a) Buněčná stěna b) Buněčné membrány c) Jádro d) Membránové struktury

Rozměr: px
Začít zobrazení ze stránky:

Download "a) Buněčná stěna b) Buněčné membrány c) Jádro d) Membránové struktury"

Transkript

1 MBRO ) Architektura buňky 1 a) Buněčná stěna b) Buněčné membrány c) Jádro d) Membránové struktury Martin Fellner Laboratoř růstových regulátorů PřF UP v Olomouci a ÚEB AVČR

2 2 Odhalení struktury buňky: - elektronová mikroskopie - světelná mikroskopie Laserová konfokální mikroskopie, reportérové molekuly (fluorescenční barviva, fluorescenční proteiny - GFP) - chemie a mol. biologie Hmotnostní spektrometrie především studium buněčné stěny

3 a) Buněčná stěna 3 Architektura buněčné stěny List Zinnia - P-houbový parenchym, AS-vzduchové prostory usnadňují výměnu plynů. Epidermální buňky okvětního lístku Hledíku většího (Antirrhinum majus) odráží světlo a tím zvyšují jas květu. Xylémová tracheida s radiálními ztluštěninami zvyšují pevnost tracheidy při transportu vody.

4 Obrázek z transmisního elektronového mikroskopu spojení tří buněk 4 Primární buněčná stěna: - formuje kostru rostliny - určuje morfologii rostliny - dynamická, mění se - určuje rychlost a směr růstu Sekundární buněčná stěna: - pevnější, složitější struktura Střední lamela spojuje k sobě primární buněčné stěny jednotlivých buněk tvoří se při dělení buněk a roste při zvětšování buňky. Roh buněk je vyplněn na pektin bohatými polysacharidy; u starších buněk je materiál degradován a vzniká vzduchový prostor; G - Golgiho aparát, ER endoplazmat. retikulum, M mitochondrie, V vakuola

5 Primární buněčná stěna: 1. Celulóza Uloženo v matrix pektinových polysacharidů 2. Zesíťující glykany 3. Strukturní proteiny a fenylpropanoidy 5 1. Celulóza % DW buněčné stěny - řetězce 2 až 20 tisíc (1-4)-β-D-glukózových jednotek - uspořádané v mikrofibrilách (36 celulózových řetězců v 1 mikrofibrile) Kalóza polymer glukózy - glukózové jednotky mají vazbu (1-3)-β-D =>helikální tvar - netvoří mikrofibrily - výskyt: pylová zrna, pylová láčka, buň. přepážky v dělících se buňkách a buňkách napadených patogenem

6 2. Zesíťující glykany (dříve hemicelulóza) drží pohromadě celulózovou síť; tvoří vodíkové vazby s celulózou i spolu navzájem 6 Xyloglukan (XyG) Glukózová kostra Vedlejší řetězec z xylózy a arabinózy Xylózová kostra Vedlejší řetězec z kys. glukoronové Glukoronoarabinoxylan (GAX) Kostra z (1-4)-spojených xylózových jednotek + vedlejší řetězce z arabinózy a kyseliny glukoronové Vedlejší řetězec z arabinózy

7 Primární buněčná stěna krytosemenných Typ I a Typ II 7 Dvouděložné a polovina jednoděložných (množství celulózy = množství xyloglukanů) Jednoděložné skupiny Comelinoid (bromélie, palmy, trávy, zázvory; hlavně glukoronoarabinoxylany; u obilovin beta-glukany)

8 Polymery pektinové matrix tvoří druhou síť v primární buněčné stěně 8 Pektiny = heterogenní směs rozvětvených a vysoce hydratovaných polysacharidů bohatých na kyselinu D-galakturonovou Pektiny Homogalakturonan (HG) lineární řetězec kys. galakturonové Rhamnogalakturonan lineární řetězec střídajících se reziduí kys. galakturonové a rhamnózy Pektiny ovlivňují porozitu buněčné stěny a iontovou rovnováhu; pomáhají detekovat přítomnost symbiotických organizmů, patogenů a hmyzu; velice rozšířené v buněčné stěně plodů

9 9 Monomery homogalacturonanu (HG) spojeny apiózou => dimer mrg-ii = monorhamnogalacturonan Dimery mrg-ii spojeny borem přes apiózu => drg-ii-b = rhamnogalacturonan Rhamnogalacturonan II complex Monorhamno-galacturonan (rhamnogalacturonan II) Další funkce bóru: - inkorporace proteinů, pektinů a prekurzorů do CW (intina) - určování velikosti pórů v CW (buněčné kultury) (1999)

10 3. Strukturní proteiny nepolysacharidová složka, tvoří třetí síť v buněčné stěně Typu I; kontrola prodlužování buněčné stěny a interakce pylu z bliznou 10 1) Glykoproteiny bohaté na hydroxyproliny Extensin tvar tyčky, odpovědný za rigiditu buň. stěny 2) Glykoproteiny bohaté na proliny 3) Proteiny bohaté na glycin 4) Glykoproteiny bohaté na threoniny 5) Arabinogalaktanové proteiny z 95% tvořeny cukry; zakotveny v plazmatické membráně prostřednictvím fosfatidylinositolové kotvy; důležité pro signalizaci Buněčná stěna Typu II - málo strukturních proteinů, neobsahují extensin, bohaté na threonin a fenolické složky = fenylpropanoidy Fenolické složky = kys. hydroxyskořicová, spojuje polysacharidy s proteiny

11 Nová buněčná stěna vzniká během buněčného dělení 11 Golgiho vezikuly s glykoproteiny a necelulózovými polysacharidy míří k dělícímu vřeténku fúzují a vytváří fragmozómy. Fragmozómy rostou směrem ke stěně sousední buňky, kde fúzují z plazmatickou membránou oddělení obsahu dvou dceřiných buněk.

12 Golgiho vezikuly přinášejí necelulózní komponenty. Celulózové mikrofibrily jsou syntetizovány enzymem celulóza syntázou (CESA) (enzym vestavěný do plazmatické membrány). Celulózové mikrofibrily jsou vytlačovány z plazmatické membrány do buněčné stěny. 12 Během vývoje buňky zvětšují délku 20 50x. Buněčná stěna se rovněž zvětšuje musí být rozvolněna a doplněna o nový materiál (vliv auxinu).

13 CESA jsou organizovány do multiproteinových celulóza syntáza komplexů (CSCs). 13 Arabidopsis thaliana: 10 izoforem CESA CESA1, CESA3, CESA6 zapojeny v syntéze primární buněčné stěny CESA4, CESA7, CESA8 zapojeny v produkci sekundární buněčné stěny Pro normální produkci celulózy jsou potřeba nejméně tři CESA. Live-cell imaging (vizualizace živých buněk): CESA se pohybuje a distribuuje na plazmatické membráně a podléhá i intracelulárnímu transportu. Ko-lokalizace microtubulů cytoskeletu (červeně) s YFP:CESA6 (zeleně) v buňkách etiolovaných hypokotylů Paredez AR et al. (2006) Science 312:

14 Sekundární buněčná stěna ukládá se na vnitřní straně primární buněčné stěny 14 Funkce upevnit vodivý systém a strukturu Pevnost - celulózové mikrofibrily obsahují celulózu s vyšším stupněm polymerizace, zvýšená krystalizace mikrofibril a vyšší stupeň organizace mikrofibril. Složení a vzor ukládání sekundární stěny se u buněk liší: Bavlník: 98% celulóza Semenná pletiva: necelulózové polysacharidy Obilný endosperm: manany (polymery manózy) využívány jako zdroj energie během klíčení semen a raný růst rostlinky β-glukany pro lidskou obživu; snižuji hladinu krevního cholesterolu

15 Ligniny směs fenylpropanoidů sekundární metabolity; častá součást sekundární buněčné stěny pevná a odolná stěna 15 Suberin podobný ligninu, hydrofóbní charakter; epidermální buňky stonků, korkových buněk, povrch poraněných buněk Kutin polymer mastných kyselin propojených estery; listy a povrch stonků; bariéra proti fúzi vodních par Vosky estery dlouhořetězcových mastných kyselin a alkoholů; syntetizovány v ER

16 b) Buněčné membrány 16 Protoplast je obklopený plazmatickou membránou Plazmatická membrána udržuje elektrochemické prostředí uvnitř buňky Plazmatická membrána - dvojvrstva polárních molekul lipidů spojených s řadou proteinů Fosfolipidy Glykolipidy Steroly Amfipatické molekuly: - hydrofóbní ocásky - hydrofilní (polární) hlavička Hydrofóbní ocásky mastné kyseliny, atomů uhlíku Nasycená mastná kyselina Nenasycená mastná kyselina

17 Hydrofilní (polární) hlavička obsahuje fosfátovou skupinu; hlavička glykolipidů obsahuje cukr 17 Fosfolipidy Steroly hydrofóbní uhlovodíková kostra a jednoduchá hydrofilní hydroxylová skupina (cholesterol) Lipidy ve vodě spontánně tvoří dvojvrstvy; hydrofóbní ocásky odpuzují vodu a interagují spolu

18 18 Integrální proteiny hydrofilní a hydrofóbní doména; někdy připojeny cukry Periferní proteiny interagují s lipidy a proteiny prostřednictvím solných můstků, hydrogenních vazeb, elektrostatických interakcí Zakotvené proteiny připojeny k dvojvrstvě pomocí lipidových kotev

19 19 Membránové proteiny: specifické transportéry (kanály, pumpy) přenos signálu (receptory) enzymatická katalýza (syntéza celulózy) strukturní funkce Membránové proteiny definují specificitu každého membránového systému Nepolární molekuly snadno difundují hydrofóbním jádrem dvojvrstvy Hydrofilní polární molekuly a ionty difundovat nemohou H 2 O výjimka, polární, je schopna difundovat membránou (malá molekula) Lipidy : proteiny : karbohydrátové řetězce 2 : 2 : 1

20 Plazma membrána tvoří hranici mezi živým protoplastem a vnějším prostředím 20 Plasmodezmata cytoplazmatické kanály (40-50 nm); propojují rostlinné buňky

21 21 Prostřednictvím plasmodezmat buňky sdílí plazmatickou membránu Ionty a malé molekuly (do 800 Da) volně difundují z buňky od buňky pomocí plasmodezmat Buňky jsou schopny zvyšovat velikost plasmodezmat (až pro molekuly do 10 kda) = Cytoplazmatické pouzdro

22 22 Maule AJ et al. (2012) Frontiers in Plant Science 3: 1-5 Syntéza kalózy enzym glykosyl syntáza (kalóza syntáza) (CalS1, CalS8 nově objevené geny, 2016) Degradace kalózy enzym β-1-3-glukanáza Signály spouštějící expresi genů zapojených v ukládání či degradaci kalózy: - stress (viry) indukce polypeptidu PDCB1 akumulace kalózy - ROS (reaktivní kyslíkové radikály) ovlivňují lokální redoxní stav nebo stav buňky Update 2016 Lim G-H et al. (2016) Cell Host & Microbe 19: Viry kódují proteiny, které manipulují s PD zvětšují velikost průchodu PD => usnadňují pohyb virových jednotek z buňky do buňky. Permeabilita PD je regulována PD-localizing proteins (PDLPs): ztráta funkce PDLP5 zvětšení prostupnosti PD, overexprese PDLP5 zmenšení prostupnosti PD

23 c) Jádro 23 Prominentní organela; 3 10 µm; většina genetické informace buňky N jádro NU jadérko; syntéza ribozomální RNA, úprava RNA a spojování s proteiny vznikají ribozomální podjednotky, které jsou transportovány do cytoplazmy NE - jaderná obálka; dvě dvojvrstvy oddělené lumenen (perinukleární prostor); obsahuje jaderné póry Chromatin komplex DNA a proteinů; vytváří chromozomy; v nedělící se buňce (interfáze) je chromatin ve formě vláken vytváří síť, dochází k transkripci genů a syntéze DNA.

24 Vnější membrána jaderné obálky je pokračováním ER a obsahuje ribozómy 24

25 Update 2018 Klíčové elementy zapojené v dynamice jádra Groves NR et al. (2018) Plant Physiology 176: Proteiny jaderné obálky zapojené v dynamice jádra SUN = Sad-1/UNC-84 proteins WIP = WPP domain-interacting proteins (KASH proteiny) WIT = WPP domain-interacting tail-anchored proteins (KASH proteiny) CRWN1 = Crowded Nuclei1

26 Jadérko je obaleno heterochromatinovou skořápkou obsahující NADs 26 NAD = nucleolus-associated chromatin domains NOR = nucleolus organizer regions

27 Jáderný pór se skládá až z 30 nukleoporinů 27 Nups nukleoporiny

28 LINC = Linker of nucleoskeleton and cytoskeleton (spojovač nukleoskeletu a cytoskeletu (u rostlin popsány zcela nedávno) 28 LINC jsou složeny z proteinů KASH na vnější jaderné obálce (ONM) a proteinů SUN na vnitřní jaderné obálce (INM). Vzájemně interagují v lumenu jaderné obálky a lumen přemosťují. SINE = SUN-Interacting nuclear envelope protein KASH proteiny: WIPs = WPP-domain interacting proteins; WITs = WPP-domain interacting tail-anchored proteins

29 d) Membránové struktury 29 Extenzivní, navzájem propojená série organel, která je zodpovědná za syntézu, úpravu a ukládání makromolekul. Transport mezi kompartmenty: - sekretované molekuly k povrchu buňky - vakuolární proteiny do vakuoly - membránové proteiny a lipidy z místa syntézy do dalších částí endomembránového systému

30 Endoplazmatické retikulum (ER) 30 Prostorová síť kontinuálních tubulů a zploštělých váčků - propojují jadernou obálku, prochází cytoplazmou a dávají základ PM; 16 domén Funkce: - syntéza, zpracování a rozdělování proteinů; i syntéza lipidů; - v ER jsou kotvící místa pro aktinová filamenta cytoskeletu - zásobárna Ca 2+ a regulace koncentrace Ca 2+ - senzor buněčných stresů - lešení pro vazbu různých signálních proteinů, např. TF upoutané na membránu - rezervoár receptorů pro rostlinné hormony - rostlinné ER je uspořádáno i ve fragmoplastu - dává vznik buněčné destičce a umožňuje vznik plasmodezmat

31 Proteiny zapojené ve tvarování membrán ER Arabidopsis Update 2014 Stefano G et al. (2014) Curr Opinion Plant Biol 22: HVA22 - homology proteinů Yop1 funkce neznámá RTNLB - homology proteinů retikulonů - overexprese => sevření lumenu ER, přeměna ER listu do tubulu RHD3 funkční homolog atlastinů; GTPáza - zprostředkuje fúzi membrán in vitro; GTPáza = hydroláza hydrolyzuje guanosintrifosfát (GTP) na guanosindifosfát (GDP) důležité v signalizaci: G-proteiny, elongační faktory) RL2 RHD3 specifický pro semena ko-precipituje s RTNLB13; současná exprese RL2 a RTNLB13 vede ke změně sítě ER Ztráta RHD3 nebo overexprese RHD3 s defektní GTPázovou doménou způsobuje vytváření aberantní morfologie ER. Specifické následky ve funkční homeostáze ER a ztráty integrity sítě organel.

32 3 typy ER membrán 32 1) Drsné ER má ribozómy; syntéza proteinů 2) Hladké ER bez ribozómů; 3) Jaderná obálka

33 Translace jaderných mrna začíná v cytozolu na volných ribozomech. 33 Syntéza proteinů ukončena v ER. Translokace rozpustných proteinů do lumenu ER. Integrální proteiny inkorporovány do membrány ER Úprava proteinů (např. glykosylace), jejich modifikace, která ovlivňuje trojrozměrné uspořádání proteinu. Transport upravených proteinů prostřednictvím vezikul. Fúze s Golgiho cisternami Prolaminy (zásobní proteiny) se vyhýbají Golgiho aparátu. Jsou transportovány přímo do vakuol.

34 34 Membrány hladkého ER syntéza lipidů V hladkém ER je syntetizován i triacylglycerol (semena a pylová zrna) Triacylglycerol se akumuluje mezi vnitřní a vnější membránou v místech, která obsahují proteiny oleosiny. Oleosomy

35 35 V hladkém ER jsou syntetizovány monomery vosků a kutinů (velice dlouhé řetězce mastných kyselin) Transport monomerů vně buňky není znám. Hypotéza

36 Golgiho aparát (diktyozom) 36 - cysternový štosek (1µm) 5-8 cisteren - trans-golgiho síť (TGN) tubulární struktura spojená s Golgiho štoskem - Golgiho matrix vláknitá klec ohraničující štosky a TGN Funkce: - syntéza, modifikace, balení a rozdělování makromolekul určených pro export k buněčné stěně nebo k další organelám - modifikace vedlejších cukerných řetězců glykoproteinů a glykolipidů (cukerné řetězce specifikují interakci mezi plazmatickou membránou a buněčnou stěnou) - zodpovědný za syntézu nebo zesítění glykanů Počet štosků: 20 až 10 tisíc

37 37 Transport prostřednictvím Golgiho aparátu je směrovaný Produkty z ER jsou transportovány prostřednictvím cis, medial či trans cisteren do TGN. Z TGN vznikají 2 typy vezikul: - pokryté proteinem clathrinem transport do vakuoly - pokryté jiným typem proteinů transport do plazmatické membrány a buněčné stěny Vezikuly pokryté COP proteiny transport uvnitř Golgi a z Golgi do TGN Proteiny určené pro vakuoly obsahují specifické AK a jsou transportovány pomocí MVB multivezikulárních tělísek.

38 Vezikuly vyměňují materiál s okolím buňky exocytózou a endocytózou 38 Exocytóza membrána Golgiho vezikuly fúzuje s plazmatickou membránou a obsah se vyleje do buněčné stěny - doručení nových proteinů a lipidů k PM - doručení proteinů a polysacharidů do vnějšího prostředí Endocytóza vrácení membránových komponent pro recyklaci či degradaci - příjem extracelulárních molekul - import vezikul odvozených z PM a pokrytých clathrinem - import vezikul odvozených z PM do vakuoly se děje prostřednictvím MVB (multivezikulárních tělísek)

39 Vakuola 39 Tekutinou naplněné kompartmenty pokryté tonoplastem; 30-90% objemu buňky Dospělé buňky velké vakuoly Mladé buňky (např. meristematické) větší počet malých vakuol Vakuoly pochází z provakuol, které pučí z ER Funkce: - velká vakuola omezuje metabolicky aktivní cytoplazmu do tenké vrstvy, zvětšuje její povrch a tím maximalizuje výměnu plynů a živin Tradescantia vakuoly buněk vlásků na tyčinkách obsahují antokyany - uchovávání iontů a molekul: rezervoár protonů, org. kyselin a metabolicky aktivních iontů (Ca 2+ ), polysacharidů, lytických enzymů, těžkých kovů, obranných látek (taniny, kys. šťavelová, proteázy, nukleázy), pigmentů, proteinů (v semenech) Update 2018 Martinoia E et al. (2018) Plant Cell Physiol 59:

Stavba dřeva. Základy cytologie. přednáška

Stavba dřeva. Základy cytologie. přednáška Základy cytologie přednáška Buňka definice, charakteristika strana 2 2 Buňky základní strukturální a funkční jednotky živých organismů Základní charakteristiky buněk rozmanitost (diverzita) - např. rostlinná

Více

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ SPOLEČNÉ ZNAKY ŽIVÉHO - schopnost získávat energii z živin pro své životní potřeby - síla aktivně odpovídat na změny prostředí - možnost růstu, diferenciace a reprodukce

Více

Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách

Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách Buňka Historie 1655 - Robert Hooke (1635 1703) - použil jednoduchý mikroskop k popisu pórů v řezu korku. Nazval je, podle podoby k buňkám včelích plástů, buňky. 18. - 19. St. - vznik buněčné biologie jako

Více

MEMBRÁNOVÉ STRUKTURY EUKARYONTNÍCH BUNĚK

MEMBRÁNOVÉ STRUKTURY EUKARYONTNÍCH BUNĚK MEMBRÁNOVÉ STRUKTURY EUKARYONTNÍCH BUNĚK PLASMATICKÁ MEMBRÁNA EUKARYOTICKÝCH BUNĚK Všechny buňky (prokaryotické a eukaryotické) jsou ohraničeny membránami zajišťujícími integritu a funkci buněk Ochrana

Více

Schéma rostlinné buňky

Schéma rostlinné buňky Rostlinná buňka 1 2 3 5 vakuola 4 5 6 Rostlinná buňka je eukaryotní buňkou se základními charakteristikami tohoto typu buňky. Krom toho má některé charakteristiky typické pro rostlinné buňky, jako je předevšímř

Více

FYZIOLOGIE ROSTLIN. Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz

FYZIOLOGIE ROSTLIN. Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz FYZIOLOGIE ROSTLIN Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz Studijní literatura: Hejnák,V., Zámečníková,B., Zámečník, J., Hnilička, F.: Fyziologie rostlin.

Více

pátek, 24. července 15 BUŇKA

pátek, 24. července 15 BUŇKA BUŇKA ŽIVOČIŠNÁ BUŇKA mitochondrie ribozom hrubé endoplazmatické retikulum cytoplazma plazmatická membrána mikrotubule lyzozom hladké endoplazmatické retikulum Golgiho aparát jádro jadérko chromatin volné

Více

- pro učitele - na procvičení a upevnění probírané látky - prezentace

- pro učitele - na procvičení a upevnění probírané látky - prezentace Číslo projektu Název školy Autor Tematická oblast CZ.1.07/1.5.00/34.0743 Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková Biologie 10 obecná biologie Organely eukaryotní buňky Ročník 1. Datum tvorby

Více

Buňka cytologie. Buňka. Autor: Katka www.nasprtej.cz Téma: buňka stavba Ročník: 1.

Buňka cytologie. Buňka. Autor: Katka www.nasprtej.cz Téma: buňka stavba Ročník: 1. Buňka cytologie Buňka - Základní, stavební a funkční jednotka organismu - Je univerzální - Všechny organismy jsou tvořeny z buněk - Nejmenší životaschopná existence - Objev v 17. stol. R. Hooke Tvar: rozmanitý,

Více

Nejmenší jednotka živého organismu schopná samostatné existence. Výměnu látek Růst Pohyb Rozmnožování Dědičnost

Nejmenší jednotka živého organismu schopná samostatné existence. Výměnu látek Růst Pohyb Rozmnožování Dědičnost BUŇKA Nejmenší jednotka živého organismu schopná samostatné existence Buňka je schopna uskutečňovat základní funkce organismu: obrázky použity z Nečas: BIOLOGIE LIDSKÉ TĚLO Alberts: ZÁKLADY BUNĚČNÉ BIOLOGIE

Více

Úvod do biologie rostlin Buňka ROSTLINNÁ BUŇKA

Úvod do biologie rostlin Buňka ROSTLINNÁ BUŇKA Slide 1a ROSTLINNÁ BUŇKA Slide 1b Specifické součásti ROSTLINNÁ BUŇKA Slide 1c Specifické součásti ROSTLINNÁ BUŇKA buněčná stěna Slide 1d Specifické součásti ROSTLINNÁ BUŇKA buněčná stěna plasmodesmy Slide

Více

BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA:

BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA: BUNĚČ ĚČNÁ STAVBA ŽIVÝCH ORGANISMŮ KLÍČOVÁ SLOVA: Prokaryota, eukaryota, viry, bakterie, živočišná buňka, rostlinná buňka, organely buněčné jádro, cytoplazma, plazmatická membrána, buněčná stěna, ribozom,

Více

BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ

BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ BIOMEMRÁNA BIOLOGICKÁ MEMBRÁNA - všechny buňky na povrchu plazmatickou membránu - Prokaryontní buňky (viry, bakterie, sinice) - Eukaryontní buňky vnitřní členění do soustavy membrán KOMPARTMENTŮ - za

Více

Biologie I. Buňka II. Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings

Biologie I. Buňka II. Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings Biologie I Buňka II Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings BUŇKA II centrioly, ribosomy, jádro endomembránový systém semiautonomní organely peroxisomy

Více

Buňky, tkáně, orgány, soustavy

Buňky, tkáně, orgány, soustavy Lidská buňka buněčné organely a struktury: Jádro Endoplazmatické retikulum Goldiho aparát Mitochondrie Lysozomy Centrioly Cytoskelet Cytoplazma Cytoplazmatická membrána Buněčné jádro Jadérko Karyoplazma

Více

Základy buněčné biologie

Základy buněčné biologie Maturitní otázka č. 8 Základy buněčné biologie vypracovalo přírodozpytné sympózium LP, AM & DK na konferenci v Praze, 1. Máje 2014 Buňka (cellula) je nejmenší známý útvar, který je schopný všech životních

Více

Univerzita Karlova v Praze - 1. lékařská fakulta. Buňka. Ústav pro histologii a embryologii

Univerzita Karlova v Praze - 1. lékařská fakulta. Buňka. Ústav pro histologii a embryologii Univerzita Karlova v Praze - 1. lékařská fakulta Buňka. Stavba a funkce buněčné membrány. Transmembránový transport. Membránové organely, buněčné kompartmenty. Ústav pro histologii a embryologii Doc. MUDr.

Více

Endomembránový systém rostlinné buňky. Rostlinná cytologie, Katedra experimentální biologie rostlin PřF UK

Endomembránový systém rostlinné buňky. Rostlinná cytologie, Katedra experimentální biologie rostlin PřF UK Endomembránový systém rostlinné buňky Rostlinná cytologie, Katedra experimentální biologie rostlin PřF UK Endomembránový systém: systém vnitřních membrán eukaryotické buňky Součástí je: -Jaderný obal -Endoplazmatické

Více

STRUKTURA EUKARYONTNÍCH BUNĚK

STRUKTURA EUKARYONTNÍCH BUNĚK STRUKTURA EUKARYONTNÍCH BUNĚK EUKARYOTICKÉ ORGANELY Jádro Ribozomy Endoplazmatické retikulum Golgiho aparát Lysozomy Endozomy Mitochondrie Plastidy Vakuola Cytoskelet Vznik eukaryotického jádra Jaderný

Více

STRUKTURA EUKARYONTNÍCH BUNĚK

STRUKTURA EUKARYONTNÍCH BUNĚK STRUKTURA EUKARYONTNÍCH BUNĚK EUKARYOTICKÉ ORGANELY Jádro Ribozomy Endoplazmatické retikulum Golgiho aparát Lysozomy Endozomy Mitochondrie Plastidy Vakuola Cytoskelet Vznik eukaryotického jádra Jaderný

Více

Současná formulace: Buňka je minimální jednotka, která vykazuje všechny znaky živých soustav

Současná formulace: Buňka je minimální jednotka, která vykazuje všechny znaky živých soustav Buněčná teorie: Počátky formování: 1840 a dále, Jan E. Purkyně myšlenka o analogie rostlinného a živočišného těla (buňky zrníčka) Schwann T. Virchow R. nové buňky vznikají pouze dělením buněk již existujících

Více

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu:

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu: Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu: VY_32_INOVACE_05_BUŇKA 2_P1-2 Číslo projektu: CZ 1.07/1.5.00/34.1077

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání

Více

Buňka buňka je základní stavební a funkční jednotka živých organismů

Buňka buňka je základní stavební a funkční jednotka živých organismů Buňka - buňka je základní stavební a funkční jednotka živých organismů - je pozorovatelná pouze pod mikroskopem - na Zemi existuje několik typů buněk: 1. buňky bez jádra (prokaryotní buňky)- bakterie a

Více

Interakce buněk s mezibuněčnou hmotou. B. Dvořánková

Interakce buněk s mezibuněčnou hmotou. B. Dvořánková Interakce buněk s mezibuněčnou hmotou B. Dvořánková Obsah přednášky Buňka a její organely Extracelulární matrix Interakce buněk s ECM i navzájem Kultivace buněk in vitro Buněčné jádro Alberts: Molecular

Více

- význam: ochranná funkce, dodává buňce tvar. jádro = karyon, je vyplněné karyoplazmou ( polotekutá tekutina )

- význam: ochranná funkce, dodává buňce tvar. jádro = karyon, je vyplněné karyoplazmou ( polotekutá tekutina ) Otázka: Buňka a dělení buněk Předmět: Biologie Přidal(a): Štěpán Buňka - cytologie = nauka o buňce - rostlinná a živočišná buňka jsou eukaryotické buňky Stavba rostlinné (eukaryotické) buňky: buněčná stěna

Více

Bílkoviny a rostlinná buňka

Bílkoviny a rostlinná buňka Bílkoviny a rostlinná buňka Bílkoviny Rostliny --- kontinuální diferenciace vytváření orgánů: - mitotická dělení -zvětšování buněk a tvorba buněčné stěny syntéza bílkovin --- fotosyntéza syntéza bílkovin

Více

Prokaryotická X eukaryotická buňka. Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen)

Prokaryotická X eukaryotická buňka. Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Cytoplazmatická membrána osemipermeabilní ofosfolipidy, bílkoviny otransport látek, receptory,

Více

3) Membránový transport

3) Membránový transport MBR1 2016 3) Membránový transport a) Fyzikální principy b) Regulace pohybu roztoků membránami a jejich transportéry c) Pumpy 1 Prokaryotická buňka Eukaryotická buňka 2 Pohyb vody první reakce klidných

Více

3 a) Fyzikální principy. 5 Chemický potenciál (µ s ) (volná energie na jeden mol: J/mol) * = chemický potenciál roztoku s za standartních podmínek

3 a) Fyzikální principy. 5 Chemický potenciál (µ s ) (volná energie na jeden mol: J/mol) * = chemický potenciál roztoku s za standartních podmínek MBRO1 1 2 2017 3) Membránový transport Prokaryotická buňka Eukaryotická buňka a) Fyzikální principy b) Regulace pohybu roztoků membránami a jejich transportéry c) Pumpy Pohyb vody první reakce klidných

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání

Více

Přijímací zkoušky BGI Mgr. 2016/2017. Počet otázek: 30 Hodnocení každé otázky: 1 bod Čas řešení: 60 minut. Varianta B

Přijímací zkoušky BGI Mgr. 2016/2017. Počet otázek: 30 Hodnocení každé otázky: 1 bod Čas řešení: 60 minut. Varianta B Přijímací zkoušky BGI Mgr. 2016/2017 Počet otázek: 30 Hodnocení každé otázky: 1 bod Čas řešení: 60 minut Varianta B A1. Čepička na 5' konci eukaryotické mrna je tvořena a. 7-methylguanosin trifosfátem

Více

5. Lipidy a biomembrány

5. Lipidy a biomembrány 5. Lipidy a biomembrány Obtížnost A Co je chybného na často slýchaném konstatování: Biologická membrána je tvořena dvojvrstvou fosfolipidů.? Jmenujte alespoň tři skupiny látek, které se podílejí na výstavbě

Více

Buněčné membránové struktury. Buněčná (cytoplazmatická) membrána. Jádro; Drsné endoplazmatické retikulum. Katedra zoologie PřF UP Olomouc

Buněčné membránové struktury. Buněčná (cytoplazmatická) membrána. Jádro; Drsné endoplazmatické retikulum. Katedra zoologie PřF UP Olomouc Buněčné membránové struktury Katedra zoologie PřF UP Olomouc Většina buněčných membránových struktur jsou vzájemně propojeny (neustálá komunikace, transport materiálu) Zásobní Zásobní Endocytóza Endocytóza

Více

Prokaryota x Eukaryota. Vibrio cholerae

Prokaryota x Eukaryota. Vibrio cholerae Živočišná buňka Prokaryota x Eukaryota Vibrio cholerae Dělení živočišných buněk: buňky jednobuněčných organismů (volně žijící samostatné jednotky) buňky mnohobuněčných větší morfologické i funkční celky

Více

Buňka. Autor: Mgr. Jitka Mašková Datum: Gymnázium, Třeboň, Na Sadech 308

Buňka. Autor: Mgr. Jitka Mašková Datum: Gymnázium, Třeboň, Na Sadech 308 Buňka Autor: Mgr. Jitka Mašková Datum: 27. 10. 2012 Gymnázium, Třeboň, Na Sadech 308 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0702 VY_32_INOVACE_BIO.prima.02_buňka Škola Gymnázium, Třeboň, Na Sadech

Více

BUNĚČNÁ STĚNA doplňkový text k přednáškám z Anatomii rostlin David Reňák

BUNĚČNÁ STĚNA doplňkový text k přednáškám z Anatomii rostlin David Reňák BUNĚČNÁ STĚNA doplňkový text k přednáškám z Anatomii rostlin David Reňák Funkce: strukturní a mechanická opora buňky, udržování tvaru, usměrňování buněčného dělení a celkové architektury rostliny, zásoba

Více

- v interfázi dále viditelné - jadérko, jaderný skelet, jaderný obal

- v interfázi dále viditelné - jadérko, jaderný skelet, jaderný obal Buňka buňka : 10-30 mikrometrů největší buňka : vajíčko životnost : hodiny: leukocyty, erytrocyty: 110 130 dní, hepatocyty: 1 2 roky, celý život organismu: neuron počet bb v těle: 30 biliónů pojem buňka

Více

d) Kanály e) Přenašeče a co-transportéry, mediátory difúze a sekundární aktivní transport f) Intracelulární transport proteinů

d) Kanály e) Přenašeče a co-transportéry, mediátory difúze a sekundární aktivní transport f) Intracelulární transport proteinů MBR2 2016 2) Membránový transport 1 d) Kanály e) Přenašeče a co-transportéry, mediátory difúze a sekundární aktivní transport f) Intracelulární transport proteinů d) Kanály Rostliny: iontové kanály a akvaporiny

Více

Biologie buňky. systém schopný udržovat se a rozmnožovat

Biologie buňky. systém schopný udržovat se a rozmnožovat Biologie buňky 1665 - Robert Hook (korek, cellulae = buňka) Cytologie - věda zabývající se studiem buňek Buňka ozákladní funkční a stavební jednotka živých organismů onejmenší známý uspořádaný dynamický

Více

Mendělejevova tabulka prvků

Mendělejevova tabulka prvků Mendělejevova tabulka prvků V sušině rostlin je obsaženo přibližně 45% uhlíku, 42% kyslíku, 6,5% vodíku, 1,5% dusíku a 5% minerálních prvků. Tzv. organogenní prvky (C, O, H, N) představují tedy 95% veškerých

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tématická Odborná biologie, část biologie Společná pro

Více

TUKY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 15. 3. 2013. Ročník: devátý

TUKY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 15. 3. 2013. Ročník: devátý TUKY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 15. 3. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí s lipidy. V rámci tohoto

Více

VAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost

VAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost VAKUOLA membránou ohraničený váček membrána se nazývá tonoplast běžná u rostlin, zvířata specializované funkce či její nepřítomnost VAKUOLA Funkce: uložiště odpadů a uskladnění chemických látek (fenolické

Více

od eukaryotické se liší svou výrazně jednodušší stavbou a velikostí Dosahuje velikosti 1-10 µm. Prokaryotní buňku mají bakterie a sinice skládá se z :

od eukaryotické se liší svou výrazně jednodušší stavbou a velikostí Dosahuje velikosti 1-10 µm. Prokaryotní buňku mají bakterie a sinice skládá se z : Otázka: Buňka Předmět: Biologie Přidal(a): konca88 MO BI 01 Buňka je základní stavební jednotka živých organismů. Je to nejmenší živý útvar schopný samostatné existence a rozmnožování. Každá buňka má svůj

Více

BUNĚČNÉ JÁDRO FYZIOLOGIE BUŇKY JADÉRKO ENDOPLASMATICKÉ RETIKULUM (ER)

BUNĚČNÉ JÁDRO FYZIOLOGIE BUŇKY JADÉRKO ENDOPLASMATICKÉ RETIKULUM (ER) BUNĚČNÉ JÁDRO FYZIOLOGIE BUŇKY Buněčné jádro- v něm genetická informace Úkoly jádra-1) regulace dělení, zrání a funkce buňky; -2) přenos genetické informace do nové buňky; -3) syntéza informační RNA (messenger

Více

4. Eukarya. - plastidy, mitochondrie, cytoskelet, vakuola

4. Eukarya. - plastidy, mitochondrie, cytoskelet, vakuola 4. Eukarya - plastidy, mitochondrie, cytoskelet, vakuola Plastidy odděleny dvojitou membránou (u vyšších rostlin) - bezbarvé leukoplasty (heterotrofní pletiva) funkce: zásobní; proteinoplasty, - barevné

Více

8. Polysacharidy, glykoproteiny a proteoglykany

8. Polysacharidy, glykoproteiny a proteoglykany Struktura a funkce biomakromolekul KBC/BPOL 8. Polysacharidy, glykoproteiny a proteoglykany Ivo Frébort Polysacharidy Funkce: uchovávání energie, struktura, rozpoznání a signalizace Homopolysacharidy a

Více

Vakuola. Dutina uvnitř protoplastu, která u dospělých buněk zaujímá 30 až 90 % jejich

Vakuola. Dutina uvnitř protoplastu, která u dospělých buněk zaujímá 30 až 90 % jejich Vakuola Dutina uvnitř protoplastu, která u dospělých buněk zaujímá 30 až 90 % jejich objemu. Je ohraničená na svém povrchu membránou zvanou tonoplast. Tonoplast je součástí endomembránového systému buňky

Více

Cytologie I, stavba buňky

Cytologie I, stavba buňky Cytologie I, stavba buňky Ústav pro histologii a embryologii Předmět: Histologie a embryologie 1, B01131, obor Zubní lékařství Datum přednášky: 1.10.2013 Buňka je základní strukturální a funkční jednotka

Více

Bu?ka - maturitní otázka z biologie (6)

Bu?ka - maturitní otázka z biologie (6) Bu?ka - maturitní otázka z biologie (6) by Biologie - Pátek, Únor 21, 2014 http://biologie-chemie.cz/bunka-6/ Otázka: Bu?ka P?edm?t: Biologie P?idal(a): david PROKARYOTICKÁ BU?KA = Základní stavební a

Více

Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza

Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových

Více

2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:

2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné: Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících

Více

Aplikované vědy. Hraniční obory o ţivotě

Aplikované vědy. Hraniční obory o ţivotě BIOLOGICKÉ VĚDY Podle zkoumaného organismu Mikrobiologie (viry, bakterie) Mykologie (houby) Botanika (rostliny) Zoologie (zvířata) Antropologie (člověk) Hydrobiologie (vodní organismy) Pedologie (půda)

Více

MBRO ) Membránový transport

MBRO ) Membránový transport MBRO1 2018 3) Membránový transport 1 d) Kanály e) Přenašeče a co-transportéry, mediátory difúze a sekundární aktivní transport f) Intracelulární transport proteinů g) Sekreční dráha proteinů h) Rozpad

Více

Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

Z Buchanan et al. 2000

Z Buchanan et al. 2000 Průběh buněčného cyklu Z Buchanan et al. 2000 Změny v uspořádání mikrotubulů v průběhu buněčného cyklu A interfáze, kortikální mikrotubuly uspořádané v cytoplasmě pod plasmalemou B konec G2 fáze, mikrotubuly

Více

DUM č. 11 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika

DUM č. 11 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika projekt GML Brno Docens DUM č. 11 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 30.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Princip genové exprese, intenzita překladu

Více

Cytologie. Přednáška 2010

Cytologie. Přednáška 2010 Cytologie Přednáška 2010 Buňka 1.Velikost 6 200 µm, průměrná velikost 20um 2. JÁDRO a CYTOPLAZMA 3. ORGANELY (membránové) 4. CYTOPLAZMATICKÉ INKLUZE 5. CYTOSKELET 6. Funkční systémy eukaryotické buňky:

Více

prokaryotní Znaky prokaryoty

prokaryotní Znaky prokaryoty prokaryotní buňka Znaky prokaryoty Základní stavební jednotka bakterií a sinic Mikroskopická velikost viditelné pouze v optickém mikroskopu Buňka neobsahuje organely Obsahuje pouze 1 biomembránu cytoplazmatickou

Více

Přírodní polymery proteiny

Přírodní polymery proteiny Přírodní polymery proteiny Funkční úloha bílkovin 1. Funkce dynamická transport kontrola metabolismu interakce (komunikace, kontrakce) katalýza chemických přeměn 2. Funkce strukturální architektura orgánů

Více

Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA

Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA

Více

FYZIOLOGIE BUŇKY BUŇKA 5.3.2015. Základní funkce buněk: PROKARYOTICKÁ BUŇKA. Funkce zajišťují základní životní projevy buněk: EUKARYOTICKÁ BUŇKA

FYZIOLOGIE BUŇKY BUŇKA 5.3.2015. Základní funkce buněk: PROKARYOTICKÁ BUŇKA. Funkce zajišťují základní životní projevy buněk: EUKARYOTICKÁ BUŇKA FYZIOLOGIE BUŇKY BUŇKA - nejmenší samostatná morfologická a funkční jednotka živého organismu, schopná nezávislé existence buňky tkáně orgány organismus - fyziologie orgánů a systémů založena na komplexní

Více

Typy molekul, látek a jejich vazeb v organismech

Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Organismy se skládají z molekul rozličných látek Jednotlivé látky si organismus vytváří sám z jiných látek,

Více

in Cl - Δµ s = RTln(C si /C so ) + zf(e i - E o ) MBR ) Membránový transport

in Cl - Δµ s = RTln(C si /C so ) + zf(e i - E o ) MBR ) Membránový transport MBR1 2016 3) Membránový transport d) Kanály e) Přenašeče a cotransportéry, mediátory difúze a sekundární aktivní transport f) Intracelulární transport proteinů g) Sekreční dráha proteinů h) Rozpad proteinu

Více

Rostlinná cytologie. Přednášející: RNDr. Jindřiška Fišerová, Ph.D. Rostlinná cytologie, Katedra experimentální biologie rostlin PřF UK

Rostlinná cytologie. Přednášející: RNDr. Jindřiška Fišerová, Ph.D. Rostlinná cytologie, Katedra experimentální biologie rostlin PřF UK Rostlinná cytologie MB130P30 Přednášející: RNDr. Kateřina Schwarzerová,PhD. RNDr. Jindřiška Fišerová, Ph.D. Přijďte na katedru experimentální biologie rostlin vypracovat svou bakalářskou nebo diplomovou

Více

Bunka a bunecné interakce v patogeneze tkánového poškození

Bunka a bunecné interakce v patogeneze tkánového poškození Bunka a bunecné interakce v patogeneze tkánového poškození bunka - stejná genetická výbava - funkce (proliferace, produkce látek atd.) závisí na diferenciaci diferenciace tkán - specializovaná produkce

Více

Endozóm Endozóm: soubor membránových organel, regulujících transport v rámci endomembránového systému.

Endozóm Endozóm: soubor membránových organel, regulujících transport v rámci endomembránového systému. Endozóm Endozóm: soubor membránových organel, regulujících transport v rámci endomembránového systému. Endozomální organely přijímají váčky s nově syntetizovaným materiálem (v ER a GA) i endocytovaný materiál

Více

Eukaryotická buňka. Stavba. - hlavní rozdíly:

Eukaryotická buňka. Stavba. - hlavní rozdíly: Eukaryotická buňka - hlavní rozdíly: rostlinná buňka živočišná buňka buňka hub buněčná stěna ano (celulóza) ne ano (chitin) vakuoly ano ne (prvoci ano) ano lysozomy ne ano ne zásobní látka škrob glykogen

Více

OBSAH 1 ÚVOD... 7. 1.1 Výrobek a materiál... 7 1.2 Přehled a klasifikace materiálů pro výrobu... 8 2 ZDROJE DŘEVA... 13

OBSAH 1 ÚVOD... 7. 1.1 Výrobek a materiál... 7 1.2 Přehled a klasifikace materiálů pro výrobu... 8 2 ZDROJE DŘEVA... 13 OBSAH 1 ÚVOD................................................. 7 1.1 Výrobek a materiál........................................ 7 1.2 Přehled a klasifikace materiálů pro výrobu..................... 8 2

Více

Chemické složení buňky

Chemické složení buňky Chemické složení buňky Chemie života: založena především na sloučeninách uhlíku téměř výlučně chemické reakce probíhají v roztoku nesmírně složitá ovládána a řízena obrovskými polymerními molekulami -chemickými

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.18 Dřeviny Kapitola 9 Submikroskopická stavba

Více

The cell biology of rabies virus: using stealth to reach the brain

The cell biology of rabies virus: using stealth to reach the brain The cell biology of rabies virus: using stealth to reach the brain Matthias J. Schnell, James P. McGettigan, Christoph Wirblich, Amy Papaneri Nikola Skoupá, Kristýna Kolaříková, Agáta Kubíčková Historie

Více

2004 2006 Vladimír Vinter

2004 2006 Vladimír Vinter Stavba buněčné stěny Buněčná stěna tvoří celulózní obal buňky přiléhající z vnější strany k cytoplazmatické membráně. U cévnatých rostlin chybí pouze u spermatozoidů, spermatických buněk a někdy u vaječných

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským

Více

2. Buněčné membrány a vakuoly rostlinných buněk

2. Buněčné membrány a vakuoly rostlinných buněk 2. Buněčné membrány a vakuoly rostlinných buněk Biologické membrány (blány): model tekuté mosaiky Povrchová membrána rostlinné buňky, plasmalema Endomembránový systém rostlinné buňky: definice, složení,

Více

MBR ) Architektura buňky. e) Plastidy f) Mitochondrie a peroxizómy g) Cytoskelet

MBR ) Architektura buňky. e) Plastidy f) Mitochondrie a peroxizómy g) Cytoskelet MBR 2015 1) Architektura buňky 1 e) Plastidy f) Mitochondrie a peroxizómy g) Cytoskelet e) Plastidy 2 Vyskytují se v autotrofních eukaryotech. U rostlin se vyskytují téměř ve všech buňkách. Plastidy produkují:

Více

Struktura buňky - maturitní otázka z biologie

Struktura buňky - maturitní otázka z biologie Otázka: Struktura buňky Předmět: Biologie Přidal(a): Zuzlanka95 STAVBA EUKARYOTICKÉ BUŇKY Biomembrány Ohraničují a rozdělují buňku Podílí se na přenosu látek a probíhají na nich biochemické reakce Na povrchu

Více

NUKLEOVÉ KYSELINY. Složení nukleových kyselin. Typy nukleových kyselin:

NUKLEOVÉ KYSELINY. Složení nukleových kyselin. Typy nukleových kyselin: NUKLEOVÉ KYSELINY Deoxyribonukleová kyselina (DNA, odvozeno z anglického názvu deoxyribonucleic acid) Ribonukleová kyselina (RNA, odvozeno z anglického názvu ribonucleic acid) Definice a zařazení: Nukleové

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/ I n v e s t i c e d o r o z v o j e v z d ě l á v á n í I ti d j dělá á í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním

Více

BIOLOGIE BUŇKY. Aplikace nanotechnologií v medicíně zimní semestr 2016/2017. Mgr. Jana Rotková, Ph.D.

BIOLOGIE BUŇKY. Aplikace nanotechnologií v medicíně zimní semestr 2016/2017. Mgr. Jana Rotková, Ph.D. BIOLOGIE BUŇKY Aplikace nanotechnologií v medicíně zimní semestr 2016/2017 Mgr. Jana Rotková, Ph.D. OBSAH zařazení v systému organismů charakterizace buňky buněčné organely specializace buněk užitečné

Více

5) Klíčení semen a mobilizace rezerv

5) Klíčení semen a mobilizace rezerv MBR2 2016 5) Klíčení semen a mobilizace rezerv a) Klíčení semen b) Mobilizace rezerv 1 Podmínky prostředí, které mohou zrušit dormanci 2 Dormantní semena mohou za působení určitých vnějších podmínek klíčit:

Více

Hořčík. Příjem, metabolismus, funkce, projevy nedostatku

Hořčík. Příjem, metabolismus, funkce, projevy nedostatku Hořčík Příjem, metabolismus, funkce, projevy nedostatku Příjem a pohyb v rostlině Příjem jako ion Mg 2+, pasivní, iont. kanály Mobilní ion v xylému i ve floému, možná retranslokace V místě funkce vázán

Více

Vnitřní prostředí organismu. Procento vody v organismu

Vnitřní prostředí organismu. Procento vody v organismu Vnitřní prostředí organismu Procento vody v organismu 2 Vnitřní prostředí organismu Obsah vody v různých tkáních % VODY KREV 83% SVALY 76% KŮŽE 72% KOSTI 22% TUKY 10% ZUBNÍ SKLOVINA 2% 3 Vnitřní prostředí

Více

Co vás dnes čeká: Přednáška 2: Specifika rostlinné buňky trocha opakování vakuola buněčná stěna plastidy Fotosyntetické struktury

Co vás dnes čeká: Přednáška 2: Specifika rostlinné buňky trocha opakování vakuola buněčná stěna plastidy Fotosyntetické struktury Co vás dnes čeká: Přednáška 2: Specifika rostlinné buňky trocha opakování vakuola buněčná stěna plastidy Fotosyntetické struktury Sluneční záření - energie Eukaryontní buňky: Rozdíly mezi rostlinnou a

Více

Prokaryotní a eukaryotní buňka

Prokaryotní a eukaryotní buňka 2016-08-31 08:13 1/13 Prokaryotní a eukaryotní buňka Prokaryotní a eukaryotní buňka Nebuněčné a buněčné formy života Nebuněčné formy života viry viroidy priony Buněčné formy života prokaryotní eukaryotní

Více

Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D.

Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D. Proteiny Genová exprese 2013 Doc. MVDr. Eva Bártová, Ph.D. Bílkoviny (proteiny), 15% 1g = 17 kj Monomer = aminokyseliny aminová skupina karboxylová skupina α -uhlík postranní řetězec Znát obecný vzorec

Více

1 (2) CYTOLOGIE stavba buňky

1 (2) CYTOLOGIE stavba buňky 1 (2) CYTOLOGIE stavba buňky Buňka základní stavební a funkční jednotka všech živých organismů. (neexistuje život mimo buňku!) buňky se liší tvarem i velikostí - záleží při tom hlavně na jejich funkci.

Více

9. Lipidy a biologické membrány

9. Lipidy a biologické membrány Struktura a funkce biomakromolekul KBC/BPOL 9. Lipidy a biologické membrány Ivo Frébort Buněčné membrány Jádro buňky Golgiho aparát Funkce buněčných membrán Bariéry vůči toxickým látkám Pomáhají akumulovat

Více

Buňka. Kristýna Obhlídalová 7.A

Buňka. Kristýna Obhlídalová 7.A Buňka Kristýna Obhlídalová 7.A Buňka Buňky jsou nejmenší a nejjednodušší útvary schopné samostatného života. Buňka je základní stavební a funkční jednotkou živých organismů. Zatímco některé organismy jsou

Více

Růst a vývoj rostlin - praktikum MB130C78

Růst a vývoj rostlin - praktikum MB130C78 Růst a vývoj rostlin - praktikum MB130C78 Blok 3 Role aktinového cytoskeletu v morfogenezi rostlinných buněk - analýza fenotypu Úlohy: 1. Kvantifikace počtu zkroucených a správně tvarovaných trichomů u

Více

Endozóm Endozóm: soubor membránových organel, regulujících transport v rámci endomembránového systému.

Endozóm Endozóm: soubor membránových organel, regulujících transport v rámci endomembránového systému. Endozóm Endozóm: soubor membránových organel, regulujících transport v rámci endomembránového systému. Endozomální organely přijímají váčky s nově syntetizovaným materiálem (v ER a GA) i endocytovaný materiál

Více

Energetický metabolizmus buňky

Energetický metabolizmus buňky Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie

Více

Předmět: KBB/BB1P; KBB/BUBIO

Předmět: KBB/BB1P; KBB/BUBIO Předmět: KBB/BB1P; KBB/BUBIO Chemické složení buňky Cíl přednášky: seznámit posluchače se složením buňky po chemické stránce Klíčová slova: biogenní prvky, chemické vazby a interakce, uhlíkaté sloučeniny,

Více

Gymnázium Janka Kráľa, Ul. SNP 3, Zlaté Moravce. RNDr. Renáta Kunová, PhD. BIOLÓGIA Pracovný list 2 Téma: Bunka (cellula)

Gymnázium Janka Kráľa, Ul. SNP 3, Zlaté Moravce. RNDr. Renáta Kunová, PhD. BIOLÓGIA Pracovný list 2 Téma: Bunka (cellula) RNDr. Renáta Kunová, PhD. BIOLÓGIA Pracovný list 2 Téma: Bunka (cellula) Aktivity Pracovný list obsahuje kartičky (zalaminované) s obrázkami bunkových povrchov a organel, kartičky s popisom danej štruktúry

Více

BIOMEMBRÁNY. Sára Jechová, leden 2014

BIOMEMBRÁNY. Sára Jechová, leden 2014 BIOMEMBRÁNY Sára Jechová, leden 2014 zajišťují ohraničení buněk- plasmatické membrány- okolo buněčné protoplazmy, bariéra v udržování rozdílů mezi prostředím uvnitř buňky a okolím a organel= intercelulární

Více

Projekt realizovaný na SPŠ Nové Město nad Metují

Projekt realizovaný na SPŠ Nové Město nad Metují Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 Přírodovědné předměty Hana Gajdušková 1 Viry

Více

VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ

VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ FUNKCE PROTEINŮ 1 VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ Příklad: protein: dystrofin onemocnění: Duchenneova svalová dystrofie 2 3 4 FUNKCE PROTEINŮ: 1. Vztah struktury a funkce proteinů 2. Rodiny proteinů

Více