Pojem a úkoly statistiky
|
|
- Štefan Holub
- před 2 lety
- Počet zobrazení:
Transkript
1 Katedra ekonometrie FVL UO Brno kancelář 69a, tel
2 Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby rozhodování. Zkoumá stav a vývoj hromadných jevů a vztahů mezi nimi prostřednictvím hromadných pozorování.
3 Pojem a úkoly statistiky Hromadná pozorování jsou měření a zjišťování, kdy jev se může mnohokrát opakovat opakované pokusy jev pozorujeme na vybraném počtu objektů (jednotek) výběry
4 Pojem a úkoly statistiky Hromadná pozorování jsou měření a zjišťování, kdy jev se může mnohokrát opakovat opakované pokusy jev pozorujeme na vybraném počtu objektů (jednotek) výběry
5 Pojem a úkoly statistiky Etapy statistické práce statistické měření a zjišťování zpracování statistických údajů interpretace získaných výsledků
6 Pojem a úkoly statistiky Etapy statistické práce statistické měření a zjišťování zpracování statistických údajů interpretace získaných výsledků
7 Pojem a úkoly statistiky Etapy statistické práce statistické měření a zjišťování zpracování statistických údajů interpretace získaných výsledků
8 Pojem a úkoly statistiky Praktické užití statistiky se opírá o její 2 roviny: popisnou statistiku uspořádání naměřených dat a výpočet základních číselných charakteristik, zobrazení dat induktivní statistiku souhrn metod sloužících k odhadům a induktivním úvahám s využitím pravděpodobnosti
9 Pojem a úkoly statistiky Praktické užití statistiky se opírá o její 2 roviny: popisnou statistiku uspořádání naměřených dat a výpočet základních číselných charakteristik, zobrazení dat induktivní statistiku souhrn metod sloužících k odhadům a induktivním úvahám s využitím pravděpodobnosti
10 Definice Statistický soubor je množina zkoumaných objektů, které mají z daného hlediska společné vlastnosti (osoby, věci, rostliny, vzorky, události, podniky, rodiny,...) Statistická jednotka je prvek statistického souboru
11 Definice Základní soubor je soubor, který je předmětem našeho zájmu, je předmětem statistického šetření a o jehož vlastnostech se mají dělat závěry (někdy se označuje jako populace). reálný všechny jednotky reálně existují (studenti VŠ, Felicie vyrobené v roce 1999, denní produkce rohlíků u pekaře,... konečný) hypotetický obecně je definován, ale reálně existuje jenom určitá jeho část (pokračující výroba, přicházející zákazníci obchodního domu, laboratorní a fyzikální měření,... nekonečný)
12 Definice Základní soubor je soubor, který je předmětem našeho zájmu, je předmětem statistického šetření a o jehož vlastnostech se mají dělat závěry (někdy se označuje jako populace). reálný všechny jednotky reálně existují (studenti VŠ, Felicie vyrobené v roce 1999, denní produkce rohlíků u pekaře,... konečný) hypotetický obecně je definován, ale reálně existuje jenom určitá jeho část (pokračující výroba, přicházející zákazníci obchodního domu, laboratorní a fyzikální měření,... nekonečný)
13 Definice Základní soubor je soubor, který je předmětem našeho zájmu, je předmětem statistického šetření a o jehož vlastnostech se mají dělat závěry (někdy se označuje jako populace). reálný všechny jednotky reálně existují (studenti VŠ, Felicie vyrobené v roce 1999, denní produkce rohlíků u pekaře,... konečný) hypotetický obecně je definován, ale reálně existuje jenom určitá jeho část (pokračující výroba, přicházející zákazníci obchodního domu, laboratorní a fyzikální měření,... nekonečný)
14 Definice Výběrový soubor je podmnožina základního souboru vytvořená na základě tzv. výběrového (reprezentativního) šetření. záměrný výběr výběr na základě známých vlastností základního souboru: jednotky vybíráme tak, aby výběrový soubor byl dobrým reprezentantem základního souboru náhodný výběr výběr na základě předem určené pravděpodobnosti zahrnutí jednotek do výběrového souboru, tedy vlastní výběr záleží na náhodě
15 Definice Výběrový soubor je podmnožina základního souboru vytvořená na základě tzv. výběrového (reprezentativního) šetření. záměrný výběr výběr na základě známých vlastností základního souboru: jednotky vybíráme tak, aby výběrový soubor byl dobrým reprezentantem základního souboru náhodný výběr výběr na základě předem určené pravděpodobnosti zahrnutí jednotek do výběrového souboru, tedy vlastní výběr záleží na náhodě
16 Definice Výběrový soubor je podmnožina základního souboru vytvořená na základě tzv. výběrového (reprezentativního) šetření. záměrný výběr výběr na základě známých vlastností základního souboru: jednotky vybíráme tak, aby výběrový soubor byl dobrým reprezentantem základního souboru náhodný výběr výběr na základě předem určené pravděpodobnosti zahrnutí jednotek do výběrového souboru, tedy vlastní výběr záleží na náhodě
17 Definice Rozsah výběrového souboru je počet jednotek tvořících výběrový soubor, značíme jej n. Statistický znak je vlastnost jednotek, která je předmětem našeho zájmu nebo na základě které byl vytvořen (definován) základní soubor (hmotnost rohlíku, rychlost auta, počet zákazníků,..., znalost cizího jazyka, pohlaví, známka u zkoušky ze statistiky,... ) Hodnota znaku je výsledek 1 zjištění - měření na 1 jednotce. Zjištěné (naměřené) hodnoty představují tzv. data: x 1, x 2,..., x n
18 Definice Rozsah výběrového souboru je počet jednotek tvořících výběrový soubor, značíme jej n. Statistický znak je vlastnost jednotek, která je předmětem našeho zájmu nebo na základě které byl vytvořen (definován) základní soubor (hmotnost rohlíku, rychlost auta, počet zákazníků,..., znalost cizího jazyka, pohlaví, známka u zkoušky ze statistiky,... ) Hodnota znaku je výsledek 1 zjištění - měření na 1 jednotce. Zjištěné (naměřené) hodnoty představují tzv. data: x 1, x 2,..., x n
19 Definice Rozsah výběrového souboru je počet jednotek tvořících výběrový soubor, značíme jej n. Statistický znak je vlastnost jednotek, která je předmětem našeho zájmu nebo na základě které byl vytvořen (definován) základní soubor (hmotnost rohlíku, rychlost auta, počet zákazníků,..., znalost cizího jazyka, pohlaví, známka u zkoušky ze statistiky,... ) Hodnota znaku je výsledek 1 zjištění - měření na 1 jednotce. Zjištěné (naměřené) hodnoty představují tzv. data: x 1, x 2,..., x n
20 Klasifikace statistických znaků
21 Klasifikace statistických znaků
22 Klasifikace statistických znaků
23 Vyjadřovací prostředky statistiky tabulky (tabulky rozdělení četností, kontingenční tabulky,... ) grafy (polygon četností, histogram, krabicový diagram,... )
24 Vyjadřovací prostředky statistiky tabulky (tabulky rozdělení četností, kontingenční tabulky,... ) grafy (polygon četností, histogram, krabicový diagram,... )
25 Vyjadřovací prostředky statistiky x i n i N i p i F i ,06 0, ,1 0, ,22 0, ,32 0, ,16 0, ,08 0, ,06 1 Σ 50 x 1 x Tabulka: Tabulka bodového rozdělení četností výška 15-ti měsíčních dětí
26 Vyjadřovací prostředky statistiky x j n j p j N j F j (1,00; 1,10 1,05 7 0, ,117 (1,10; 1,20 1,15 8 0, ,250 (1,20; 1,30 1, , ,433 (1,30; 1,40 1, , ,667 (1,40; 1,50 1,45 9 0, ,817 (1,50; 1,60 1,55 9 0, ,967 (1,60; 1,70 1,65 2 0, ,000 Σ x 60 1 x x Tabulka: Tabulka intervalového rozdělení četností množství prachových částic v µg/m 3
27 Kategoriální data Redakce studentského časopisu se rozhodla udělal průzkum týkající se plánovaných změn v řádu pro ubytování na kolejích. Náhodně bylo osloveno 280 studentů. Každý student vyjádřil svůj názor pomocí tří nabízených odpovědí: souhlasím, nesouhlasím, nevím. Byly získány tyto výsledky: 152 souhlasí, 51 nesouhlasí, 77 neví. Odpovědi Absolutní četnost n i Relativní četnost p i 152. Souhlasím = 0, Nesouhlasím = 0,182 Nevím = 0,275 Celkem 280 1
28 Kategoriální data Tato data je možné graficky zobrazit pomocí tzv. koláčového grafu. Obrázek: Koláčový graf
29 Studenti posledního ročníku byli požádáni, aby vybrali jednu ze svých každodenních činností, kterou by rádi omezili. Na základě jejich odpovědí byla sestavena následující tabulka. Činnost Absolutní četnost Sledování televize 58 Čtení denního tisku 21 Telefonování 14 Řízení auta 7 Nakupování 3 Jiné 12 Tabulka: Odpovědi studentů
30 Data je možné znázornit pomocí sloupcového diagramu. Sloupce v grafu znázorňují absolutní četnosti jednotlivých činností. Obrázek: Sloupcový diagram
31 Neroztříděná data představuje první práci s naměřenými daty, která směřuje k tomu poznat nejdůležitější vlastnosti sledovaného znaku prostřednictvím jednoduchých tabulek, grafů a numerických výpočtů. ruční provádí se na základě vzorců, zpravidla s využitím kalkulačky se statistickým režimem (SD-1, SD-2, STAT, REG,... ) počítačové provádí se s využitím dostupného softwaru, např. Statistica, Unistat, Statgraphics, QCExpert/Adstat, Matlab, jednoduché procedury obsahuje také Excel
32 Neroztříděná data představuje první práci s naměřenými daty, která směřuje k tomu poznat nejdůležitější vlastnosti sledovaného znaku prostřednictvím jednoduchých tabulek, grafů a numerických výpočtů. ruční provádí se na základě vzorců, zpravidla s využitím kalkulačky se statistickým režimem (SD-1, SD-2, STAT, REG,... ) počítačové provádí se s využitím dostupného softwaru, např. Statistica, Unistat, Statgraphics, QCExpert/Adstat, Matlab, jednoduché procedury obsahuje také Excel
33 Neroztříděná data představuje první práci s naměřenými daty, která směřuje k tomu poznat nejdůležitější vlastnosti sledovaného znaku prostřednictvím jednoduchých tabulek, grafů a numerických výpočtů. ruční provádí se na základě vzorců, zpravidla s využitím kalkulačky se statistickým režimem (SD-1, SD-2, STAT, REG,... ) počítačové provádí se s využitím dostupného softwaru, např. Statistica, Unistat, Statgraphics, QCExpert/Adstat, Matlab, jednoduché procedury obsahuje také Excel
34 Neroztříděná data Podle počtu a zejména charakteru měřených dat použijeme jednu ze 3 možností zpracování neroztříděná data bodové rozdělení četností intervalové rozdělení četností
35 Neroztříděná data Neroztříděná data Neroztříděná data malý rozsah souboru (n < 30) uspořádání dat podle velikosti: x (1) x (2) x (n) grafické zobrazení dat diagram rozptýlení výpočet charakteristik
36 Neroztříděná data Neroztříděná data Na 15 vzorcích mléka byl naměřen obsah tuku s těmito výsledky (v g/l): 14,85 14,68 15,27 14,77 14,83 14,95 15,08 15,02 15,07 14,98 15,15 15,49 14,83 14,95 14,78 Obrázek: Diagram rozptýlení
37 Neroztříděná data vhodné pro velký rozsah souboru, nespojitý znak a malý počet obměn (do 20) tabulkové vyjádření rozdělení četností (n i, p i, N i, F i, i = 1, 2,..., k, k je počet obměn) grafické zobrazení rozdělení četností (polygon četností, součtová křivka) výpočet charakteristik
38 Neroztříděná data Mějme uspořádaný datový soubor o rozsahu n prvků. Absolutní četnost n j představuje počet výskytů varianty x j v souboru. Pro absolutní četnosti platí k j=1 n j = n, kde k je počet variant. Relativní četnost p j je dána vztahem p j = n j n a představuje podíl výskytů varianty x j v souboru. Pro relativní četnosti platí k j=1 p j = 1.
39 Neroztříděná data Absolutní kumulativní četnost N j je dána vztahem N j = n n j a udává součet četností všech pozorování, která nepřekračují hodnotu x j. Relativní kumulativní četnost F j je určena vztahem F j = N j n = p p j a udává podíl četností všech pozorování, která nepřekračují hodnotu x j.
40 Neroztříděná data V rámci antropometrického průzkumu bylo podle metodiky lékařské komory provedeno měření tělesné výšky u 15měsíčních dětí. U 50 vybraných chlapců byly naměřeny tyto hodnoty (v cm): Sestavte tabulku rozdělení četností a graficky jej znázorněte.
41 Neroztříděná data Hodnota znaku Abs. četnost Rel. četnost Abs. kum. Rel. kum. x j n j p j četnost N j četnost F j ,06 3 0, ,10 8 0, , , , , , , , , , ,00 Σ 50 1,00 Tabulka: Tabulka bodového rozdělení četností výšky 15měsíčních chlapců
42 Neroztříděná data Obrázek: Polygon četností a součtová křivka
43 Neroztříděná data Rozdělení četností je také možné znázornit pomocí empirické distribuční funkce, kterou můžeme definovat následovně F n (x) = N(x i x), n kde výraz ve čitateli značí počet prvků náhodného výběru, jejichž hodnota je menší nebo rovna x. Tato funkce udává pro hodnotu znaku x součet četností všech pozorování, která mají hodnotu x i menší nebo rovnu x, dělený celkovým rozsahem souboru n. Je to neklesající funkce s hodnotami mezi 0 a 1. Všimněte si souvislosti mezi touto funkcí a relativní kumulativní četností a součtovou křivkou.
44 Neroztříděná data Obrázek: Krabicový graf a a empirická distribuční funkce
45 Neroztříděná data vhodné pro velký rozsah souboru, spojitý znak nebo nespojitý znak s velký počtem obměn konstrukce intervalů (počet, šířka a počátek intervalů) tabulkové vyjádření rozdělení četností histogram a součtový histogram výpočet charakteristik
46 Neroztříděná data Konstrukce intervalů (tříd) zjistíme n, x min, x max a určíme variační rozpětí R = x max x min stanovení počtu tříd k provedeme podle povahy a struktury dat s využitím pravidel: Sturgesovo pravidlo k 1 + 3,32 log n Yuleovo pravidlo k 2,5 4 n jiná pravidla k n, k 5 log n stanovení šířky tříd h R/k nebo h 0,08 R až 0,12 R
47 Neroztříděná data Konstrukce intervalů (tříd) zjistíme n, x min, x max a určíme variační rozpětí R = x max x min stanovení počtu tříd k provedeme podle povahy a struktury dat s využitím pravidel: Sturgesovo pravidlo k 1 + 3,32 log n Yuleovo pravidlo k 2,5 4 n jiná pravidla k n, k 5 log n stanovení šířky tříd h R/k nebo h 0,08 R až 0,12 R
48 Neroztříděná data Konstrukce intervalů (tříd) zjistíme n, x min, x max a určíme variační rozpětí R = x max x min stanovení počtu tříd k provedeme podle povahy a struktury dat s využitím pravidel: Sturgesovo pravidlo k 1 + 3,32 log n Yuleovo pravidlo k 2,5 4 n jiná pravidla k n, k 5 log n stanovení šířky tříd h R/k nebo h 0,08 R až 0,12 R
49 Neroztříděná data Konstrukce intervalů (tříd) zjistíme n, x min, x max a určíme variační rozpětí R = x max x min stanovení počtu tříd k provedeme podle povahy a struktury dat s využitím pravidel: Sturgesovo pravidlo k 1 + 3,32 log n Yuleovo pravidlo k 2,5 4 n jiná pravidla k n, k 5 log n stanovení šířky tříd h R/k nebo h 0,08 R až 0,12 R
50 Neroztříděná data Konstrukce intervalů (tříd) zjistíme n, x min, x max a určíme variační rozpětí R = x max x min stanovení počtu tříd k provedeme podle povahy a struktury dat s využitím pravidel: Sturgesovo pravidlo k 1 + 3,32 log n Yuleovo pravidlo k 2,5 4 n jiná pravidla k n, k 5 log n stanovení šířky tříd h R/k nebo h 0,08 R až 0,12 R
51 Neroztříděná data Konstrukce intervalů (tříd) zjistíme n, x min, x max a určíme variační rozpětí R = x max x min stanovení počtu tříd k provedeme podle povahy a struktury dat s využitím pravidel: Sturgesovo pravidlo k 1 + 3,32 log n Yuleovo pravidlo k 2,5 4 n jiná pravidla k n, k 5 log n stanovení šířky tříd h R/k nebo h 0,08 R až 0,12 R
52 Neroztříděná data Konstrukce intervalů (tříd) počátek 1. třídy, počet a šířku tříd budeme volit tak, aby největší a nejmenší hodnota padly do prvního a posledního intervalu intervaly budeme volit zpravidla polouzavřené zprava hranice i středy tříd by měly být vhodně zaokrouhlené to, jak rozdělení provedeme, je individuální
53 Neroztříděná data Konstrukce intervalů (tříd) počátek 1. třídy, počet a šířku tříd budeme volit tak, aby největší a nejmenší hodnota padly do prvního a posledního intervalu intervaly budeme volit zpravidla polouzavřené zprava hranice i středy tříd by měly být vhodně zaokrouhlené to, jak rozdělení provedeme, je individuální
54 Neroztříděná data Konstrukce intervalů (tříd) počátek 1. třídy, počet a šířku tříd budeme volit tak, aby největší a nejmenší hodnota padly do prvního a posledního intervalu intervaly budeme volit zpravidla polouzavřené zprava hranice i středy tříd by měly být vhodně zaokrouhlené to, jak rozdělení provedeme, je individuální
55 Neroztříděná data Konstrukce intervalů (tříd) počátek 1. třídy, počet a šířku tříd budeme volit tak, aby největší a nejmenší hodnota padly do prvního a posledního intervalu intervaly budeme volit zpravidla polouzavřené zprava hranice i středy tříd by měly být vhodně zaokrouhlené to, jak rozdělení provedeme, je individuální
56 Neroztříděná data Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex se měřilo množství prachových částic. Ze 60 vzorků vzduchu jsme dostali následující výsledky (v µg/m 3 ): 1,23 1,10 1,54 1,34 1,06 1,09 1,41 1,48 1,52 1,37 1,37 1,63 1,51 1,53 1,31 1,23 1,31 1,27 1,17 1,27 1,34 1,27 1,09 1,01 1,41 1,22 1,27 1,37 1,14 1,22 1,43 1,40 1,41 1,51 1,51 1,47 1,14 1,34 1,16 1,51 1,58 1,33 1,31 1,04 1,58 1,12 1,19 1,17 1,47 1,24 1,45 1,29 1,17 1,63 1,39 1,02 1,38 1,39 1,43 1,28
57 Neroztříděná data Množství prachových částic je spojitý statistický znak, pro sestavení tabulky rozdělení četností musíme určit počet intervalů a jejich šířku. Celkový rozsah souboru je n = 60, nejmenší hodnota x min = 1,01, největší hodnota je x max = 1,63. Variační rozpětí R = x max x min = 0,62. Určíme si optimální počet intervalů podle zmíněných pravidel: Sturgesovo pravidlo k 1 + 3,32 log n. = 7, Yuleovo pravidlo k 2,5 4 n. = 7, k n. = 8, k 5 log n. = 9. Na základě uvedených pravidel zvolíme např. počet intervalů k = 7, šířku intervalu h = 0,1 a počátek prvního intervalu a = 1.
58 Neroztříděná data Interval Střed int. Abs. četnost Rel. četnost Abs. kum. Rel. kum. xj n j p j četnost N j četnost F j (1,00; 1,10 1,05 7 0, ,117 (1,10; 1,20 1,15 8 0, ,250 (1,20; 1,30 1, , ,433 (1,30; 1,40 1, , ,667 (1,40; 1,50 1,45 9 0, ,817 (1,50; 1,60 1,55 9 0, ,967 (1,60; 1,70 1,65 2 0, ,000 Σ 60 1 Tabulka: Tabulka intervalového rozdělení četností množství prachových částic v µg/m 3
59 Neroztříděná data Obrázek: Histogram a součtový histogram
60 Neroztříděná data Obrázek: Krabicový graf a a empirická distribuční funkce
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická
Statistika. Zpracování informací ze statistického šetření. Roman Biskup
Statistika Zpracování informací ze statistického šetření Třídění statistického souboru Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 20. února 2012
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
Renáta Bednárová STATISTIKA PRO EKONOMY
Renáta Bednárová STATISTIKA PRO EKONOMY ZÁKLADNÍ STATISTICKÉ POJMY Statistika Statistický soubor Statistická jednotky Statistický znak STATISTIKA Vědní obor, který se zabývá hromadnými jevy Hromadné jevy
Třídění statistických dat
2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Popisná statistika. Statistika pro sociology
Popisná statistika Jitka Kühnová Statistika pro sociology 24. září 2014 Jitka Kühnová (GSTAT) Popisná statistika 24. září 2014 1 / 31 Outline 1 Základní pojmy 2 Typy statistických dat 3 Výběrové charakteristiky
Analýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
marek.pomp@vsb.cz http://homel.vsb.cz/~pom68
Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové
Číselné charakteristiky a jejich výpočet
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
23. Matematická statistika
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 23. Matematická statistika Statistika je věda, která se snaží zkoumat reálná data a s pomocí teorii pravděpodobnosti
Protokol č. 1. Tloušťková struktura. Zadání:
Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále
Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy
Základy pravděpodobnosti a statistiky. Popisná statistika
Základy pravděpodobnosti a statistiky Popisná statistika Josef Tvrdík Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace v úterý 14.10 až 15.40 hod. Příklad ze života Cimrman, Smoljak/Svěrák,
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení ze 4ST201. Na případné faktické chyby v této prezentaci mě prosím upozorněte. Děkuji Tyto slidy berte pouze jako doplňkový materiál není v nich obsaženo
Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 27. listopadu 2017 Typy statistických znaků (proměnných) Typy proměnných: Kvalitativní proměnná (kategoriální, slovní,... ) Kvantitativní proměnná (numerická,
Statistická šetření - PROČ? Žádná věda není skutečnou vědou, není-li podložena matematickými principy. (L.da Vinci)
Statistická šetření - PROČ? Žádná věda není skutečnou vědou, není-li podložena matematickými principy. (L.da Vinci) Statistická šetření - na kom / čem? statistické jednotky (S.J.) 1 respondent (pacient,
veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.
Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího
Matematické modelování dopravního proudu
Matematické modelování dopravního proudu Ondřej Lanč, Alena Girglová, Kateřina Papežová, Lucie Obšilová Gymnázium Otokara Březiny a SOŠ Telč lancondrej@centrum.cz Abstrakt: Cílem projektu bylo seznámení
Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou
TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Studentská 2 461 17 Liberec 1 SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÝCH ŠETŘENÍ Gabriela Dlasková, Veronika Bukovinská Sára Kroupová, Dagmar
STATISTIKA 1. Adam Čabla Katedra statistiky a pravděpodobnosti VŠE
STATISTIKA 1 Adam Čabla Katedra statistiky a pravděpodobnosti VŠE KONTAKTY WWW: sites.google.com/site/adamcabla E-mail: adam.cabla@vse.cz Telefon: 777 701 783 NB367 na VŠE, konzultační hodiny: Pondělí
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Př. : Stanovte jednotlivé četnosti a číselné charakteristiky zadaného statistického souboru a nakreslete krabicový graf:, 8, 7, 43, 9, 47, 4, 34, 34, 4, 35. Statistický soubor seřadíme vzestupně podle
Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice
Statistika. pro žáky 8. ročníku. úterý, 26. března 13
Statistika pro žáky 8. ročníku Co je to statistika? Statistika je věda, která se snaží zkoumat reálná data a přibližuje nám zkoumaný jev a zákonitosti s ním spojené. Co nám statistika přináší? Co nám statistika
Popisná statistika kvantitativní veličiny
StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali
Základy popisné statistiky
Kapitola Základy popisné statistiky Všude kolem nás se setkáváme se shromažd ováním velkého počtu údajů o nejrůznějších objektech Mohou to být národohospodářské údaje o vývoji ekonomiky dané země sbírané
Písemná práce k modulu Statistika
The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem
MĚŘENÍ, TYPY VELIČIN a TYPY ŠKÁL
MĚŘENÍ, TYPY VELIČIN a TYPY ŠKÁL Matematika a stejně i matematická statistika a biometrie s námi hovoří řečí čísel. Musíme tedy vlastnosti nebo intenzitu vlastností jedinců změřit kvantifikovat. Měřením
Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,
Průzkumová analýza dat
Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se
STATISTICA Téma 1. Práce s datovým souborem
STATISTICA Téma 1. Práce s datovým souborem 1) Otevření datového souboru Program Statistika.cz otevíráme z ikony Start, nabídka Programy, podnabídka Statistika Cz 6. Ze dvou nabídnutých možností vybereme
Organizační pokyny k přednášce. Matematická statistika. Přehled témat. Co je statistika?
Organizační pokyny k přednášce Matematická statistika 2012 2013 Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta UK hudecova@karlin.mff.cuni.cz http://www.karlin.mff.cuni.cz/
Popisná statistika. úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy
Popisná statistika úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy Úvod užívá se k popisu základních vlastností dat poskytuje jednoduché shrnutí hodnot proměnných
Statistika. Program R. popisná (deskriptivní) statistika popis konkrétních dat. induktivní (konfirmatorní) statistika. popisná statistika
Statistika Cvičení z matematické statistiky na PřF Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy léto 2012 Základní dělení popisná (deskriptivní)
Statistika I (KMI/PSTAT)
Statistika I (KMI/PSTAT) Cvičení druhé aneb Kvantily, distribuční funkce Statistika I (KMI/PSTAT) 1 / 1 Co se dnes naučíme Po absolvování této hodiny byste měli být schopni: rozumět pojmu modus (modální
Název testu Předpoklady testu Testová statistika Nulové rozdělení. ( ) (p počet odhadovaných parametrů)
VYBRANÉ TESTY NEPARAMETRICKÝCH HYPOTÉZ TESTY DOBRÉ SHODY Název testu Předpoklady testu Testová statistika Nulové rozdělení test dobré shody Očekávané četnosti, alespoň 80% očekávaných četností >5 ( ) (p
SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY
SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim
Pracovní list č. 3 Charakteristiky variability
1. Při zjišťování počtu nezletilých dětí ve třiceti vybraných rodinách byly získány tyto výsledky: 1, 1, 0, 2, 3, 4, 2, 2, 3, 0, 1, 2, 2, 4, 3, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 3, 3, 2. Uspořádejte
Popisná statistika - úvod
Popisná statistika - úvod 1 Popisná statistika - úvod zjišťuje (získává) a poskytuje číselné i slovní údaje (informace); o jevech hromadné povahy; v oblasti ekonomiky a společnosti. Zcela obecně pak při
Statistika. Základní pojmy a cíle statistiky. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .
Statistika Základní pojmy a cíle statistiky Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Statistika Pojmy a cíle
Diskrétní náhodná veličina
Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné
ADZ základní statistické funkce
ADZ základní statistické funkce Základní statistické funkce a znaky v softwaru Excel Znak Stručný popis + Sčítání buněk - Odčítání buněk * Násobení buněk / Dělení buněk Ctrl+c Vyjmutí buňky Ctrl+v Vložení
9.7 TŘÍDĚNÍ PODLE JEDNOHO SPOJITÉHO ČÍSELNÉHO ZNAKU. INTERVALOVÉ ROZDĚLENÍ ČETNOSTI
Statistické třídění, intervalové rozdělení četnosti Aleš Drobník strana 1 9.7 TŘÍDĚNÍ PODLE JEDNOHO SPOJITÉHO ČÍSELNÉHO ZNAKU. INTERVALOVÉ ROZDĚLENÍ ČETNOSTI Problematiku třídění podle jednoho spojitého
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Popisná statistika. Komentované řešení pomocí MS Excel
Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,
Základy biostatistiky
Základy biostatistiky Veřejné zdravotnictví 3.LF UK Viktor Hynčica Úvod se statistikou se setkáváme denně ankety proč se statistika začala používat ve zdravotnictví skupinový přístup k léčení celé populace
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
Základní statistické charakteristiky
Základní statistické charakteristiky Základní statistické charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme Základní statistické
Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky
Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného
Náhodné (statistické) chyby přímých měření
Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
Matematika PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí
Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností
Statistika pro geografy. Rozd lení etností DEPARTMENT OF GEOGRAPHY
Statistika pro geografy Rozd lení etností DEPARTMENT OF GEOGRAPHY Faculty of Science Palacký University Olomouc t. 17. listopadu 1192/12, 771 46 Olomouc Pojmy etnost = po et prvk se stejnou hodnotou statistického
ANALÝZA DAT V R 2. POPISNÉ STATISTIKY. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 2. POPISNÉ STATISTIKY Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz CO SE SKRÝVÁ V DATECH data sbíráme proto, abychom porozuměli
2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka
2. Statistická terminologie a vyjadřovací prostředky 2.1. Statistická terminologie Statistická jednotka Statistická jednotka = nositel statistické informace, elementární prvek hromadného jevu. Příklady:
Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2013/2014 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech.
3 Grafické zpracování dat Grafické znázorňování je velmi účinný způsob, jak prezentovat statistické údaje. Grafy nejsou tak přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých
E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =
Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní
Návrh a vyhodnocení experimentu
Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav
Charakteristiky kategoriálních veličin. Absolutní četnosti (FREQUENCY)
Charakteristiky kategoriálních veličin Absolutní četnosti (FREQUENCY) Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky
Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení?
Otázky k měření centrální tendence 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? 2. Určete průměr, medián a modus u prvních čtyř rozložení (sad dat): a.
Induktivní statistika. z-skóry pravděpodobnost
Induktivní statistika z-skóry pravděpodobnost normální rozdělení Z-skóry umožňují najít a popsat pozici každé hodnoty v rámci rozdělení hodnot a také srovnávání hodnot pocházejících z měření na rozdílných
4. Zpracování číselných dat
4. Zpracování číselných dat 4.1 Jednoduché hodnocení dat 4.2 Začlenění dat do písemné práce Zásady zpracování vědecké práce pro obory BOZO, PÚPN, LS 2011 4.1 Hodnocení číselných dat Popisná data: střední
Pravděpodobnost a statistika
Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,
Vybrané statistické metody. You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.
Vybrané statistické metody Analýza časových řad Statistická řada je posloupnost hodnot znaku, které jsou určitým způsobem uspořádány. Je-li toto uspořádání realizováno na základě časového sledu hodnot
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor017 Vypracoval(a),
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
ROZDĚLENÍ NÁHODNÝCH VELIČIN
ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
Kontingenční tabulky, korelační koeficienty
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu
Nejčastější chyby v explorační analýze
Nejčastější chyby v explorační analýze Obecně doporučuju přečíst přednášku 5: Výběrová šetření, Exploratorní analýza http://homel.vsb.cz/~lit40/sta1/materialy/io.pptx Použití nesprávných charakteristik
Informační technologie a statistika 1
Informační technologie a statistika 1 přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 21. září 2015, 1/33 Požadavek
Maturitní otázky z předmětu MATEMATIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti
Analýza dat s využitím MS Excel
Analýza dat s využitím MS Excel Seminář aplikované statistiky Martina Litschmannová Několik fíglů na úvod Absolutní vs. relativní adresování změna pomocí F4 =$H$20 =H$20 =$H20 =H20 Posun po souvislé oblasti
Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik
Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů
Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že
Statistická prezentace je umění vytvořit dobrou tabulku nebo graf, které přitáhnou oko k tomu, co je zajímavé. Mgr. Ing.
1.2 Prezentace statistických dat Statistická prezentace je umění vytvořit dobrou tabulku nebo graf, které přitáhnou oko k tomu, co je zajímavé. Mgr. Ing. Jan Spousta Co se dozvíte Statistické ukazatele.
Vybraná rozdělení náhodné veličiny
3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
Úvod do studia statistiky. 1. Významy pojmu statistika
Přednáška 1/ 1 Úvod do studia statistiky 1. Významy pojmu statistika Co o ní asi všichni víme Statistika je přesný součet nepřesných čísel Statistika nuda je, má však cenné údaje Věřím jen těm statistikám,
STATISTIKA jako vědní obor
STATISTIKA jako vědní obor Cílem statistického zpracování dat je podání informace o vlastnostech a zákonitostech hromadných jevů. Statistika se zabývá popisem hromadných jevů - deskriptivní, popisná statistika
Matematika (KMI/PMATE)
Úvod do matematické analýzy Funkce a její vlastnosti Funkce a její vlastnosti Veličina Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Funkce a její
Číselné charakteristiky
. Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch
STATISTIKA S EXCELEM. Martina Litschmannová MODAM,
STATISTIKA S EXCELEM Martina Litschmannová MODAM, 8. 4. 216 Obsah Motivace aneb Máme data a co dál? Základní terminologie Analýza kvalitativního znaku rozdělení četnosti, vizualizace Analýza kvantitativního
Jednofaktorová analýza rozptylu
I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých
Statistika s Excelem aneb Máme data. A co dál? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava
Statistika s Excelem aneb Máme data. A co dál? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava ŠKOMAM 2016 Jak získat data? Primární zdroje dat Vlastní měření (fyzika, biologie,
Měření zrychlení volného pádu
Měření zrychlení volného pádu Online: http://www.sclpx.eu/lab1r.php?exp=10 Pro tento experiment si nejprve musíme vyrobit hřeben se dvěma zuby, které budou mít stejnou šířku (např. 1 cm) a budou umístěny
HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ
HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost
Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.
Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2009/2010 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Sedm základních nástrojů řízení kvality Doc. RNDr. Jiří Šimek,