hodiny: pátek 9:00 11:00» Místnost: JM317» Email:
Analýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
Jednostranné intervaly spolehlivosti
Jednostranné intervaly spolehlivosti hledáme jen jednu z obou mezí Princip: dle zadání úlohy hledáme jen dolní či jen horní mez podle oboustranného vzorce s tou změnou, že výraz 1-α/2 ve vzorci nahradíme
Statistika. pro žáky 8. ročníku. úterý, 26. března 13
Statistika pro žáky 8. ročníku Co je to statistika? Statistika je věda, která se snaží zkoumat reálná data a přibližuje nám zkoumaný jev a zákonitosti s ním spojené. Co nám statistika přináší? Co nám statistika
Analýza dat z dotazníkových šetření. Zdrojová data: dotazník http://www.vyplnto.cz/realizovane-pruzkumy/konzumace-ryb-a-rybich-vyrob/
Analýza dat z dotazníkových šetření Cvičení 3. - Jednorozměrné třídění Zdrojová data: dotazník http://www.vyplnto.cz/realizovane-pruzkumy/konzumace-ryb-a-rybich-vyrob/ - Seznamte se s dotazníkem a strukturou
Statistika. Zpracování informací ze statistického šetření. Roman Biskup
Statistika Zpracování informací ze statistického šetření Třídění statistického souboru Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 20. února 2012
Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1
Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA 2018 4. dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1 Typy proměnných nominální (nominal) o dvou hodnotách lze říci pouze
Název testu Předpoklady testu Testová statistika Nulové rozdělení. ( ) (p počet odhadovaných parametrů)
VYBRANÉ TESTY NEPARAMETRICKÝCH HYPOTÉZ TESTY DOBRÉ SHODY Název testu Předpoklady testu Testová statistika Nulové rozdělení test dobré shody Očekávané četnosti, alespoň 80% očekávaných četností >5 ( ) (p
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní
5EN306 Aplikované kvantitativní metody I
5EN306 Aplikované kvantitativní metody I Přednáška 3 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam
Třídění statistických dat
2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.
METODOLOGIE I - METODOLOGIE KVANTITATIVNÍHO VÝZKUMU
METODOLOGIE I - METODOLOGIE KVANTITATIVNÍHO VÝZKUMU vyučující doc. RNDr. Jiří Zháněl, Dr. M I 4 Metodologie I 7. ANALÝZA DAT (KVANTITATIVNÍ VÝZKUM) (MATEMATICKÁ) STATISTIKA DESKRIPTIVNÍ (popisná) ANALYTICKÁ
STATISTIKA 1. Adam Čabla Katedra statistiky a pravděpodobnosti VŠE
STATISTIKA 1 Adam Čabla Katedra statistiky a pravděpodobnosti VŠE KONTAKTY WWW: sites.google.com/site/adamcabla E-mail: adam.cabla@vse.cz Telefon: 777 701 783 NB367 na VŠE, konzultační hodiny: Pondělí
Statistika I (KMI/PSTAT)
Statistika I (KMI/PSTAT) Cvičení druhé aneb Kvantily, distribuční funkce Statistika I (KMI/PSTAT) 1 / 1 Co se dnes naučíme Po absolvování této hodiny byste měli být schopni: rozumět pojmu modus (modální
Základy popisné statistiky. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
Základy popisné statistiky Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi, výhodami, nevýhodami a vlastní sadou využitelných statistických metod -od binárních
Základy popisné statistiky
Základy popisné statistiky Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 26 Obsah 1 Základy statistického zpracování dat 2
Mnohorozměrná statistická data
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistický znak, statistický soubor Jednotlivé objekty nebo subjekty, které jsou při statistickém
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení ze 4ST201. Na případné faktické chyby v této prezentaci mě prosím upozorněte. Děkuji Tyto slidy berte pouze jako doplňkový materiál není v nich obsaženo
Úvodní statistické pojmy
Úvodní statistické pojmy STATISTIKA Statistika vznikla z úředních zjišťování (počtu lidí a jejich majetku), univerzitní státovědy, politické aritmetiky (zkoumání společenských jevů na podkladě objektivních
Popisná statistika. Statistika pro sociology
Popisná statistika Jitka Kühnová Statistika pro sociology 24. září 2014 Jitka Kühnová (GSTAT) Popisná statistika 24. září 2014 1 / 31 Outline 1 Základní pojmy 2 Typy statistických dat 3 Výběrové charakteristiky
7. SEMINÁŘ DESKRIPTIVNÍ STATISTIKA
7. SEMINÁŘ DESKRIPTIVNÍ STATISTIKA Oblasti využití statistiky v medicíně Zvládání variability Variabilita: biologická, podmínek, měřících přístrojů - hodnocení variability, variabilita náhodná x nenáhodná
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
Návod na vypracování semestrálního projektu
Návod na vypracování semestrálního projektu Následující dokument má charakter doporučení. Není závazný, je pouze návodem pro studenty, kteří si nejsou jisti výběrem dat, volbou metod a formou zpracování
Základy pravděpodobnosti a statistiky. Popisná statistika
Základy pravděpodobnosti a statistiky Popisná statistika Josef Tvrdík Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace v úterý 14.10 až 15.40 hod. Příklad ze života Cimrman, Smoljak/Svěrák,
SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY
SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim
Statistika s Excelem aneb Máme data. A co dál? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava
Statistika s Excelem aneb Máme data. A co dál? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava ŠKOMAM 2016 Jak získat data? Primární zdroje dat Vlastní měření (fyzika, biologie,
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně
STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7
Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru
Základy biostatistiky
Základy biostatistiky Veřejné zdravotnictví 3.LF UK Viktor Hynčica Úvod se statistikou se setkáváme denně ankety proč se statistika začala používat ve zdravotnictví skupinový přístup k léčení celé populace
Chyby měření 210DPSM
Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů
veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.
Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího
Spokojenost se životem
SEMINÁRNÍ PRÁCE Spokojenost se životem (sekundárních analýza dat sociologického výzkumu Naše společnost 2007 ) Předmět: Analýza kvantitativních revize Šafr dat I. Jiří (18/2/2012) Vypracoval: ANONYMIZOVÁNO
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech
STATISTIKA S EXCELEM. Martina Litschmannová MODAM,
STATISTIKA S EXCELEM Martina Litschmannová MODAM, 8. 4. 216 Obsah Motivace aneb Máme data a co dál? Základní terminologie Analýza kvalitativního znaku rozdělení četnosti, vizualizace Analýza kvantitativního
Popisná statistika kvantitativní veličiny
StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali
2.5 STATISTISKÉ ZJIŠŤOVÁNÍ, ZÁKLADNÍ STATISTICKÉ POJMY
Základní statistické pojmy Aleš Drobník strana 1 2.5 STATISTISKÉ ZJIŠŤOVÁNÍ, ZÁKLADNÍ STATISTICKÉ POJMY Organizace (zpravodajská jednotka) provádějí různé druhy statistického zjišťování z důvodu: vlastní
Technická univerzita v Liberci
Technická univerzita v Liberci Ekonomická fakulta Analýza výsledků z dotazníkového šetření Jména studentů: Adam Pavlíček Michal Karlas Tomáš Vávra Anna Votavová Ročník: 2015/2016 Datum odevzdání: 13/05/2016
ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz PŘEHLED TESTŮ rozdělení normální spojité alternativní / diskrétní
PROHLOUBENÍ NABÍDKY DALŠÍHO VZDĚLÁVÁNÍ NA VŠPJ A SVOŠS V JIHLAVĚ
Projekt č. CZ.1.07/3.2.09/03.0015 PROHLOUBENÍ NABÍDKY DALŠÍHO VZDĚLÁVÁNÍ NA VŠPJ A SVOŠS V JIHLAVĚ http://www.vspj.cz/skola/evropske/opvk Tento projekt je spolufinancován Evropským sociálním fondem a státním
marek.pomp@vsb.cz http://homel.vsb.cz/~pom68
Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové
Měření závislosti statistických dat
5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě
Příklady klinických pokusů
Příklady klinických pokusů kontrolovaný pokus pacienti rozděleni do dvou (či více) skupin experimentální (i více) versus jedna kontrolní slepý pokus = kontrolovaný pokus, v němž pacient nezná své zařazení
Statistika. cílem je zjednodušit nějaká data tak, abychom se v nich lépe vyznali důsledkem je ztráta informací!
Statistika aneb známe tři druhy lži: úmyslná neúmyslná statistika Statistika je metoda, jak vyjádřit nejistá data s přesností na setinu procenta. den..00..00 3..00..00..00..00..00..00..00..00..00..00 3..00..00..00..00..00..00..00
Praktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
Role statistiky ve výzkumu
Statistika - úvod vymezení statistiky úloha statistiky v psychologickém výzkumu základní pojmy - měření, proměnné; popisná a induktivní statistika; populace a vzorek příprava dat před analýzou Definice
3) Adekvátní metodika
3) Adekvátní metodika NEPLÉST ZÁMĚR ANEB HLAVNÍ CÍL(E) S POJMEM : dílčí cíle = úkoly = konkr. kroky stanovené tak, aby byl splněn hlavní cíl (viz později) Př: Teoretická část bakalářské práce se zabývá
Organizační pokyny k přednášce. Matematická statistika. Přehled témat. Co je statistika?
Organizační pokyny k přednášce Matematická statistika 2012 2013 Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta UK hudecova@karlin.mff.cuni.cz http://www.karlin.mff.cuni.cz/
Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení?
Otázky k měření centrální tendence 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? 2. Určete průměr, medián a modus u prvních čtyř rozložení (sad dat): a.
Nejčastější chyby v explorační analýze
Nejčastější chyby v explorační analýze Obecně doporučuju přečíst přednášku 5: Výběrová šetření, Exploratorní analýza http://homel.vsb.cz/~lit40/sta1/materialy/io.pptx Použití nesprávných charakteristik
Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 27. listopadu 2017 Typy statistických znaků (proměnných) Typy proměnných: Kvalitativní proměnná (kategoriální, slovní,... ) Kvantitativní proměnná (numerická,
3) Adekvátní metodika
3) Adekvátní metodika NEPLÉST ZÁMĚR ANEB HLAVNÍ CÍL(E) S POJMEM : dílčí cíle = úkoly = konkr. kroky stanovené tak, aby byl splněn hlavní cíl (viz později) Př: Teoretická část bakalářské práce se zabývá
Obecné momenty prosté tvary
Obecné momenty prosté tvary První obecný moment: (Σy i )/n, i=1 n aritmetický průměr, těžiště dat y Druhý obecný moment: (Σy i2 )/n, i=1 n y 2 Obecné momenty prosté tvary Příklad 1 pokračování: y = (3+4+2+3+2+3+3+3)/8
Základy statistiky. pracovní list. Základní škola Zaječí, okres Břeclav Školní 402, , příspěvková organizace
Základy statistiky pracovní list Název školy: Číslo projektu: Autor: Základní škola Zaječí, okres Břeclav Školní 402, 691 05, příspěvková organizace CZ.1.07/1.4.00/21.1131 Mgr. Lenka Němetzová Datum vytvoření:
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
MÍRY ZÁVISLOSTI (KORELACE A REGRESE)
zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky
Analýza dat z dotazníkových šetření
Analýza dat z dotazníkových šetření Cvičení 6. Rozsah výběru Př. Určete minimální rozsah výběru pro proměnnou věk v souboru dovolena, jestliže 95% interval spolehlivost průměru proměnné nemá být širší
Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy
Závěrečná zpráva z výzkumu
Zhodnocení kampaně Březen měsíc Internetu Závěrečná zpráva z výzkumu v rámci akce: Březen - měsíc Internetu připravil: Heřmanova 22, 17 PRAHA 7 Tel.: 2 19 58, Fax: 2 19 59 E-Mail: INBOX@MARKENT.CZ Duben
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
Tabulka 1. Výběr z datové tabulky
1. Zadání domácího úkolu Vyberte si datový soubor obsahující alespoň jednu kvalitativní a jednu kvantitativní proměnnou s alespoň 30 statistickými jednotkami (alespoň 30 jednotlivých údajů). Zdroje dat
Pro zvládnutí této kapitoly budete potřebovat 4-5 hodin studia.
Úvod (Proč se zabývat statistikou?) Statistika je metoda analýzy dat, která nachází široké uplatnění v celé řadě ekonomických, technických, přírodovědných a humanitních disciplín. Její význam v poslední
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÉHO ŠETŘENÍ ANALÝZA VÝSLEDKŮ VYUŢITÍ PROJEKTOVÉHO ŘÍZENÍ V ESN Příjmení a jméno: Hrdá Sabina, Kovalčíková
PRAVDĚPODOBNOST A STATISTIKA 1
Metodický list č 1. Název tématického celku: Vymezení role Pravděpodobnosti a Matematické Statistiky v širším celku čisté a aplikované matematiky. Základním cílem tohoto tématického celku je základní pojmy
Ing. Michael Rost, Ph.D.
Statistika úvodní přednáška Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Cíle základního kurzu: seznámit posluchače se základy počtu pravděpodobnosti, seznámit posluchače s aspekty
TECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření školní zadání Skupina: 51 Vypracovaly: Pavlína Horná, Nikola Loumová, Petra Mikešová,
STATISTICKÝ SOUBOR. je množina sledovaných objektů - statistických jednotek, které mají z hlediska statistického zkoumání společné vlastnosti
ZÁKLADNÍ STATISTICKÉ POJMY HROMADNÝ JEV Statistika pracuje s tzv. HROMADNÝMI JEVY cílem statistického zpracování dat je podání informace o vlastnostech a zákonitostech hromadných jevů: velkého počtu jedinců
Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava
Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava Co je to statistika? teoretická disciplína, která se zabývá metodami sběru a analýzy dat Jak získat data?
Výsledky z průzkumu Agresivní chování vůči učitelům
Výsledky z průzkumu Agresivní chování vůči učitelům Anotace Centrum sociálních služeb Praha, oddělení Pražské centrum primární prevence společně s Oddělením prevence MHMP realizovalo anonymní dotazníkové
Matematika III. 29. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 29. října 2018 Statistika Statistika Statistika je jako bikini. Co odhaluje, je zajímavé, co skrývá, je podstatné. Aaron Levenstein Statistika Statistika
Renáta Bednárová STATISTIKA PRO EKONOMY
Renáta Bednárová STATISTIKA PRO EKONOMY ZÁKLADNÍ STATISTICKÉ POJMY Statistika Statistický soubor Statistická jednotky Statistický znak STATISTIKA Vědní obor, který se zabývá hromadnými jevy Hromadné jevy
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní
5EN306 Aplikované kvantitativní metody I
5EN306 Aplikované kvantitativní metody I Přednáška 3 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam
Statistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability
I Přednáška Statistika Diskrétní data Spojitá data Charakteristiky polohy Charakteristiky variability Statistika deskriptivní statistika ˆ induktivní statistika populace (základní soubor) ˆ výběr parametry
Proces marketingového výzkumu - jednotlivé fáze, význam, stručná charakteristika. Výběr a formulace výzkumného problému. Vztahy mezi proměnnými.
Proces marketingového výzkumu - jednotlivé fáze, význam, stručná charakteristika. Výběr a formulace výzkumného problému. Projekt. Jednotky analýzy. Proměnné. Vztahy mezi proměnnými. Téma č. 2 Cíle marketingového
Regresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
VYHODNOCOVÁNÍ KVANTITATIVNÍCH DAT (ÚVOD DO PROBLEMATIKY) Metodologie pro ISK
VYHODNOCOVÁNÍ KVANTITATIVNÍCH DAT (ÚVOD DO PROBLEMATIKY) Metodologie pro ISK 14. 11. 2014 NENÍ STATISTIKA JAKO STATISTIKA Deskriptivní statistika Výzkumné otázky, ne hypotézy (případně deskriptivní hypotézy)
správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B.
Zkouška z předmětu KMA/PST. Anotace předmětu Náhodné jevy, pravděpodobnost, podmíněná pravděpodobnost. Nezávislé náhodné jevy. Náhodná veličina, distribuční funkce. Diskrétní a absolutně spojitá náhodná
Číselné charakteristiky
. Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch
Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.
Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní
Základy štatistiky. Charakteristiky štatistického znaku
Základy štatistiky Základy štatistiky Úvod Základné pojmy Popisná štatistika Triedenie Tabuľky rozdelenia početností Grafické znázornenie Charakteristiky štatistického znaku charakteristiky polohy (priemer,
Excel mini úvod do kontingenčních tabulek
UK FHS Řízení a supervize v sociálních a zdravotnických organizacích (ZS 2005+) Kvantitativní metody výzkumu v praxi Excel mini úvod do kontingenčních tabulek (nepovinnáčást pro KMVP) Jiří Šafr jiri.safratseznam.cz
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor017 Vypracoval(a),
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T. G. Masaryka, Kostelec nad Orlicí
Charakteristiky úrovně Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T. G. Masaryka, Kostelec nad Orlicí Charakteristiky úrovně (polohy) Statistické soubory jsou tvořeny
Mnohorozměrná statistická data
Mnohorozměrná statistická data Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Mnohorozměrná