Kartografické modelování VII - analýzy terénu
|
|
- Pavel Sedláček
- před 6 lety
- Počet zobrazení:
Transkript
1 VII - analýzy terénu jaro 2017 Petr Kubíček kubicek@geogr.muni.cz Laboratory on Geoinformatics and Cartography (LGC) Institute of Geography Masaryk University Czech Republic
2 Topografické funkce a DMT Zdroje DMT DPZ (radar, fotogrametrie, LiDAR) Pozemní měření (geodetická, vrstevnice z map) -> nutná interpolace Neexistuje jediný nejlepší interpolátor pro DMT Cíl: dobrá reprezentace významných prvků (hřbety a toky) Hydrologicky korektní model (eliminace bezodtokých oblastí)
3 Sklon svahu Vychází z definice první parciální derivace povrchu (vektorů) Technicky řešeno pohybem okna 3x3 nebo 5x5 pixelů Mnoho metod, ale všechny na stejném principu 1. derivace Realizace výpočtu pomocí fokální funkce.
4 Výpočet [dz/dx] = ((c + 2f + i) - (a + 2d + g) / (8 * x_cellsize) [dz/dy] = ((g + 2h + i) - (a + 2b + c)) / (8 * y_cellsize) Radiány a stupně oblouková a stupňová míra Výseč kruhu s délkou stejnou jako poloměr toho kruhu má úhel rovný 1 radiánu. Plný kruh odpovídá úhlu 2π radiánů
5 a b c [dz/dx] = ((c + 2f + i) - (a + 2d + g) / (8 * x_cellsize) = (( ) - ( )) / (8 * 5) = ( ) / 40 = 0.05 [dz/dy] = ((g + 2h + i) - (a + 2b + c)) / (8 * y_cellsize) = (( ) - ( )) / (8 * 5) = ( ) / 40 = -3.8 rise_run = ([dz/dx] 2 + [dz/dy] 2 ) = ((0.05) 2 + (-3.8) 2 ) = ( ) = slope_degrees = ATAN (rise_run) * = ATAN ( ) * = * =
6 Příklad
7 Expozice (aspect) Opět založeno na první derivaci ve dvou směrech x a y. Měřeno od severu (0 ) ve stupních po směru hodinových ručiček Nejen pro určení orientace svahu, ale také základní algoritmus pro určení směru proudění v buňce základ hydrologických analýz
8 Výpočet expozice [dz/dx] = ((c + 2f + i) - (a + 2d + g)) / 8 [dz/dy] = ((g + 2h + i) - (a + 2b + c)) / 8 aspect = * atan2 ([dz/dy], -[dz/dx]) if aspect < 0 cell = aspect else if aspect > 90.0 cell = aspect else cell = aspect
9 if aspect < 0 cell = aspect Příklad [dz/dx] = ((c + 2f + i) - (a + 2d + g)) / 8 = (( )) - ( )) / 8 = [dz/dy] = ((g + 2h + i) - (a + 2b + c)) / 8 = (( ) - ( )) / 8 = aspect = * atan2 ([dz/dy], -[dz/dx]) = * atan2 (-0.375, 8.125) = cell = aspect = 90 - (-2.64) = = 92.64
10 Založeno na druhé derivaci změn povrchu. Lze si představit např. jako křivku vzniklou průsečíkem roviny kolmé k povrchu a tohoto povrchu záleží na směru roviny vzhledem k povrchu!!! Čtyři přirozené směry zakřivení: a) Profil (vertikální zakřivení) aa b) Tangenciální (horizontální) bb c) Maximální cc d) Minimální dd Na jejich základě definované další typy zakřivení Zakřivení (Curvature)
11 Polynomická rovnice pro 3x3 buňky: Z = Ax²y² + Bx²y + Cxy² + Dx² + Ey² + Fxy + Gx + Hy + I Výpočet A = [(Z1 + Z3 + Z7 + Z9) / 4 - (Z2 + Z4 + Z6 + Z8) / 2 + Z5] /L4 B = [(Z1 + Z3 - Z7 - Z9) /4 - (Z2 - Z8) /2] / L3 C = [(-Z1 + Z3 - Z7 + Z9) /4 + (Z4 - Z6)] /2] / L3 D = [(Z4 + Z6) /2 - Z5] / L2 E = [(Z2 + Z8) /2 - Z5] / L2 F = (-Z1 + Z3 + Z7 - Z9) / 4L2 G = (-Z4 + Z6) / 2L H = (Z2 - Z8) / 2L I = Z5 Curvature = -2(D + E) * 100
12 Příklady a užití vertikální (profile) Paralelní se směrem maximálního sklonu. Negativní hodnota= svah je směrem nahoru konvexní; pozitivní hodnota= svah je směrem nahoru konkávní; 0=svah je lineární (rovný). Ovlivňuje zpomalení či zrychlení povrchového odtoku. Terasy!
13 Příklady a užití horizontální (plan) Kolmá na směr maximálního sklonu. Negativní hodnota= svah je směrem do boků konkávní; pozitivní hodnota= svah je směrem do boků konvexní; 0=svah je lineární (rovný). Ovlivňuje konvergenci či divergenci povrchového odtoku. Údolnice a hřbetnice!
14 Příklady a užití - kombinace Zásadní pro hydrologické analýzy: Akumulace vody ale i substrátu eroze Přímá souvislost s vlhkostí stanoviště (vertikální zakřivení) Zjištění konkávních (chráněných) a konvexních (exponovaných povrchů) může být využito i v mnoha jiných oborech (např. predikce výskytu druhů, akumulace apod.)
15 Zakřivení (ukázka)
16 Osvětlení (hillshading) Cílem je vytvořit dojem plastického (3D) modelu terénu pomocí jeho nasvícení (hillshading = shaded relief map) Parametry světelného zdroje: Azimut (typická hodnota 315 ) Výška nad horizontem, jako úhel - elevace (typická hodnota 45 ) Různé postupy výpočtu ArcGIS Hillshade = * ((cos(zenith_rad) * cos(slope_rad)) + (sin(zenith_rad) * sin(slope_rad) * cos(azimuth_rad - Aspect_rad))) Může být použito ale i pro jednoduchou analýzu zastínění terénu, při dané poloze slunce předstupeň pro plnohodnotnou analýzu potenciální přímé sluneční radiace (PDSI)
17 Výpočet Úhel osvícení (2) Zenith_deg = 90 - Altitude Convert to radians: (3) Zenith_rad = Zenith * pi / Směr osvícení (4) Azimuth_math = Azimuth + 90 Note that if Azimuth_math >= 360.0, then: (5) Azimuth_math = Azimuth_math Convert to radians: (6) Azimuth_rad = Azimuth_math * pi / o 315 o Sklon svahu Orientace svahu
18 45 o 60 o
19 Potenciální solární radiace Predikce potenciálního množství radiace dopadající na konkrétní plochu (pixel). Založeno na: 1. Modelu zastínění plochy okolním terénem (hemispherical viewshed, skyview factor) 2. Modelování trajektorie slunce pro danou zeměpisnou šířku 3. Výpočet globálního záření na jednotku plochy jako součet přímé a difusní radiace
20 Model zastínění horizontální úhly -> interpolace pro všechny směry -> převod úhlů na hemisférické souř. -> viewshed
21 Potenciální solární radiace Kombinace: projektované dráhy slunce (30 min, 12 měsíců) a hemisférického zastínění. Využití? + =
22 Multi-Hillshade Hierarchic Clustering (MHHC) (Šilhavý 2017) Práce řeší geomorfologický problém vymezení významných linií na georeliéfu. Cílem algoritmu je vymezit geomorfologicky významné linie, které mohou být použity jako základ pro morfostrukturní analýzu území. Obecný postup:
23 Inovace obecného přístupu k vymezování lineamentů Princip algoritmu spočívá v analýze stínovaného reliéfu odvozeného z DMR, kde jsou metodami digitálního zpracování obrazu detekovány linie označující nespojitosti obrazu (hrany). Schéma algoritmu (MHHC) je rozdělené do šesti kroků: 1. Tvorba DMR. 2. Příprava rastru pro extrakci linií. 3. Extrakce linií. 4. Odstranění šumu, tj. předzpracování dat pro shlukovou analýzu. 5. Shluková analýza linií, tj. nalezení reprezentativních linií. 6. Klasifikace lineamentů dle typu (konvexní, konkávní).
24 Kroky a parametry algoritmu
25 Vliv parametrů - nasvícení
26 Vliv parametrů úhel rotace
27 Artefakty (šumy) A) Stínovaný reliéf s úhlem nasvícení 0 (maxima 45, 90 a 135 ). B) Rastr A rotovaný o 15 (maxima 45, 90 a 135 )*. C) Rastr s náhodně generovanými hodnotami (maxima 0, 45, 90 a 135 ).
28 Důkaz existence šumu Důkaz artefaktu - ukázky extrahovaných linií z původního (červené linie) a rotovaného rastru o 15 (černé linie) Tzv. artefakt preference 8 hlavních směrů při extrakci linií z rastrového podkladu. Na polohovou přesnost extrahovaných linií má jen malý vliv, ale výrazně zkresluje směrové statistiky, které nelze použít pro další interpretaci.
29 Shlukování linií vybrat nejdelší linii li z L, vytvořit obalovou zónu kolem li, vybrat všechny linie kompletně obsažené v obalové zóně, odebrat linie nevyhovující azimutové podmínce, pokud je počet vybraných linií větší než prahová hodnota P5, tak: označit linie jako shluk, vypočítat kolem shluku obalovou zónu, vypočítat charakteristiky shluku (průměrnou délku a azimut linií a zapsat je do atributů obalové zóny), vytvořit reprezentativní linii shluku, vymazat označené linie.
30 A lineamenty bez odstranění artefaktu, B lineamenty s odstraněním artefaktu C směrové statistiky lineamentù bez odstranění artefaktu, D směrové statistiky lineamentù s odstraněním artefaktu
31 Tvary reliéfu kvantitativní přístup
Kartografické modelování VI - analýzy terénu
VI - analýzy terénu jaro 2015 Petr Kubíček kubicek@geogr.muni.cz Laboratory on Geoinformatics and Cartography (LGC) Institute of Geography Masaryk University Czech Republic Topografické funkce a DMT Zdroje
Topografické funkce. Sklonitost Expozice Analýza viditelnosti. Viditelnost Osvětlení (vizualizace) Potenciální radiace
Topografické funkce VEKTOR RASTR Sklonitost Expozice Analýza viditelnosti Viditelnost Osvětlení (vizualizace) Potenciální radiace Členitost terénu Morfometrické charakteristiky Profil Hydrologické analýzy
Topografické funkce. Sklonitost Expozice Analýza viditelnosti. Viditelnost Osvětlení (vizualizace) Potenciální radiace
Topografické funkce VEKTOR RASTR Sklonitost Expozice Analýza viditelnosti Viditelnost Osvětlení (vizualizace) Potenciální radiace Členitost terénu Morfometrické charakteristiky Profil Hydrologické analýzy
Geoinformatika. IX GIS modelování
Geoinformatika IX GIS modelování jaro 2017 Petr Kubíček kubicek@geogr.muni.cz Laboratory on Geoinformatics and Cartography (LGC) Institute of Geography Masaryk University Czech Republic Geoinformatika
Kartografické modelování. VIII Modelování vzdálenosti
VIII Modelování vzdálenosti jaro 2015 Petr Kubíček kubicek@geogr.muni.cz Laboratory on Geoinformatics and Cartography (LGC) Institute of Geography Masaryk University Czech Republic Vzdálenostní funkce
Digitální model reliéfu (terénu) a analýzy modelů terénu
Digitální model reliéfu (terénu) a analýzy modelů terénu Digitální modely terénu jsou dnes v geoinformačních systémech hojně využívány pro různé účely. Naměřená terénní data jsou často zpracována do podoby
Přednáška 4. 1GIS2 Pokročilé aplikace digitálních modelů terénu, rastrová algebra, rastrové modelování FŽP UJEP
Přednáška 4 1GIS2 Pokročilé aplikace digitálních modelů terénu, rastrová algebra, rastrové modelování FŽP UJEP Rastrové analýzy Analýzy spojitosti (konektivity) zajímají nás funkční vztahy na rozhraních
Digitální modely terénu (9-10) DMT v ArcGIS Desktop
Digitální modely terénu (9-10) DMT v Desktop Ing. Martin KLIMÁNEK, Ph.D. 411 Ústav geoinformačních technologií Lesnická a dřevařská fakulta, Mendelova zemědělská a lesnická univerzita v Brně 1 Digitální
Digitální modely terénu a vizualizace strana 2. ArcGIS 3D Analyst
Brno, 2014 Ing. Miloš Cibulka, Ph.D. Cvičení č. 7 Digitální kartografie Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na
krajiny povodí Autoři:
Fakulta životního prostředí Katedra biotechnických úprav krajiny Soubor účelovýchh map k Metodice stanovení vybraných faktorů tvorby povrchového odtoku v podmínkách malých povodí Případová studie povodí
Digitální kartografie 7
Digitální kartografie 7 digitální modely terénu základní analýzy a vizualizace strana 2 ArcGIS 3D Analyst je zaměřen na tvorbu, analýzu a zobrazení dat ve 3D. Poskytuje jak nástroje pro interpolaci rastrových
Topografické mapování KMA/TOMA
Topografické mapování KMA/TOMA ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta aplikovaných věd - KMA oddělení geomatiky Ing. Martina Vichrová, Ph.D. vichrova@kma.zcu.cz Vytvoření materiálů bylo podpořeno prostředky
Kartografické modelování V Hydrologické modelování
Kartografické modelování V Hydrologické modelování jaro 2015 Petr Kubíček kubicek@geogr.muni.cz Laboratory on Geoinformatics and Cartography (LGC) Institute of Geography Masaryk University Czech Republic
Základní geomorfologická terminologie
Základní geomorfologická terminologie speciální názvosloví - obecné (např. údolní niva, závrt, jeskyně) - oronyma = jména jednotlivých složek reliéfu velkých jednotlivých tvarů (vysočin, nížin) (údolí,
Digitální model reliéfu (terénu) a analýzy modelů terénu
Digitální model reliéfu (terénu) a analýzy modelů terénu Digitální modely terénu jsou dnes v geoinformačních systémech hojně využívány pro různé účely. Naměřená terénní data jsou často zpracována do podoby
Digitální modely terénu (6-8) DMT v GIS Idrisi Andes
Digitální modely terénu (6-8) DMT v GIS Ing. Martin KLIMÁNEK, Ph.D. Ing. Petr DOUDA 411 Ústav geoinformačních technologií Lesnická a dřevařská fakulta, Mendelova zemědělská a lesnická univerzita v Brně
Možnosti modelování lesní vegetační stupňovitosti pomocí geoinformačních analýz
25. 10. 2012, Praha Ing. Petr Vahalík Ústav geoinformačních technologií Možnosti modelování lesní vegetační stupňovitosti pomocí geoinformačních analýz 21. konference GIS Esri v ČR Lesní vegetační stupně
Rastrová reprezentace geoprvků model polí Porovnání rastrové a vektorové reprezentace geoprvků Digitální model terénu GIS 1 153GS01 / 153GIS1
GIS 1 153GS01 / 153GIS1 Martin Landa Katedra geomatiky ČVUT v Praze, Fakulta stavební 14.11.2013 Copyright c 2013 Martin Landa Permission is granted to copy, distribute and/or modify this document under
Základní geomorfologická terminologie
Základní geomorfologická terminologie terminologie speciální názvosloví - obecné (např. údolní niva, závrt, jeskyně) - oronyma = jména jednotlivých složek reliéfu velkých (vysočin, nížin) jednotlivých
Geomorfologické mapování
Geomorfologické mapování Irena Smolová Geomorfologické mapování Cíl: geomorfologická analýza reliéfu s cílem zmapovat rozložení tvarů reliéfu, určit způsob jejich vzniku a stáří Využité metody: morfometrická
4. Digitální model terénu.
4. Digitální model terénu. 154GEY2 Geodézie 2 4.1 Úvod - Digitální model terénu. 4.2 Tvorba digitálního modelu terénu. 4.3 Druhy DMT podle typu ploch. 4.4 Polyedrický model terénu (TIN model). 4.5 Rastrový
Základní geomorfologická terminologie
Základní geomorfologická terminologie terminologie speciální názvosloví - obecné (např. údolní niva, závrt, jeskyně) - oronyma = jména jednotlivých složek reliéfu velkých (vysočin, nížin) jednotlivých
GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 12
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 12 Lubomír Vašek Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního fondu (ESF)
9. přednáška z předmětu GIS1 Digitální model reliéfu a odvozené povrchy. Vyučující: Ing. Jan Pacina, Ph.D.
9. přednáška z předmětu GIS1 Digitální model reliéfu a odvozené povrchy Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Lehký úvod Digitální modely terénu jsou dnes v geoinformačních systémech
Kartografické modelování. II Mapová algebra obecné základy a lokální funkce
II Mapová algebra obecné základy a lokální funkce jaro 2017 Petr Kubíček kubicek@geogr.muni.cz Laboratory on Geoinformatics and Cartography (LGC) Institute of Geography Masaryk University Czech Republic
Poznámky k sestavení diagramu zastínění
Poznámky k sestavení diagramu zastínění pojmy uvedené v tomto textu jsou detailně vysvětleny ve studijních oporách nebo v normách ČSN 73 4301 a ČSN 73 0581 podle ČSN 73 4301 se doba proslunění hodnotí
DZDDPZ3 Digitální zpracování obrazových dat DPZ. Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava
DZDDPZ3 Digitální zpracování obrazových dat DPZ Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava Digitální zpracování obrazových dat DPZ Předzpracování (rektifikace a restaurace) Geometrické
Metodický pokyn. k zadávání fotogrammetrických činností pro potřeby vymezování záplavových území
Ministerstvo zemědělství ČR Č.j.: 28181/2005-16000 Metodický pokyn k zadávání fotogrammetrických činností pro potřeby vymezování záplavových území Určeno: K využití: státním podnikům Povodí Zemědělské
Kartografické modelování V Topologické překrytí - Overlay
Kartografické modelování V Topologické překrytí - Overlay jaro 2017 Petr Kubíček kubicek@geogr.muni.cz Laboratory on Geoinformatics and Cartography (LGC) Institute of Geography Masaryk University Czech
Strojové učení a dolování dat. Vybrané partie dolování dat 2016/17 Jan Šimbera
Strojové učení a dolování dat vgeografii Vybrané partie dolování dat 2016/17 Jan Šimbera simberaj@natur.cuni.cz Kde v geografii? Získávání prostorově podrobných dat Prostorová dezagregace Analýza dat dálkového
Matematika I A ukázkový test 1 pro 2014/2015
Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)
Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Analýza dat v GIS. Dotazy na databáze. Překrytí Overlay Mapová algebra Vzdálenostní funkce. Funkce souvislosti Interpolační funkce Topografické funkce
Analýza dat v GIS Dotazy na databáze Prostorové Atributové Překrytí Overlay Mapová algebra Vzdálenostní funkce Euklidovské vzdálenosti Oceněné vzdálenosti Funkce souvislosti Interpolační funkce Topografické
Protierozní ochrana 5. cvičení Téma: GIS řešení USLE stanovení faktorů LS a K. Výpočet ztráty půdy a určení erozní ohroženosti
Protierozní ochrana 5. cvičení Téma: GIS řešení USLE stanovení faktorů LS a K. Výpočet ztráty půdy a určení erozní ohroženosti 143YPEO ZS 2017/2018 2 + 3; z,zk Zadání č. 5: Pro všechny erozní celky vypočtěte
Aplikace GIS v geologických vědách
Aplikace GIS v geologických vědách Rastrová data Karel Martínek Rastrová data, extenze ArcGIS Spatial Analyst 1 RASTROVÁ DATA ÚVOD (ARC VIEW) 1.1 DEFINICE ZÁKLADNÍCH POJMŮ (RASTR, GRID, BUŇKA, PIXEL, SPOJITÝ/NESPOJITÝ
1 Obsah přípravné fáze projektu Poohří
1 Obsah přípravné fáze projektu Poohří V rámci projektu Poohří budou pro účely zatápění povrchových hnědouhelných dolů modelovány a predikovány pohyby nadzemních i podzemních vod a jejich předpokládané
Deformace rastrových obrázků
Deformace rastrových obrázků 1997-2011 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Warping 2011 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 22 Deformace obrázků
Popis metod CLIDATA-GIS. Martin Stříž
Popis metod CLIDATA-GIS Martin Stříž Říjen 2008 Obsah 1CLIDATA-SIMPLE...3 2CLIDATA-DEM...3 2.1Metodika výpočtu...3 2.1.1Výpočet regresních koeficientů...3 2.1.2 nalezených koeficientu...5 2.1.3Výpočet
Rastrové digitální modely terénu
Rastrové digitální modely terénu Rastr je tvořen maticí buněk (pixelů), které obsahují určitou informaci. Stejně, jako mohou touto informací být typ vegetace, poloha sídel nebo kvalita ovzduší, může každá
Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace. Šroubovice dráha hmotného bodu při šroubovém pohybu
ŠROUBOVICE Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace Šroubovice dráha hmotného bodu při šroubovém pohybu ZÁKLADNÍ POJMY osa šroubovice o nosná válcová plocha (r poloměr řídicí kružnice
ZÁVISLOSTI DOPADAJÍCÍ ENERGIE SLUNEČNÍHO ZÁŘENÍ NA PLOCHU
ZÁVISLOSTI DOPADAJÍCÍ ENERGIE SLUNEČNÍHO ZÁŘENÍ NA PLOCHU Jaroslav Peterka Fakulta umění a architektury TU v Liberci jaroslav.peterka@tul.cz Konference enef Banská Bystrica 16. 18. 10. 2012 ALTERNATIVNÍ
5. GRAFICKÉ VÝSTUPY. Zásady územního rozvoje Olomouckého kraje. Koncepce ochrany přírody Olomouckého kraje
5. GRAFICKÉ VÝSTUPY Grafickými výstupy této studie jsou uvedené čtyři mapové přílohy a dále následující popis použitých algoritmů při tvorbě těchto příloh. Vlastní mapové výstupy jsou označeny jako grafické
8. přednáška z předmětu GIS1 Rastrový datový model a mapová algebra
8. přednáška z předmětu GIS1 Rastrový datový model a mapová algebra Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky z www.gis.zcu.cz Předmět KMA/UGI,
DTM - I Definice, singularity a terénní tvary
DTM - I Definice, singularity a terénní tvary Tomáš Dolanský 2007 Obsah předmětu Topologie a morfologie terénu, základní matematické modely. Metody znázornění terénu v mapách a v GIS Principy popisu datových
Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2
Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2 Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Diferenciální počet funkcí více proměnných 1. Funkce více proměnných (a)
16.3.2015. Ing. Pavel Hánek, Ph.D. hanek00@zf.jcu.cz
Ing. Pavel Hánek, Ph.D. hanek00@zf.jcu.cz Přednáška byla zpracována s využitím dat a informací uveřejněných na http://geoportal.cuzk.cz/ k 16.3. 2015. Státní mapová díla jsou stanovena nařízením vlády
výrazně zaoblený tvar
ČTENÍ MAPY VÝŠKOVÝ PROFIL Dovednost: čtení reliéfu Vypuklé (konvexní) vs. vhloubené (konkávní) tvary reliéfu Spádnice je čára probíhající ve směru největšího sklonu terénního reliéfu, probíhá kolmo k vrstevnicím
Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
DPZ10 Radar, lidar. Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava
DPZ10 Radar, lidar Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava RADAR SRTM Shuttle Radar Topography Mission. Endeavour, 2000 Dobrovolný Hlavní anténa v nákladovém prostoru, 2. na stožáru
Atlas EROZE moderní nástroj pro hodnocení erozního procesu
Projekt TA ČR č. TA02020647 1.1.2012 31.12.2014 Atlas EROZE moderní nástroj pro hodnocení erozního procesu České vysoké učení technické v Praze Řešitel: Krása Josef, doc. Ing. Ph.D. ATLAS, spol. s r.o.
Terestrické 3D skenování
Jan Říha, SPŠ zeměměřická www.leica-geosystems.us Laserové skenování Technologie, která zprostředkovává nové možnosti v pořizování geodetických dat a výrazně rozšiřuje jejich využitelnost. Metoda bezkontaktního
VE 2D A 3D. Radek Výrut. Abstrakt Tento článek obsahuje postupy pro výpočet Minkowského sumy dvou množin v rovině a pro výpočet Minkowského sumy
25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Radek Výrut VÝPOČET MINKOWSKÉHO SUMY VE 2D A 3D Abstrakt Tento článek obsahuje postupy pro výpočet Minkowského sumy dvou množin v rovině a pro výpočet Minkowského
Stanovení záplavového území řeky Úslavy v úseku Koterov Šťáhlavy
D H I a. s. 6 / 2 0 1 4 Stanovení záplavového území řeky Úslavy v úseku Koterov Šťáhlavy OBSAH: 1 Úvod... 2 1.1 Cíle studie... 2 1.2 Popis zájmové oblasti... 2 2 Datové podklady... 2 2.1 Topografická data...
Zimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 24/25 2. prosince 24 Předmluva iii
GIS. Cvičení 7. Interakční modelování v ArcGIS
GIS Cvičení 7. Interakční modelování v ArcGIS Interakční modelování Najděte vhodné místo pro založení nové lesní školky na zpracovaném mapovém listu ZM 10 24-32-05 1. Které podmínky musí být při p i tom
Geodézie 3 (154GD3) Téma č. 8: Podrobné měření výškopisu - tachymetrie
Geodézie 3 (154GD3) Téma č. 8: Podrobné měření výškopisu - tachymetrie 1 Výškopis: Vytváření obrazu světa měřením a zobrazováním do mapy (v jakékoli formě) předpokládá měření polohy a výšky (polohopis
Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0
Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud
Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a
Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy
Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Zdroj: http://geoportal.cuzk.cz/dokumenty/technicka_zprava_dmr_4g_15012012.pdf
Zpracování digitálního modelu terénu Zdrojová data Pro účely vytvoření digitálního modelu terénu byla použita data z Digitálního modelu reliéfu 4. Generace DMR 4G, který je jedním z realizačních výstupů
Algoritmizace prostorových úloh
Algoritmizace prostorových úloh Vektorová data Daniela Szturcová Prostorová data Geoobjekt entita definovaná v prostoru. Znalost jeho identifikace, lokalizace umístění v prostoru, vlastností vlastních
Systémy pro využití sluneční energie
Systémy pro využití sluneční energie Slunce vyzáří na Zemi celosvětovou roční potřebu energie přibližně během tří hodin Se slunečním zářením jsou spojeny biomasa pohyb vzduchu koloběh vody Energie
VYUŽITÍ FUZZY MODELŮ PŘI HODNOCENÍ OBTÍŽNOSTI CYKLOTRAS
VYUŽITÍ FUZZY MODELŮ PŘI HODNOCENÍ OBTÍŽNOSTI CYKLOTRAS ArcGIS ModelBuilder, Python Pavel Kolisko Cíle motivace zastaralost, neúplnost a nepřesnost dat obtížnosti cyklotras na portálu cykloturistiky JMK
GIS Idrisi na Fakultě stavební ČVUT v Praze
GIS Idrisi na Fakultě stavební Josef Krása Katedra hydromeliorací a krajinného inženýrství Stavební fakulta Josef.krasa@fsv.cvut.cz Katedra hydromeliorací a krajinného inženýrství výuka - obory Životní
OBSAH: SEZNAM OBRÁZKŮ SEZNAM TABULEK
OBSAH: 1 Úvod... 2 1.1 Cíle studie... 2 1.2 Popis zájmové oblasti... 2 2 Datové podklady... 2 2.1 Topografická data... 2 2.2 Hydrologická data... 3 3 Matematický model... 4 3.1 Použitý software... 4 3.2
PROBLEMATICKÉ ASPEKTY GEOREFERENCOVÁNÍ MAP
Digitální technologie v geoinformatice, kartografii a DPZ PROBLEMATICKÉ ASPEKTY GEOREFERENCOVÁNÍ MAP Katedra geomatiky Fakulta stavební České vysoké učení technické v Praze Jakub Havlíček, 22.10.2013,
Význam a výpočet derivace funkce a její užití
OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat
VEKTOROVÁ POLE Otázky
VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x,
Jméno... Cvičení den... hodina... Datum...rok... Počet listů... Varianta A
æ æ Jméno... Cvičení den... hodina... Datum...rok... Počet listů.......... Varianta A 4 3 2 1 2 8 0 1 0 3 1. Vzhledem k reálnému parametru a diskutujte hodnost matice 2 1 0 1 2. 0 1 2 1 2 4 3 1 1 a 2.
Kristýna Bémová. 13. prosince 2007
Křivky v počítačové grafice Kristýna Bémová Univerzita Karlova v Praze 13. prosince 2007 Kristýna Bémová (MFF UK) Křivky v počítačové grafice 13. prosince 2007 1 / 36 Pojmy - křivky a jejich parametrické
Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 6 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Kartografická zobrazení použitá na našem území důležitá jsou zejména zobrazení pro státní mapová díla v
Tvorba modelu polí Rastrová reprezentace geoprvků Porovnání rastrové a vektorové reprezentace geoprvků Digitální model terénu GIS 1 155GIS1
GIS 1 155GIS1 Martin Landa Lena Halounová Katedra geomatiky ČVUT v Praze, Fakulta stavební #6 1/20 Copyright c 2013-2018 Martin Landa and Lena Halounová Permission is granted to copy, distribute and/or
ZEMĚMĚŘICKÝ ÚŘAD. Geografická data pro podporu rozhodování veřejné správy
ZEMĚMĚŘICKÝ ÚŘAD Geografická data pro podporu rozhodování veřejné správy Internet ve státní správě a samosprávě 1. 4. 2019 Obsah Jaké produkty/data poskytuje ČÚZK/ZÚ Informace o datech/produktech Jak lze
Jana Dannhoferová Ústav informatiky, PEF MZLU
Počítačová grafika Křivky Jana Dannhoferová (jana.dannhoferova@mendelu.cz) Ústav informatiky, PEF MZLU Základní vlastnosti křivek křivka soustava parametrů nějaké rovnice, která je posléze generativně
Laserové skenování (1)
(1) Prohloubení nabídky dalšího vzdělávání v oblasti zeměměřictví a katastru nemovitostí ve Středočeském kraji CZ.1.07/3.2.11/03.0115 Projekt je finančně podpořen Evropským sociálním fondem astátním rozpočtem
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník SOUŘADNICOVÉ SOUSTAVY VE FOTOGRAMMETRII
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník SOUŘADNICOVÉ SOUSTAVY VE FOTOGRAMMETRII SOUŘADNICOVÉ SOUSTAVY VE FTM hlavní souřadnicové soustavy systém snímkových souřadnic systém modelových
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
Příloha. Metodický návod pro identifikaci KB
Příloha Metodický návod pro identifikaci KB Listopad 2009 Obsah 1. Úvod... 3 2. Datové podklady... 3 3. Nástroje... 4 4. Pracovní postup... 4 4.1 Tvorba digitálního modelu terénu a vygenerování drah soustředěného
Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem
Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem Podle mateiálu ESO přeložil Rostislav Halaš Úkol: Změřit vzdálenost Země Slunce (tzv. astronomickou jednotku AU) pozorováním přechodu
mapa Moravy podle J.A.Komenske ho, roku 1627
mapa Moravy podle J.A.Komenske ho, roku 1627 TOPOGRAFICKÉ PLOCHY zemský povrch je členitý, proto se v technické praxi nahrazuje tzv. topografickou plochou, která má přibližně stejný průběh (přesné znázornění
GIS Geografické informační systémy
GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu
Topografické plochy KG - L MENDELU. KG - L (MENDELU) Topografické plochy 1 / 56
Topografické plochy KG - L MENDELU KG - L (MENDELU) Topografické plochy 1 / 56 Obsah 1 Úvod 2 Křivky a body na topografické ploše 3 Řez topografické plochy rovinou 4 Příčný a podélný profil KG - L (MENDELU)
Aplikační úlohy ve výuce GIS
Aplikační úlohy ve výuce GIS pro software Idrisi Kilimanjaro Ing. Martin KLIMK LIMÁNEK Mendelova zemědělsk lská a lesnická univerzita v Brně Lesnická a dřevad evařská fakulta Ústav 411 Geoinformačních
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 2/3 GPS - Výpočet drah družic školní rok
Staré mapy TEMAP - elearning
Staré mapy TEMAP - elearning Modul 5 Digitalizace glóbů Ing. Markéta Potůčková, Ph.D. 2015 Přírodovědecká fakulta UK v Praze Katedra aplikované geoinformatiky a kartografie Motivace Glóby vždy byly a jsou
Výpočet křivosti křivek ve stavební praxi
Přechodnice podle Nördlinga (kubická parabola) Vypočtěte křivost Nördlingovy přechodnice v bodě x=0 a x=l x y( x) 6LR x- vzdálenost bodu přechodnice od začátku přechodnice v tečně y- kolmá vzdálenost bodu
GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY
GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY KGI/APGPS RNDr. Vilém Pechanec, Ph.D. Univerzita Palackého v Olomouci Univerzita Palackého v Olomouci INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Environmentální vzdělávání rozvíjející
GEODETICKÉ VÝPOČTY I.
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. TABELACE FUNKCE LINEÁRNÍ INTERPOLACE TABELACE FUNKCE Tabelace funkce se v minulosti často využívala z důvodu usnadnění
Maticová optika. Lenka Přibylová. 24. října 2010
Maticová optika Lenka Přibylová 24. října 2010 Maticová optika Při průchodu světla optickými přístroji dochází k transformaci světelného paprsku, vlnový vektor mění úhel, který svírá s optickou osou, paprsek
POSKYTOVÁNÍ A UŽITÍ DAT Z LETECKÉHO LASEROVÉHO SKENOVÁNÍ (LLS)
POSKYTOVÁNÍ A UŽITÍ DAT Z LETECKÉHO LASEROVÉHO SKENOVÁNÍ (LLS) Petr Dvořáček Zeměměřický úřad ecognition Day 2013 26. 9. 2013, Praha Poskytované produkty z LLS Digitální model reliéfu České republiky 4.
Výpočet potřeby tepla na vytápění
Výpočet potřeby tepla na vytápění Výpočty a posouzení byly provedeny při respektování zásad CSN 73 05 40-2:2011, CSN EN ISO 13789, CSN EN ISO 13790 a okrajových podmínek dle TNI 73 029, TNI 73 030. Vytvořeno
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory
Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné
Z E M Ě M Ě Ř I C K Ý Ú Ř A D ANALÝZY (NE)VIDITELNOSTI
Z E M Ě M Ě Ř I C K Ý Ú Ř A D ANALÝZY (NE)VIDITELNOSTI Viola Dítětová Antonín Bačo Konference GIS ESRI v ČR Kongresové centrum Praha 3. listopadu 2016 ANALÝZY (NE)VIDITELNOSTI Obsah (struktura) prezentace:
1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,
KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce
Přednášky z předmětu Aplikovaná matematika, rok 2012
Přednášky z předmětu Aplikovaná matematika, rok 2012 Robert Mařík 23. ledna 2015 2 Obsah 1 Přednášky 2012 5 2 Písemky 2012 9 3 4 OBSAH Kapitola 1 Přednášky 2012 1. prednaska, 16.2.2012 -----------------------
Bézierovy křivky Bohumír Bastl KMA/GPM Geometrické a počítačové modelování Bézierovy křivky GPM 1 / 26
Bézierovy křivky Bohumír Bastl (bastl@kma.zcu.cz) KMA/GPM Geometrické a počítačové modelování Bézierovy křivky GPM 1 / 26 Opakování Spline křivky opakování Bézierovy křivky GPM 2 / 26 Opakování Interpolace
Zdroje dat GIS. Digitální formy tištěných map. Vstup dat do GISu:
Zdroje dat GIS Primární Sekundární Geodetická měření GPS DPZ (RS), fotogrammetrie Digitální formy tištěných map Kartografické podklady (vlastní nákresy a měření) Vstup dat do GISu: Data přímo ve potřebném
VEKTOROVÁ POLE VEKTOROVÁ POLE
Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x, y), f 2 (x, y)) jako vektor s
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Cvičení z matematiky geometrie (CZMg) Systematizace a prohloubení učiva matematiky Planimetrie, Stereometrie, Analytická geometrie, Kombinatorika, Pravděpodobnost a statistika Třída: 4.