MENDELOVA UNIVERZITA V BRNĚ

Rozměr: px
Začít zobrazení ze stránky:

Download "MENDELOVA UNIVERZITA V BRNĚ"

Transkript

1 MENDELOVA UNIVERZITA V BRNĚ LESNICKÁ A DŘEVAŘSKÁ FAKULTA ÚSTAV NAUKY O DŘEVĚ Degradace dřeva buku (Fagus sylvatica) napadaného dřevokaznou houbou (Trametes versicolor) Bakalářská práce 2010 Tomáš Panáček

2 Čestné prohlášení Prohlašuji, že jsem bakalářskou práci na téma: Degradace dřeva buku (Fagus sylvatica) napadeného dřevokaznou houbou (Trametes versicolor) zpracoval sám a uvedl jsem všechny použité prameny. Souhlasím, aby moje bakalářská práce byla zveřejněna v souladu s 47b Zákona č. 111/1998 Sb., o vysokých školách a uložena v knihovně Mendelovy univerzity v Brně, zpřístupněna ke studijním účelům ve shodě s Vyhláškou rektora Mendelovy univerzity o archivaci elektronické podoby závěrečných prací. Autor kvalifikační práce se dále zavazuje, že před sepsáním licenční smlouvy o využití autorských práv díla s jinou osobou (subjektem) si vyžádá písemné stanovisko univerzity o tom, že předmětná licenční smlouva není v rozpor s oprávněnými zájmy univerzity a zavazuje se uhradit případný příspěvek na úhradu nákladů spojených se vznikem díla dle řádné kalkulace. V Brně, dne:.. Tomáš Panáček 3

3 Poděkování Chtěl bych poděkovat všem, kteří jakkoli pomohli při vypracování moji bakalářské práce. Velký dík patří především mému vedoucímu mé bakalářské práce, panu Ing. Jiřímu Holanovi Ph.D., jenž mi velkou měrou pomohl s vypracováním téhle práce, a zodpovězení mých dotazů týkající se problematiky dané věci. Největší poděkování patří moji rodině, která mě podporuje ve studiu. 4

4 Abstrakt Autor: Název práce: Tomáš Panáček Degradace dřeva buku (Fagus sylvatica) napadeného dřevokaznou houbou (Trametes versicolor (L. ex Fr.) Lloyd). Cílem bakalářské práce je pozorování degradace dřeva, na které působí dřevokazná houba bíle hniloby. Jako dřevokazná houba byla vybrána outkovká pestrá (Trametes versicolor (L. ex Fr.) Lloyd), která po určitou dobu (4, 8, 12 a 16 týdnů) působila na zkušební tělíska dřeva buku (Fagus sylvatica). Za sledované fyzikální a mechanické vlastnosti jsem zvolil hustotu dřeva, hmotností úbytek, změnu vlhkosti a mez pevnosti v tlaku ve směru vláken. Zjištěné a následně vypočítané hodnoty jsem porovnával s kontrolními vzorky zkušebních tělísek. Vlastnosti degradovaných tělísek byly značně zhoršeny v porovnání s tělísky, které nebyly vystaveny působení dřevokazné houbě. Za změny pozorovaných vlastností dřeva může úbytek polysacharidů a polyfenolické části. Klíčová slova Buk lesní (Fagus sylvatica), dřevokazná houba, outkovka pestra (Trametes versicolor (Linnaeus ex Fries) Lloyd), degradace dřeva, fyzikální vlastnosti, mechanické vlastnosti, hustota, hmotnost, mez pevnosti. 5

5 Abstrakt Author: The name of the work: Tomáš Panáček Degradation of the beech wood (Fagus sylvatica) by wood-destroying fungus (Trametes versicolor (L. ex Fr.) Lloyd). The aim of this work is the observation of wood degradation which is infected by wood-destroying fungus of white decay. Varicoloured bracket (Trametes versicolor (L. ex Fr.) Lloyd) has been chosen as the wood-destroying fungus, which interacted with tested wood of beech (Fagus sylvatica) for certain time period ( 4, 8, 12, 16 weeks). I have chosen density, loss of the mass in wood, humidity changes and strenght limit of pressure applied along the fibres as the monitored physical and mechanical properties in wood. I compared the values that were detected and calculated with the values of control wood. The properties of the degraded wood were severely impaired in comparison to the wood, which had not been exposed to wood-destroying fungus. The changes in examined wood properties were caused mainly by the loss of polysaccharides and polyphenolic part of the wood. Key words: Beech (Fagus sylvatica), wood-destroying fungus, varicoloured bracket (Trametes versicolor (L. ex Fr.) Lloyd), wood degradation, physical properties, mechanical properties, density, mass, strenght limit 6

6 Obsah 1 Úvod Cíl práce Literární přehled Buk lesní Makroskopická stavba Mikroskopická stavba Chemické složení Fyzikální vlastnosti Mechanické vlastnosti Činitelé způsobující degradaci dřeva Biotičtí škůdci dřeva Houby způsobující degradaci dřeva Dřevokazné houby Outkovká pestrá (Trametes versicolor) Systematické zařazení Podmínky růstu Materiál a metodika Příprava zkoušky Zkušební tělíska Živná půda Houbová kultura Příprava zkoušky Příprava houbové kultury v Petriho miskách Příprava houbové kultury v kultivačních nádobách Příprava zkušebních tělísek Založení a časový interval zkoušky Vyjmutí tělísek Zařízení a pomůcky Stanovení výsledku zkoušky Změny vybraných fyzikálních vlastností Změna vybraných mechanických vlastností Zpracování výsledků.30 5 Výsledky 31 7

7 5.1 Výsledky měření hustoty Výsledky měření hmotnosti Výsledky změny vlhkosti Výsledky měření mechanických vlastností Shrnutí výsledku vybraných vlastností 49 6 Diskuze Změny fyzikálních vlastností Změny mechanických vlastností Závěr Summary 53 9 Seznam použité literatury Přílohy

8 1 Úvod Už odnepaměti je dřevo používáno jako nedílná součást běžného života. V dávných dobách bylo hlavně využíváno jako surovina pro udržování ohně, avšak postupem času s vynalézavosti a poznání člověka se odhalilo mnohem lepšího využití než jen jako obyčejné palivo a to hlavně při výrobě nástrojů a budování obydlí. Tento trend vydržel až do dnešní doby a to hlavně proto, že dřevo jako materiál má mnoho výhod oproti konkurenčním materiálům. Jako jeho největší a neoddiskutovatelnou předností je nevyčerpatelnost (při správném hospodaření) dřevní suroviny, jelikož se jedná o obnovitelný přírodní zdroj. Mezi jeho další příznivé vlastnosti můžeme zahrnout lehkost, pevnost, pružnost, tepelně-izolační vlastnosti a také příjemný estetický vzhled. Na druhou stranu i dřevo má své nevýhody, mezi které se může zařadit lehká vznětlivost a dobrá hořlavost, rozměrová a tvarová nestálost v důsledku změny vlhkosti a jedním z největších nedostatků dřeva je malá odolnost vůči biotickým a abiotickým činitelům. Přirozená trvanlivost dřeva je velmi závislá na chemické a anatomické stavbě, proto je tato skutečnost velmi důležité pro pochopení dané problematiky. Někteří činitelé napadají dřevo za každých podmínek (biotické faktory) a pro některé činitele musí vzniknout vhodné podmínky vlhkost, teplota, druh dřeviny (biotičtí činitelé). Dřevokazné houby vážně narušují strukturu dřeva a tím i jeho trvanlivost, použitelnost, mechanické a fyzikální vlastnosti a proto je velmi důležité vhodně dřevo chránit před napadením tímto činitelem. Chceme-li zamezit napadení dřevokaznými houbami, je velmi důležité poznat jaké jsou optimální podmínky pro vznik a šíření hub a následně porovnávat velikost změn vlastností dřeva. Tyto poznatky mohou velkou měrou zachránit spousty dřevní suroviny jak v lese tak na skladě pilařských závodů či přímo hotového výrobku a zachránit mnoho finančních prostředků. 9

9 2 Cíl práce Bakalářská práce se zabývá pozorováním změn vlastností dřeva napadeného dřevokaznou houbou bílého tlení v porovnání s dřevem, které nebylo vystaveno působení dřevokazné houby. Pro zkoušku byl vybrán konkrétní druh listnatého dřeva a to buk lesní (Fagus sylvatica) a za dřevokaznou houbu jsem zvolil outkovku pestrou (Trametes versicolor). Budu posuzovat jak se vlivem dřevokazné houby mění vybrané fyzikální a mechanické vlastnosti v závislosti na době působení (4, 8, 12 a 16 týdnů) a následně je porovnávat s kontrolními vzorky. Z fyzikálních vlastností budu pozorovat změnu hustoty, hmotnosti a vlhkosti. Sledovanou mechanickou vlastnost jsem zvolil mez pevnosti v tlaku ve směru vláken. Z výsledku by mělo byt patrné v jakém rozsahu a jak rychle se budou měnit vybrané vlastnosti v závislosti na době působení dřevokazné houby. 10

10 3 Literární přehled Dřevo je nejdůležitější trvale se obnovující materiál, avšak je třeba mít na zřeteli, že k použití ho je jen tolik, kolik jej přiroste. Do popřední dnes stále častěji vstupuje potřeba provádět řadu stavebních a konstrukčních opatření na ochranu dřeva. Spolehlivou a dlouhodobou ochranu dřeva zajistí i odborně provedená chemická ochrana, ale ani nejlepší chemická ochrana nemůže učinit více, než zpozdit zničení např. krovu (Žák, Reinprecht, 1998). Proto je velmi vhodné porozumět této problematice jak z hlediska přirozené trvanlivosti dřeva, která vychází z makroskopické a mikroskopická stavby dřeva a také z jeho chemického složení, tak z pohledu degradačního činitele, konkrétně tedy v našem případě dřevokazným houbám Buk lesní (Fagus sylvatica) Buk v naších lesích zaujímá přibližně 6% lesní půdy. Je jednou z nejpoužívanějších dřevin v dřevozpracujícím průmyslu. Patří mezi středně tvrdé a středně těžké dřeviny. Bukové dřevo nachází širokého uplatnění v nábytkářském odvětví, kde se velmi často využívá na výrobu ohýbaného nábytku. Dále se hojně používá na výroby parket, překližek, dýh, železničních pražců či kuchyňského nářadí. Dřevo se dobře povrchově dokončuje, moří, impregnuje, je velmi výhřevné, dříve se z něj suchou destilací dostával dřevní líh. Mezi nevýhody bukového dřeva patří sušení, jelikož dochází často k popraskání dřeva, zvláště při umělém způsobu sušení. Jeho hlavní nevýhodou je malá trvanlivost vůči biotickým činitelům Makroskopická stavba Dřevo pozorované pouhým okem (makroskopicky) má charakteristické morfologické znaky textury (kresba, barva, tvar a výskyt jednotlivých znaků dřeva). Znaky jsou typické pro určité dřeviny, což umožňuje určení příslušného druhu. Buk má typicky roztroušeně pórovité dřevo. Barva dřeva je narůžovělá, nahnědlá až červenohnědé. U straších stromů je častý výskyt nepravého jádra. Letokruhy jsou poměrně zřetelné, dřeňové paprsky jsou viditelné na všech řezech, na příčném řezu tvoří 11

11 husté pásy probíhající kolo na letokruhy, na radiálním zřetelná zrcadla, na tangenciálním 1-5 mm vysoké svislé tmavší pásky (Šlezingerová, Gandelová, 2004). Příčný řez- (transversální) prochází v rovině kolmé na osu kmene. Jsou zde viditelné zřetelné letokruhy, které vytvářejí přírůstové vrstvy. Z tohoto řezu můžeme vyhodnotit šířku letokruhu, procentuální zastoupení jarního a letního dřeva, ostrost přechodu mezi jarním a letní dřevem, výraznost hranice letokruhu. Radiální řez- (středový, fládrový) je veden rovnoběžně s osou kmene, prochází středem kmene, letokruhy zde vytváří rovnoběžné pásy, široké cévy rýhy. Tangenciální řez- (tečnový, fládrový) rovnoběžně vedený řez s osou kmene s určitou vzdáleností od dřeně. Jsou zde zřetelné rozmanité zakřivení letokruhu. Letokruhy vytvářejí na střední části parabolické útvary a na okraji je průběh téměř rovnoběžný, dřeňové paprsky jsou zde patrné jako široké a svislé pásy (Šlezingerová, Gandelová, 2004). Obr. 1 Základní řezy dřevem 1- letokruh, 2- jarní dřevo, 3- letní dřevo (Balabán, 1955) 12

12 3.1.2.Mikroskopická stavba Mikroskopická stavba neboli struktura dřeva je tvořena souborem anatomických znaků, respektive anatomických elementů, které tvoří dřevo. Stavbu dřeva na mikroskopické úrovni zkoumáme na mikroskopických preparátech dřeva pomocí mikroskopu. Dřevo se skládá většinou z mrtvých anatomických elementů, tedy z buněčných stěn a lumenů buněk. Struktura buněčné stěny je podmíněna typem buňky a stupněm jejího vývinu (Gandelová, Horáček, Šlezingerová, 2008). Základní stavební jednotkou buněčných stěn jsou elementární fibrily o průřezu asi 3,4 µm x 3,8 µm, vytvořené obvykle ze 40 makromolekul celulózy. Mikrofibrily se tvoří z 20 až 60 elementárních fibril za spoluúčasti minimálního podílu hemicelulóz a ligninu. Z mikrofibril a makrofibril, v kterých jsou mimo mikrofibril přítomné i hemicelulózové výplně a lignitové mikrovrstvy, se vytvářejí substanční lamely (Reinprecht, 1997). Střední lamela (SL) Má různou tloušťku, je amorfní a koloidní. U dřevin silně signifikuje. Je tvořena ligninem, pektinovými látkami a hemicelulózami. Primární stěna (P) Má rovněž malou tloušťku. Obsahuje celulózu, pektinové látky, hemicelulózy a lignin. Intenzivně signifikuje. Tvoří ji mnohovrstevná síť náhodné rozložení mikrofibril, avšak ve vnitřní části primární stěny jsou mikrofibrily uspořádány, mají převažující orientaci ve směru podélné osy buňky. Sekundární stěna (S) Je vytvořena ze 3 samostatných vrstev S1, S2, S3, které se odlišují svojí tloušťkou, orientací fibril a podílem i strukturou stavebních polymeru. (Reinprecht, 1997) Vnější vrstva S 1 mikrofibrily jsou zde orientovány do dvou navzájem kolmých seskupení, střední lamela S 2 je nejsilnější: mikrofibrily jsou zde seskupeny do dvou pravotočivých spirál, vnitřní vrstva S 3 je tenká, orientace mikrofibril je téměř kolmá na osu buňky. 13

13 Obr. 2 Schéma stavby buněčné stěny a) celkový pohled, b) příčný řez, c) detaily orientace mikrofibril, 1- vnitřní vrstva sekundární stěny, 2- střední vrstva sekundární stěny, 3- vnější stěna sekundární stěny, 4- primární stěna (Bobák, 1992) Na anatomické stavbě se podílejí: Cévy nebo-li tracheje jsou typické vodivé elementy dřeva listnatých dřevin. Tvoří ve dřevě uzavřenou síť axiálních vodivých drah (ve směru podélné osy kmene), jíž je vedena voda s rozpuštěnými minerálními látkami vzestupným směrem. Cévy jsou tvořeny většinou mrtvými soubory nad sebou uložených buněk tzv. cévních nebo-li tracheálních článků, jejichž původní příčné buněčné stěny se rozrušily nebo rozpustily. Zbytky těchto přihrádek mezi cévami se nazývají perforace. Libriformní vlákna jsou podstatnou částí dřeva většiny listnatých dřevin. Tvoří v průměru někde až 75 % celkového objemu dřeva. Jsou to protáhlé buňky s malými jednoduchými ztenčeninami na stěnách. Libriformní vlákna jsou axiálně uložené anatomické elementy, na příčném řezu jsou řezány v příčných rozměrech ve tvaru 4-6 úhelníkových ebeny. tvarově nepravidelných buněk. Na obou podélných řezech se zobrazují ve tvaru dlouhých zašpičatělých buněk s malým počtem drobných okrouhlých nebo štěrbinovitých teček na buněčných stěnách. U některých dřev spirální ztluštěniny. Tracheidy nebo-li cévice tvoří ve dřevě listnáčů přechodné typy anatomických elementů a funkcí jak vodivou tak mechanickou, někdy zásobní. 14

14 Cévovité tracheidy jsou přechodné anatomické elementy mezi typickými tracheidami dřeva jehličnanů a cévami (trachejemi) listnáčů. Jsou uzavřené s dvůrkatými ztenčeninami na stěnách, i spirálními. Doprovázejí cévy a slouží k vedení vody a rozpuštěnými minerálními látkami. Vazicentrické tracheidy mají výskyt v blízkosti cév, na stěnách dvůrkaté ztenčeniny. Částečně se podílejí na vodivé funkci. Vláknité tracheidy přechodný typ mezi tracheidou jehličnanů a libriformních vláken listnáčů. Jsou hodně podobné libriformním vláknům. Mají funkci zpevňovací, mechanickou, i funkce zásobní. Parenchymatické buňky podélného parenchymu (axiální) je tvořen obdélníkovými, čtvercovými nebo vřetenovitými parenchymatickými buňkami, jejichž podélná osa eventuálně charakter seskupení jsou orientovány rovnoběžně s podélnou osou kmene. Jsou to buňky živé s buněčným obsahem. Patří mezi anatomické elementy se zásobní funkci (škroby, jádrové látky) (Gandelová, Horáček, Šlezingerová, 2004). Parenchymatické buňky dřeňových paprsků jsou ve dřevě listnáčů ve větším zastoupení než u jehličnanů. Tvoří různě mohutná seskupení parenchymatických buněk orientovaných kolmo na průběh letokruhu. Jsou tvořeny živými parenchymatickými buňkami. Slouží k vedení ve směru kolmém na podélnou osu kmene a k ukládání zásobních látek, především škrobu (Šlezingerová, Gandelová, 2004). 15

15 Chemické složení Dřevo je velmi složitý komplex různých látek, z nichž základ tvoří polymery (biopolymery) celulóza, hemicelulóza a lignin. Tvorby a přeměna těchto polymerů jsou velmi složité procesy, řízené specifickými katalyzátory (Enzymy). Celulóza a hemicelulóza tvoří polysacharidickou část dřeva, charakter ligninu je polyfenolický. Tyto polymery tzv. hlavní složky dřeva. Jejich procentické zastoupení v dřevním komplexu je 90-97%, přičemž sacharidacká část tvoří 70% a lignin zbytek. Průměrné procentuální zastoupení celulózy ve dřevě je udáváno 35-55%, hemicelulózy 20-35% a ligninu 15-36%. V menší míře jsou ve dřevě zastoupeny další organické a také anorganické látky, které se označuji jako doprovodné (akcesorické) složky dřeva. Tvoří 3-10% dřevního komplexu (Šlezingerová, Gandelová, 2004). Tab. 1 Přehled chemického složení buku lesní lesního Dřevo Hlavní složky Doprovodné složky Sacharidická část Aromatická část Organické Anorganicke Celulóza Hemicelulóza Lignin Celulóza Celulóza je základní stavební složkou buněčných stěn dřeva.. V průměru celulóza tvoří 45-50% z hmotnosti dřeva. Dřevo obsahuje 35-56% celulózy, ve dřevě jehličnanů je obsah celulózy větší (46-56%) než ve dřevě listnáčů (41-48%) polysacharid tvořený z dlouhých nerozvětvených řetězců glukosových jednotek, které vznikají spojením D-glukósy spojené β 1, 4 vazbami, tj. vazba mezi prvním uhlíkem jedné a čtvrtým uhlíkem druhé molekuly. Základní stavební jednotkou celulózy je celobióza, která vzniká sloučením dvou molekul β-d glukopyranózy. Část celulózy má makromolekuly rozloženy pravidelně tzv. krystalická část a zbytek celulózy je bez prostorového uspořádání tzv. amorfní část. Řetězce celulózy jsou spojeny vodíkovou vazbou, díky které mají vlastnosti celulózy anizotropní charakter a mají vliv i na celkovou anizotropii mechanických a fyzikálních vlastností dřeva jako celku. Podíl krystalické a amorfní části celulózy má vliv na pružnost, míru bobtnání a dále ovlivňuje další fyzikální a mechanickém vlastnosti. Síly spojující krystality celulózy mají za následek, že je celulóza ve vodě a v organických rozpouštědlech nerozpustná. (Gandelová, Horáček, Šlezingerová, 2008). Je 16

16 Hemicelulózy Druhou polysacharidickou složkou ve dřevě je hemicelulóza. Od celulózy se liší především tím, že kromě D glukózy obsahují monosacharidické stavební jednotky pyranózové struktury( xylány, manány, galaktány). Obsah hemicelulóz ve dřevě je 20-35% a vyšší zastoupení je u listnatých dřevin. Hlavní rozdíl mezi hemicelulózou jehličnanů a listnáčů je v procentickém zastoupení jednotlivých hemicelulóz. Nejdůležitější hemicelulózou listnáčů jsou xylany (pentózy) až 35% a v malém zastoupení se vyskytují manány (hexózy) 3-5%. U jehličnanů jsou nejdůležitější hemicelulózou manány (hexózy) 20-25% a v malém množství je vyskytují xylany (pentózy)10-15%. Hemicelulózy mají vliv na chemické a fyzikální vlastnosti dřeva. Projevuje se to především při sušení, vaření a lisování dřeva (Požgaj, 1997). Lignin Spolu s celulózou tvoří lignin nejdůležitější a nejvíce zastoupenou složku ve dřevě. Zabezpečuje dřevnatění buněčných stěn dřeva. Zastoupení ve dřevě se pohybuje od 15 do 30 %. Vyšší obsah ligninu je ve dřevě jehličnanů (25-35%) než ve dřevě listnáčů (15-30%). Jeho procentuální zastoupení kolísá i v rámci různých částech kmene a větví, vyšší zastoupení je v kůře než ve dřevě. Chemické složení ligninu nebylo doposud kompletně definováno. Jedná se makromolekulární látku aromatické povahy. Skládá se z fenylpropanových jednotek, které jsou různě substituované, spojené eterovými vazbami. Dodává dřevu pevnost, především v tlaku, díky tomu že se do určité míry spojuje s chemickými vazbami (především s hemicelulózami) v rámci buněčných stěn a tvoří lignopolysacharidové komplexy. Tvoří trojrozměrnou strukturu, jelikož jeho molekuly jsou prostorově rozložené. Díky tomu mohou dobře vyplňovat volné prostory mezi fibrilami polysacharidů v buněčné stěně. Toto vyplňování a ukládání ligninu do buněčných stěn se nazývá lignifikace nebo-li dřevnatění. Nejvyšší zastoupení ligninu je ve střední lamele a snižuje se směrem k lumenu buněčné stěny. 17

17 Doprovodné složky dřeva Doprovodné látky dřeva, někdy nazývané akcesorické složky dřeva, jsou velmi početná skupina sloučenin s různorodým chemickým charakterem., které ve dřevě najdeme jen v malém množství. Tyto látky se dají z dřevního komplexu extrahovat rozpouštědly, (organickými rozpouštědly, vodou- tato skupina se také nazývá extraktiva, nebo se oddělují mineralizací neboli spalováním (anorganické látky). Množství extraktivních látek není u našich dřevin vyšší než 1-5%, ale v tropických dřevinách může dosáhnout hodnot až 30%. Anorganických látek je výskyt u dřevin mírného pásma velmi malý 0,5-1%. Každá dřevina má své specifické složení a množství těchto látek, však největší rozdíly jsou mezi jehličnany a listnáči. Doprovodné látky se rozdělují na anorganické látky, které vznikají především spalováním a na organické látky, mezi které patří terpeny, sacharidy, fenolické látky, bílkoviny atd. V této práci se především zaměřím na specifikaci terpenů. Tab. 2 Přehled podílu chemického složeni buku lesního (Požgaj, 1997) Buk lesní (Fagus sylvatica) celulóza 39,10% hemicelulóza 35,50% pentosany 22,10% lignin 23,80% popel 1,30% 18

18 Fyzikální vlastnosti dřeva Mezi základní fyzikální vlastnosti dřeva patří hustota, nasáklivost a bobtnání. U hustoty dřeva rozlišujeme hustotu v suchém stavu při vlhkosti 0% (ρ 0 ) a hustota dřeva při vlhkosti 12% (ρ 12 ). Nasáklivost dřeva je schopnost dřeva v důsledku pórovitosti dřeva nasát vodu ve formě kapaliny. Bobtnáním nazýváme schopnost dřeva zvětšovat svoje lineární rozměry, plochu nebo objem v důsledku vody vázané (Horáček, 2001). Tab. 3 Přehled fyzikálních vlastností buku lesního (Horáček, 2001) Fyzikální vlastnosti dřeva ρ kg/m³ Hustota ρ kg/m³ Bobtnání objemové 11,8 % Pórovitost 55 % Mechanické vlastnosti dřeva Mezi základní mechanické vlastnosti patří pevnost, pružnost, plastičnost a houževnatost dřeva. Nás bude nejvíce zajímat mez pevnosti (v podélném směru). Mez pevnosti je maximální síla působící na danou plochu, kterou může dané těleso vydržet. Musí taky pamatovat, že dřevo jako anizotropní materiál a má v každém směru jiné vlastnosti, proto je nutné uvádět v jakém směru síla na těleso působí. U tlaku je mez pevnosti v podélným směru zhruba 10x vyšší než ve směru příčném. Mez pevnosti ve směru vláken u buku je 62 MPa při 12% vlhkosti dřeva. Při vlhkosti dřeva větší než 30% je mez cca 26 MPa. Modul pružnosti je v podélném směru E= MPa (w= 12%). 19

19 3.2. Činitelé způsobující degradaci dřeva Přirozenou vlastností dřeva je jeho degradovatelnost vlivem biotických a biotických činitelů. Na dřevo působí vždy podmínky, ve kterých se nachází. Jakmile jsou tyto podmínky vyhovující pro aktivitu dřevokazných činitelů, nastávají ve dřevě degradační procesy, mění se vzhled dřeva a jeho mechanické a fyzikální vlastnosti (Svatoň, 2000). Tab. 4 Nejvýznamnější zdroje biotického a abiotického poškození dřeva (Reinprecht, 1997) Dřevo znehodnocující činitel Biotický Abiotický Mikroorganismy Rostliny Živočichové Atmosférický Termický Chemický Bakterie Dřevokazné houby Dřevozbarvující houby Plísně Parazitické semenné rostlin Dřevokazný hmyz Mořští měkkýší Raci Ptáci Člověk Voda (ve všech skupenství) Kolísání teploty, vlhkosti Sluneční záření Proudění kapalných a plynných médií Mechanické vlivy Oheň Sálavé teplo Kyseliny Zásady Oxidovadla Biotičtí škůdci dřeva Na biotickém znehodnocení dřeva se podílí současně více činitelů (mikroorganismy, rostliny, živočichové). Dřevokazné organismy hledají ve dřevě živiny a energii pro svůj vlastní život. Přitom platí, že odolnost dřeva proti napadení a poškození dřeva biotickými činely se odvíjí od jeho struktury (stavba a chemické složení dřeva) a expozičními podmínkami. Nejzávažnější a nejčastější poškození dřeva způsobují dřevokazné houby a dřevokazný hmyz (Reinprecht, 1997). 20

20 Houby způsobující degradaci dřeva Houby jsou nejvýznamnějším destruujícím činitelem dřeva, z hlediska podílu z celkového objemu znehodnoceného dřeva za rok a to jak na skladech a ve výrobě, tak v oblasti zabudovaného dřeva (Svatoň, 2000). Houby jsou jednobuněčné nebo mnohobuněčné heterotrofní stélkaté rostliny bez chlorofylu, živící se organickými zdroj uhlíku.podhoubí svými vlákny proniká přes pletivo hostitele a působením enzymů jej rozrušuje (Gandelová, Horáček, Šlezingerová, 2004). Schopnost rozkládat dřevní hmotu je u různých druhů hub velice rozdílná. Některé druhy mohou napadat a činností velmi účinných enzymatických látek mycelia rozkládat i dřevo zcela zdravé, popřípadě ještě živé, u jiných je účinnost jejich enzymů malá nebo zcela nepatrná, takže mohou růst pouze na dřevu odumřelém (Balabán, Kotlaba, 1970). Podle toho, jaké dřevo jsou schopny houby rozkládat, rozlišujeme: Parazitické houby- Působí na živých stromech Saprofytické houby- napadají dřevo mrtvé Paraziticko-saprofytické houby- mohou působit na živém i mrtvém dřevě. Podle způsobu degradační aktivity je můžeme rozdělit na dřevozbarvující houby a dřevokazné houby. Dřevozbarvující houby a plísně- mechanické vlastnosti mění minimálně, zatím co z fyzikálních vlastnosti mění výrazně barvu a propustnost dřeva. (Reinprecht, 1988) Dřevokazné houby Rozsáhle škody způsobují ve dřevě živých stromů, v kulatině, ale i ve výrobcích ze dřeva. Základními podmínkami pro rozvoj těchto hub je určitá vlhkost dřeva, teplota a přístup vzduchu. Jednotlivé druhy hub mají různé specifické nároky a rozdílné mezní hodnoty těchto činitelů. Optimální vlhkost dřeva se pohybuje v rozmezí 30-80%. Teplota prostředí pro rozvoj dřevokazných hub se pohybuje podle druhu od C (Gandelová, Horáček, Šlezingerová, 2004). Houby svými hyfami dřevo a svou činností rozkládají buď jen jeho polysacharidickou složku nebo kromě ní stravují lignin (Rýpaček, 1957). Podle toho, co daný druh houby napadá můžeme je rozdělit na houby bílé hniloby, hnědé hniloby a měkké hniloby. 21

21 Dřevokazné houby hnědé hniloby Dřevokazné houby hnědého tlení rozkládají pouze polysacharidickou složku dřeva. Celulóza tvoří hlavní složku primárních i sekundárních buněčných stěn dřevin a je bezbarvá. Obsah ligninu ve dřevě není přítomností houby nijak ovlivněn. Barva dřeva napadeného dřevokaznou houbou hnědé hniloby se vlivem uvolněného ligninu, který oxiduje postupně mění na rezavě červenou až hnědou nebo červenohnědou. Dřevní hmota výrazně ubývá na objemu i na hmotnosti a rozpadá se kostkovitě. Dřevo je vlivem chybějící celulózy křehké a lámavé, ve dřevě probíhá jeho destrukční rozklad ( Při hnědé hnilobě dřeva se už v počátečním stádiu výrazně snižuje jeho polymerizační stupeň polysacharidů ve spojení s rozkladem amorfní a krystalické celulózy. Je to zejména v důsledku působení agresivního oxidačního systému peroxidu vodíku a železitých iontů. Ve dřevě se dají pozorovat různé změny v makroskopické, mikroskopické a submikroskopické stavbě (možnost pozorování růstu hýf v lumenech buněk). Nejintenzivněji se odbourává vrstva sekundární stěny S 2 s vysokým podílem celulózy a hemicelulóz, která při pokročilém stádiu hniloby úplně mizí (Reinprecht, 1997). Dřevokazné houby bíle hniloby Dřevokazné houby bíle hniloby rozkládají kromě celulózy a hemicelulózy také lignin. Lignin tvoří jednu z hlavních složek dřevní hmoty a je tmavší než celulóza. Jedná se o heterogenní směs látek, jejichž složení se vzájemně liší u listnáčů a jehličnanů. Barva dřeva napadeného dřevokaznou houbou bílého tlení se vlivem uvolněné celulózy mění ve světle hnědou až žlutobílou. Dřevní hmota se rozpadá korozivně, dřevo je měkké a drobivé, na rozdíl od hniloby hnědé se nevytvářejí kostkovité útvary ( Houby bíle hniloby k rozkladu krystalické celulózy nepoužívají na rozdíl od hub hnědé hniloby agresivní systém peroxidu vodíku a železitých iontů. Polysacharidy rozkládají jen enzymaticky prostřednictvím hydrolázových enzymů a někdy i s využitím oxidačních a oxidačně-redukčních enzymů (Reinprecht, 1997). Protože existují rozdíly v působení enzymů určitého druhu hub bílého tlení, je skupina členěna do simultánních bílých hnilob, kde probíhá a) Celulóza a lignin se rozkládá stejně rychle, b) Rozkládají lignin rychleji než celulózu, c) Upřednostňují polysacharidy před ligninem (Holan, 2008). 22

22 Dřevokazné houby měkké hniloby Houby způsobující měkkou hnilobu dřeva mají schopnost odbourávat všechny hlavní složky dřeva (celulózu, hemicelulózu a lignin). Nejvíce se zaměřují na polysacharidickou část a jejich aktivita je především v oblasti sekundární stěny S 2. Měkká hniloba způsobuje ztrátu pevnosti dřeva a nízké úbytky dřevní hmoty. Houby se vyskytuje jak u jehličnatých tak u listnatých dřevin. Houby potřebují ke svému působení vyšší vlhkost dřeva (Reinprecht, 1997). Tab. 5 Vizuální změna hnilého dřeva (Reinprecht, 1997) Typ hniloby Vizuální změna Hnědá Bílá Měkká Barva hnědé odstíny bílá a žlutá hnědá Zónový rozklad objemový objemový povrchový Trhliny příčné i podélné pórovité příčné i podélné Objem výrazně zmenšený zachován zmenšený 3.3. Outkovka pestrá (Trametes versicolor) Outkovka pestrá je saprofytická houba, která způsobuje na dřevě bílou hnilobu. Roste velmi hojně po celý rok na odumřelých, ale i živých kmenech a větvích listnáčů. Najdeme ji i na pařezech zejména bříz (Betula), dubů (Quercus), buků (Fagus), habrů (Carpinus) a také na ovocných stromech například třešních (Cerasus), vzácněji i na jehličnanech (Balabán, Kotlaba, 1970). Může růst i na dřevěných zahradních konstrukcích, které jsou ve styku se zemí. Dokáže přežít i období sucha. Infekce proniká do stromů drobnými poraněními. Má velkou růstovou rychlost. Plodnice jsou kloboukaté, vějířovitého tvaru, většinou tvoří střechovitě uspořádané trsy. Klobouk je plochý, úzce připojený k substrátu, má průměr 2 8 cm. Povrch je plstnatý, hedvábně lesklý s hnědě až šedě a také žlutavě pásovaným povrchem, ve stáří černavý, v mládí má okraj bělavý až okrový a ostře ztenčený. Pruhy s chloupky se střídají s lesklými plochami. Starší plodnice často zbarvují řasy do zelené barvy. Rourky jsou až 3 mm vysoké s bílými až krémovými okrouhlými póry. Dužnina je bílá, ztuha vláknitá až kožovitě suchá, bez vůně a chuti. Výtrusný prach je bělavý. Výtrusy jsou válcovité, zakřivené, hladké a 6 7 x 1,5 2,5 µm velké. 23

23 Systematické zařazení Říše Fungi Oddělení Basidiomycota Třída Agaricomycetes Podtřída Agaricomycetidae Řád Polyporales Čeleď Polyporaceae Rod Trametes Druh Trametes versicolor Podmínky růstu Teplota prostředí - roste při teplotách 5 C 38 C - optimální teplota 26 C 38 C Vlhkost - 20% a víc - optimální vlhkost 40 50% Světlo - malý význam na vývoj houby Hodnoty ph - vyvíjí se při ph od 2,5 7,5 - optimum ph 4 5,5 (buk má ph cca 5,1) Vzduch - minimální objem v rozmezí 5 20% (Svatoň, 2000) Obr. 3 Outkovka pestrá (Trametes versicilor) ( 24

24 4 Matriál a metodika 4.1.Příprava zkoušky Zkušební tělíska Druh dřeviny Pro zkoušku byla vybrána dřevina buk lesní (Fagus sylvatica), jenž je naše hojně využívaná tvrdá listnatá dřevina v dřevozpracujícím průmyslu. Materiál byl vybrán dle požadavků normy ČSN EN 113. Jakost dřeviny Bukové dřevo pro zkoušku nebylo dříve napadeno žádným biotickým poškozením, nemělo žádné viditelné trhliny či jiné poškození z dřívějšího sušení. Bylo použito dřevo bez suků s rovnoměrnými přírůstky letokruhu. Výběr zkušebních tělísek Tělíska byly pořízeny z bukových desek (každá byla z jiného stromu), které byly podélně rozřezány a poté ohoblovány na průřez 20 x 20 mm. Následně byly kráceny na formátovací pile, aby byl dosažený hladký příčný řez. Rozměry a hustota zkušebních tělísek Zkušební tělíska měly při 12% vlhkosti dřeva rozměry: (40 ± 0,5) mm x (20 ± 0,5) mm x (20 ± 0,5) mm Zkušební tělíska byla rozdělena do jednotlivých skupin podle hustoty tak, aby průměr hustot v jednotlivých sériích se od sebe lišil maximálně o 2%. Pro zkoušku byl vybrán pouze zlomek vzorků, který vyhovoval přísným požadavkům. Počet a rozdělení zkušebních tělísek Rozdělení tělísek: Kontrolní vzorky: jedná se o vzorky, na které nebylo působeno dřevokaznou houbou. Skupina čítá 50 ks tělísek, které nám poslouží jako základní údaje vlastností zdravého dřeva. Degradované tělíska: jde o vzorky, na které působila dřevokazná houba. V této skupině vzorků se nacházely čtyři skupiny podle délky působení dřevokazné houby (4, 25

25 8, 12, 16 týdnů) a každá skupina obsahovala 50 ks zkušebních tělísek. Každému zkušebnímu tělísku bylo předem přiřazeno číslo, aby jej bylo možno kdykoliv během zkoušky identifikovat Živná půda Živnou půdu tvoří Malt extrakt agar Base m137. Složení a postup přípravy živné půdy popisuje norma ČSN EN113. Složení: sladový extrakt (30g/l), mykologický peptan (5 g/l) a agar (15 g/l). Svarového přípravku bylo naváženo 50 g. navážená směs byla následně rozmíchána v 1000 ml horké destilované vody. Po dokonalém rozmíchání bylo touto směsí naplněny kultivační nádoby, tak aby se na dně nádoby vytvořila 3 4 mm silná vrstva živné půdy. Připravené kultivační nádoby byly následně uzavřeny a vloženy do sterilizačního zařízení. Sterilizace probíhala v autoklávu při teplotě 120 C nasycenou vodní párou po dobu 20 minut. Po sterilizaci se uzavřené nechaly vychladit ve vodorovné poloze na pokojovou teplotu Houbová kultura Zvolena byla houba bílé hniloby outkovka pestrá (Trametes versicolor) Příprava zkoušky Příprava houbové kultury v Petriho miskách Při této přípravě (rozmnožení houbové kultury) bylo postupováno tak, že se ve sterilním boxu oddělila z Petriho misky část rozrostlého mycelia outkovky. Transport mycelia do dalších připravených Petriho misek, jenž měly živnou půdu stejnou jaká byla použita v kultivačních nádobách, byl proveden pomocí skalpelu, který byl sterilizován nad plynovým kahanem. Po 2 týdnech je mycelium v Petriho miskách dostatečně rozrostlé a je připravené k použití Příprava houbové kultury v kultivačních nádobách Z Petriho misek, kde bylo již připravené rozrostlé mycelium outkovky, se kus odřízl (opět ve sterilním boxu a za pomocí sterilního skalpelu), vyjmul a vložil do kultivačních nádob. Do každé kultivační nádob bylo vždy vloženo více kousku rozrostlého mycelia. U kultivačních nádob bylo vyměněné gumové těsnění za gázu z důvodu zabezpečení cirkulace vzduchu uvnitř kultivačních nádob. Takto připravené 26

26 kultivační nádoby byly vloženy do termostatu a nechaly se zde 2 týdny uloženy za tmy a při teplotě 18 C, aby se mycelium dřevokazné houby rozrostlo a pokrylo celou plochu živné půdy Příprava zkušebních tělísek Nejdříve byly všechny zkušební tělíska označený číslem, které jej provázelo po celou dobu zkoušky. Následně byly tělíska vysušena při teplotě 103 C podle normy ČSN na vlhkost 0 %. Absolutní vlhkost w abs každého zkušebního tělíska se vypočte podle normy ČSN EN 322 z následujícího vzorce: w m m w 0 abs = m0 100 Kde: w abs vlhkost vzorku m w - původní hmotnost při 0 % vlhkosti [g] m 0 - konečná hmotnost při 0 % vlhkosti [g] Po vysušení se tělíska vážila na elektronické váze s přesností na 0,01g a rozměry se zjišťovaly pomocí elektronického posuvného měřidla. Ze získaných rozměrů se vypočte objem V 0 podle vzorce: Kde: V 0 - objem vzorku [cm³] l - podélný rozměr [cm] r - radiální rozměr [cm] t - tangenciální rozměr [cm] V 0 = l. r. t [cm³] Z objemu V 0 byla dále vypočítána hustota ρ a to podle vzorce ρ 0 - hustota vzorku m 0 - hmotnost vzorku V 0 - objem vzorku m ρ 0 = V

27 Po vypočítaní hustoty byla zkušební tělíska zařazena do příslušný skupin po padesáti kusech tak, aby se hustota skupin lišila minimálně. Před vložení tělísek do kultivačních nádob se vzorky sterilizovaly tak, že se zabalily do alobalové fólie a vytvořily se balíčky, které se následně vložily do autoklávu a sterilizovaly se při teplotě 100 C po dobu 30 minut Založení a časový interval zkoušky Zkušební tělíska se vybalila z alobalové fólie ve sterilním boxu. Ve sterilním boxu byly taktéž otevřeny kultivační nádoby s dostatečně rozrostlou houbovou kulturou. Do kultivačních nádob byla vložena pomocí sterilizované pinzety sklíčka, která měla zabránit přímému kontaktu hubové kultury s tělísky. Následně se pomocí pinzety vkládaly zkušební tělíska do kultivačních nádob. Nádoba byla poté uzavřena a každá kultivační nádoba byla označena číslem skupiny, do které zkušební tělíska patří a také datumem, aby bylo jasné, za jak dlouhou dobu mají být tělíska vyjmuta (4, 8, 12, 16 týdnů). Takto bylo založeny 4 skupiny po 50 vzorcích Vyjmutí tělísek Po určené době byly kultivační nádoby otevřeny a zkušební tělíska se z nich pomocí dlouhé pinzety vyjmula. Povrch tělísek byl očištěn od houbové kultury a bylo dbáno, aby nedošlo k porušení povrchu jednotlivých tělísek. Pro další použití byly použité kultivační nádoby sterilizovány v autoklávu po dobu 30 minut při teplotě 120 C, aby byly zničeny houbové kultury Zařízení a pomůcky Zařízení: Sušárna (teplota 103 ± 2 C) Elektronické váhy Scaltec (s přesností na 0,01 g) Autokláv (zařízení na sterilizaci párou při teplotě 120 C) Sterilní box Polarit Termostat Sanyo Incubator MIR 153 Univerzální zkušební stroj Zwick/Z050 připojený na PC 28

28 Pomůcky: Posuvné měřidlo, Petriho misky, kultivační nádoby, alobalová fólie, teploměr, odměrný válec, baňka s kulatým dnem-úzkohrdlá, plynový kahan, lžíce, pinzeta, sklíčka, skalpel atd Stanovení výsledku zkoušky Změna vybraných fyzikálních vlastností Změna hmotnosti Změna hmotnosti degradovaných tělísek byla zjišťována při 0 % vlhkosti. Z toho důvodu byly všechny zkušební tělíska na tuto vlhkost vysušena i po zjištění mechanických vlastností, aby mohla být zjištěna hmotnost zkušebního tělíska po degradační činnosti outkovky. Úbytek hmotnosti se spočítal podle vzorce: m m m m 1 2 = Kde: m změna hmotnosti [%] m 1 - původní hmotnost při 0 % vlhkosti [g] m 2 - konečná hmotnost při 0 % vlhkosti [g] Změna hustoty Protože degradovaná tělíska byla zkoušena ve vlhkém stavu a po mechanických zkouškách byla tělíska značně deformovaná, nebylo možné zjistit jejich objem v suchém stavu, tedy ani jejich hustotu. Proto byla změna hustoty u těchto tělísek zjišťována při vlhkosti vyšší než je mez hygroskopicity. Nejdříve byla přepočítána zjištěna hustota při 0 % vlhkosti, před vystavením působení outkovky, na hustotu při vlhkosti vyšší než je mez hygroskopicity. Vzorec pro přepočítání hustoty: 1+ w ρw = ρ ,28 ρ Kde: ρ w hustota vlhkého dřeva [ kg/m³] ρ 0 hustota absolutně suchého dřeva [ kg/m³] w vlhkost dřeva [ %] 0 29

29 Změny vybraných mechanických vlastností Stanovení meze pevnosti Postup zkoušky probíhá podle normy ČSN Zkušební tělíska byla vložena do univerzálního zkušebního stroje Zwick/Z050 přesně do středu mezi dvě tlačné čelisti. Zkušební tělíska byla zatěžována rovnoměrně konstantní rychlostí. Mez pevnosti v tlaku ve směru vláken σ w při dané vlhkosti jednotlivých zkušebních tělísek se vyjádří v MPa. Hodnotu meze pevnosti nám vyjádří počítač, který je připojen na zkušební stroj Zwick/Z050. Mez pevnosti můžeme ale také vypočítat dle vzorce: Kde: F σ = max w r t σ w mez pevnosti v tlaku podél vláken při dané vlhkosti [MPa] F max síla na mezi pevnosti [N] R, t příčné rozměry zkušebního tělíska [mm] Vzorec pro přepočet meze pevnosti na stejnou vlhkost: ( ) σw 12 = σw 1+ α w 12 σ w12 mez pevnosti při dané vlhkosti σ w mez pevnosti v době zkoušení α- opravný koeficient 0,04 w- vlhkost dřeva v době zkoušení 4.7. Zpracování výsledků Naměřené a vypočtené hodnoty fyzikálních a mechanických vlastností se zpracují do tabulek, krabicový grafů, spojnicových grafů a příloh. Pro všechny skupiny vzorků byly určeny: počet vzorků, střední hodnota, medián, minimální a maximální hodnota, rozptyl výběrů, směrodatná odchylka a procentuální změna. 30

30 5 Výsledky V následující kapitole jsou uvedeny naměřené a vypočtené hodnoty vybraných fyzikálních a mechanických vlastností zdravého a degradovaného bukového dřeva. Změny vybraných vlastností jsou zobrazeny pomocí tabulek, krabicových grafů a spojnicového grafu. V Tab. 6 jsou uvedeny výsledky popisné statistiky hustoty ρ 0 všech skupin vzorků před degradaci a pomocí krabicového grafu na Obr. 4 jsou graficky znázorněny jednotlivé výběry skupin. Tab. 6 Popisná statistika hustoty ρ 0 všech skupin Hustota ρ 0 (kg/m 3 ) Počet Průměr Medián Minimum Maximum Rozptyl Sm. odch. Procentuální změna Kontrolní ,28 669,18 614,04 729,20 862,58 29,37-4 týdny ,22 668,68 612,64 735,35 937,74 30,62-8 týdnu ,02 669,77 613,07 738,07 933,57 30,55-12 týdnu ,27 669,05 611,74 733,92 919,90 30,33-16 týdnu ,95 668,91 608,77 731,49 921,05 30,35-31

31 Obr. 4 Grafické znázornění hustoty ρ 0 všech skupin 5.1 Výsledky měření hustoty V Tab. 7 jsou uvedeny výsledky popisné statistiky hustoty všech skupin vzorků před degradací přepočítané na mez hygroskopicity (w=28%). Na Obr. 5 jsou krabicové grafy, které zobrazují výsledky popisné statistiky graficky. Tab. 7 Popisná statistika hustoty ρ w28 všech skupin Hustota ρ w28 (kg/m 3 ) Kontrolní vzorky Počet Průměr Medián Minimum Maximum Rozptyl Sm. odch. Procentuální změna ,11 721,38 670,67 775,12 708,39 26,62-4 týdny ,04 720,93 669,36 780,53 769,32 27,74-8 týdnu ,76 721,92 669,76 782,93 765,58 27,67-12 týdnu ,09 721,27 668,52 779,28 755,26 27,48-16 týdnu ,80 721,14 665,75 777,13 756,79 27,51 - Obr. 5 Grafické znázornění hustoty ρ w28 všech skupin 32

32 V Tab. 8 jsou výsledky popisné statistiky hustoty ρ w28 zdravých a degradovaných vzorků příslušné skupiny v stanoveném časovém intervalu. Na Obr. 6 jsou znázorněny krabicové grafy, jenž nám zobrazují výsledky popisné statistiky graficky. Tab. 8 Popisná statistika hustoty ρ w28 po 4 týdnech degradace Hustota ρ w28 (kg/m 3 ) Počet Průměr Medián Minimum Maximum Rozptyl Sm. odch. Procentuální změna Zdravé ,11 721,38 670,67 775,12 708,39 26,62-4 týdny ,40 707,22 648,89 768,09 831,08 28,83-1,96% Obr. 6 Porovnání hustoty ρ w28 zdravých a degradovaných vzorků po 4 týdnech 33

33 Obsahem Tab. 9 jsou výsledky popisné statistiky hustoty ρ w28 zdravých a degradovaných vzorků příslušné skupiny v stanoveném časovém intervalu. Na Obr. 7 jsou znázorněny krabicové grafy, jenž nám zobrazují výsledky popisné statistiky graficky Tab. 9 Popisná statistika hustoty ρ w28 po 8 týdnech degradace Hustota ρ w28 (kg/m 3 ) Počet Průměr Medián Minimum Maximum Rozptyl Sm. odch. Procentuální změna Zdravé ,11 721,38 670,67 775,12 708,39 26,62-8 týdnu ,18 686,55 608,13 758, ,18 35,64-4,83% Obr. 7 Porovnání hustoty ρ w28 zdravých a degradovaných vzorků po 8 týdnech 34

34 V Tab. 10 jsou výsledky popisné statistiky hustoty ρ w28 zdravých a degradovaných vzorků příslušné skupiny v stanoveném časovém intervalu. Na Obr. 8 jsou krabicové grafy, které zobrazují výsledky popisné statistiky graficky. Tab. 10 Popisná statistika hustoty ρ w28 po 12 týdnech degradace Hustota ρ w28 (kg/m 3 ) Počet Průměr Medián Minimum Maximum Rozptyl Sm. odch. Procentuální změna Zdravé ,11 721,38 670,67 775,12 708,39 26,62-12 týdnu ,41 613,58 453,11 702, ,86 52,33-14,94% Obr. 8 Porovnání hustoty ρ w28 zdravých a degradovaných vzorků po 12 týdnech 35

35 Obsahem Tab. 11 jsou výsledky popisné statistiky hustoty ρ w28 zdravých a degradovaných vzorků příslušné skupiny v stanoveném časovém intervalu. Na Obr. 9 jsou znázorněny krabicové grafy, jenž nám zobrazují výsledky popisné statistiky graficky Tab. 11 Popisná statistika hustoty ρ w28 po 16 týdnech degradace Hustota ρ w28 (kg/m 3 ) Počet Průměr Medián Minimum Maximum Rozptyl Sm. odch. Procentuální změna Zdravé ,11 721,38 670,67 775,12 708,39 26,62-16 týdnu ,64 496,53 338,51 623, ,43 59,95-31,17% Obr. 9 Porovnání hustoty ρ w28 zdravých a degradovaných vzorků po 16 týdnech 36

36 Obsahem Tab. 12 jsou výsledky popisné statistiky hustoty ρ w28 kontrolních a degradovaných vzorků příslušné skupiny v stanoveném časovém intervalu. Na Obr. 10 jsou znázorněny krabicové grafy, jenž nám zobrazují výsledky popisné statistiky graficky. Tab. 12 Popisná statistika hustoty ρ w28 kontrolních a degradovaných vzorku Hustota ρ w28 (kg/m 3 ) Kontrolní vzorky Počet Průměr Medián Minimum Maximum Rozptyl Sm. odch. Procentuální změna ,11 721,38 670,67 775,12 708,39 26,62-4 týdny ,40 707,22 648,89 768,09 831,08 28,83-1,96% 8 týdnu ,18 686,55 608,13 758, ,18 35,64-4,83% 12 týdnu ,41 613,58 453,11 702, ,86 52,33-14,94% 16 týdnu ,64 496,53 338,51 623, ,43 59,95-31,17% Obr. 10 Porovnání hustoty ρ w28 kontrolní skupiny a všech degradovaných skupin Při porovnání je patrné snížení hodnot mediánů v závislosti na času degradace, což nám potvrzuje grafické znázornění. 37

37 5.2 Výsledky měření hmotnosti V Tab. 13 jsou výsledky popisné statistiky hmotnosti m 0 zdravých a degradovaných vzorků příslušné skupiny v stanoveném časovém intervalu. Na Obr. 11 jsou znázorněny krabicové grafy, jenž nám zobrazují výsledky popisné statistiky graficky. Tab. 13 Popisná statistika hmotnosti m 0 po 4 týdnech degradace Hmotost m 0 (g) Počet Průměr Medián Minimum Maximum Rozptyl Sm. odch. Procentuální změna Zdravé 50 10,84 10,83 10,07 11,96 0,27 0,52-4 týdny 50 10,69 10,66 10,04 11,38 0,15 0,38-1,57% Obr. 11 Porovnání hmotnosti m 0 zdravých a degradovaných vzorků po 4 týdnech 38

38 Obsahem Tab. 14 jsou výsledky popisné statistiky hmotnosti m 0 zdravých a degradovaných vzorků příslušné skupiny v stanoveném časovém intervalu. Na Obr. 12 jsou krabicové grafy, které zobrazují výsledky popisné statistiky graficky. Tab. 14 Popisná statistika hmotnosti m 0 po 8 týdnech degradace Hmotost m 0 (g) Počet Průměr Medián Minimum Maximum Rozptyl Sm. odch. Procentuální změna Zdravé 50 10,83 10,79 9,87 12,01 0,28 0,53-8 týdnu 50 10,22 10,25 9,09 10,99 0,20 0,44-4,99% Obr. 12 Porovnání hmotnosti m 0 zdravých a degradovaných vzorků po 8 týdnech 39

39 V Tab. 15 jsou výsledky popisné statistiky hmotnosti m 0 zdravých a degradovaných vzorků příslušné skupiny v stanoveném časovém intervalu. Na Obr. 13 jsou krabicové grafy, které zobrazují výsledky popisné statistiky graficky. Tab. 15 Popisná statistika hmotnosti m 0 po 12 týdnech degradace Hmotost m 0 (g) Počet Průměr Medián Minimum Maximum Rozptyl Sm. odch. Procentuální změna Zdravé 50 10,80 10,65 9,91 11,86 0,27 0,52-12 týdnu 50 9,51 9,56 6,88 10,95 0,74 0,86-10,25% Obr. 13 Porovnání hmotnosti m 0 zdravých a degradovaných vzorků po 12 týdnech 40

40 V Tab. 16 jsou výsledky popisné statistiky hmotnosti m 0 zdravých a degradovaných vzorků příslušné skupiny v stanoveném časovém intervalu. Na Obr. 14 jsou znázorněny krabicové grafy, jenž nám zobrazují výsledky popisné statistiky graficky. Tab. 16 Popisná statistika hmotnosti m 0 po 16 týdnech degradace Hmotost m 0 (g) Počet Průměr Medián Minimum Maximum Rozptyl Sm. odch. Procentuální změna Zdravé 50 10,82 10,69 10,05 11,94 0,23 0,48-16 týdnu 50 7,54 7,48 4,56 9,77 1,14 1,07-30,03% Obr. 14 Porovnání hmotnosti m 0 zdravých a degradovaných vzorků po 16 týdnech 41

41 Obsahem Tab. 17 jsou výsledky popisné statistiky hmotnosti ρ 0 zdravých a degradovaných vzorků příslušné skupiny v stanoveném časovém intervalu. Na Obr. 15 jsou krabicové grafy, které zobrazují výsledky popisné statistiky graficky Tab. 17 Popisná statistika hmotnosti m 0 kontrolních a degradovaných vzorků Hmotost m 0 (g) Kontrolní vzorky Počet Průměr Medián Minimum Maximum Rozptyl Sm. odch. Procentuální změna 50 10,93 10,89 10,07 11,68 0,18 0,42-4 týdny 50 10,69 10,66 10,04 11,38 0,15 0,38-2,11% 8 týdnu 50 10,22 10,25 9,09 10,99 0,20 0,44-5,80% 12 týdnu 50 9,51 9,56 6,88 10,95 0,74 0,86-12,21% 16 týdnu 50 7,54 7,48 4,56 9,77 1,14 1,07-31,27% Obr. 15 Porovnání hmotnosti m 0 kontrolní skupiny a všech degradovaných skupin Z grafického znázornění je zřejmé, že dochází k degradaci v celém spektru časového intervalu degradace zejména po 16 týdnech je úbytek hmotnosti evidentní. 42

42 5.3 Výsledky změny vlhkosti V Tab. 18 jsou výsledky popisné statistiky vlhkosti kontrolních a degradovaných vzorků příslušné skupiny v stanoveném časovém intervalu. Na Obr. 16 jsou znázorněny krabicové grafy, jenž nám zobrazují výsledky popisné statistiky graficky. Tab. 18 Popisná statistika vlhkosti u degradovaných vzorků Změna vlhkosti w (%) Počet Průměr Medián Minimum Maximum Rozptyl Směrodatná odchylka Procentuální změna 4 týdny 50 29,63 29,63 24,12 38,69 9,08 3,01-8 týdnu 50 33,27 32,60 26,04 42,20 12,52 3,54 10,03% 12 týdnu 50 37,57 36,78 28,87 48,45 20,05 4,48 24,15% 16 týdnu 50 43,36 43,44 33,03 51,27 14,82 3,85 46,63% Obr. 16 Porovnání změny vlhkosti v časových intervalech degradace vzorků Z grafického znázornění pomocí krabicového grafu je patrný trend nárůstu vlhkosti v celém časovém spektru působení dřevokazné houby. 43

43 5.4 Výsledky měření mechanických vlastností Obsahem Tab. 19 jsou výsledky popisné statistiky meze pevnosti σ w12 v tlaku podél vláken zdravých a degradovaných vzorků příslušné skupiny v stanoveném časovém intervalu. Na Obr. 17 jsou krabicové grafy, které zobrazují výsledky popisné statistiky graficky Tab. 19 Popisná statistika meze pevnosti σ w12 po 4 týdnech degradace Mez pevnosti (Mpa) Počet Průměr Medián Minimum Maximum Rozptyl Sm. odch. Procentuální změna Zdravé 50 61,06 61,35 49,68 70,73 27,67 5,26-4 týdny 50 43,52 44,18 30,69 53,22 29,49 5,43-27,99% Obr. 17 Porovnání meze pevnosti σ w12 zdravých a degradovaných vzorků po 4 týdnech 44

44 V Tab. 20 jsou výsledky popisné statistiky meze pevnosti σ w12 v tlaku podél vláken zdravých a degradovaných vzorků příslušné skupiny v stanoveném časovém intervalu Na Obr. 18 jsou krabicové grafy, které zobrazují výsledky popisné statistiky graficky Tab. 20 Popisná statistika meze pevnosti σ w12 po 8 týdnech degradace Mez pevnosti (Mpa) Počet Průměr Medián Minimum Maximum Rozptyl Sm. odch. Procentuální změna Zdravé 50 61,06 61,35 49,68 70,73 27,67 5,26-8 týdnu 50 36,30 36,51 26,51 45,20 19,03 4,36-40,49% Obr. 18 Porovnání meze pevnosti σ w12 zdravých a degradovaných vzorků po 8 týdnech 45

45 Obsahem Tab. 21 jsou výsledky popisné statistiky meze pevnosti σ w12 v tlaku podél vláken zdravých a degradovaných vzorků příslušné skupiny v stanoveném časovém intervalu Na Obr. 19 jsou znázorněny krabicové grafy, jenž nám zobrazují výsledky popisné statistiky graficky Tab. 21 Popisná statistika meze pevnosti σ w12 po 12 týdnech degradace Mez pevnosti (Mpa) Počet Průměr Medián Minimum Maximum Rozptyl Sm. odch. Procentuální změna Zdravé 50 61,06 61,35 49,68 70,73 27,67 5,26-12 týdnu 50 24,70 25,19 3,76 43,35 118,87 10,90-58,94% Obr. 19 Porovnání meze pevnosti σ w12 zdravých a degradovaných vzorků po 12 týdnech 46

46 Obsahem Tab. 22 jsou výsledky popisné statistiky meze pevnosti σ w12 v tlaku podél vláken zdravých a degradovaných vzorků příslušné skupiny v stanoveném časovém intervalu Na Obr. 20 jsou krabicové grafy, které zobrazují výsledky popisné statistiky graficky. Tab. 22 Popisná statistika meze pevnosti σ w12 po 16 týdnech degradace Mez pevnosti (Mpa) Počet Průměr Medián Minimum Maximum Rozptyl Sm. odch. Procentuální změna Zdravé 50 61,06 61,35 49,68 70,73 27,67 5,26-16 týdnu 50 12,20 11,30 1,64 32,24 50,29 7,09-81,58% Obr. 20 Porovnání meze pevnosti σ w12 zdravých a degradovaných vzorků po 16 týdnech 47

47 V Tab. 23 jsou výsledky popisné statistiky meze pevnosti σ w12 v tlaku podél vláken zdravých a degradovaných vzorků příslušné skupiny v stanoveném časovém intervalu. Na Obr. 21 jsou znázorněny krabicové grafy, jenž nám zobrazují výsledky popisné statistiky graficky. Tab. 23 Popisná statistika meze pevnosti σ w12 kontrolní a degradovaných vzorků Mez pevnosti (Mpa) Kontrolní vzorky Počet Průměr Medián Minimum Maximum Rozptyl Sm. odch. Procentuální změna 50 61,06 61,35 49,68 70,73 27,67 5,26-4 týdny 50 43,52 44,18 30,69 53,22 29,49 5,43-27,99% 8 týdnu 50 36,30 36,51 26,51 45,20 19,03 4,36-40,49% 12 týdnu 50 24,70 25,19 3,76 43,35 118,87 10,90-58,94% 16 týdnu 50 12,20 11,30 1,64 32,24 50,29 7,09-81,58% Obr. 21 Porovnání meze pevnosti σ w12 kontrolní skupiny a všech degradovaných skupin Při porovnání jednotlivých krabicových grafů je zřejmé snížení velikosti hodnoty meze pevnosti v závislosti na čase působení dřevokazné houby. 48

48 5.5 Shrnutí výsledku vybraných vlastností V Tab. 24 jsou uvedeny procentuální změny fyzikálních a mechanických vlastností všech skupin vzorků v průběhu degradace a pomocí spojnicového grafu na Obr. 22 jsou grafický znázorněny. Tab. 24 Procentuální změny fyzikálních a mechanických vlastností Změny vybraných vlastností (%) Mez pevnosti σ w12 Hmotnost m 0 Vlhkost w Hustota ρ W28 4 týdny -27,99% -2,11% - -1,96% 8 týdny -40,49% -5,80% 10,03% -4,83% 12 týdnu -58,94% -12,21% 24,15% -14,94% 16 týdnu -81,58% -31,27% 46,63% -31,17% Obr. 22 Grafické znázornění procentuální změny fyzikálních a mechanických vlastností hustoty. Na Obr. 22 je možné vidět, jak se vzájemně doprovází změna hmotnosti a 49

OBSAH 1 ÚVOD... 7. 1.1 Výrobek a materiál... 7 1.2 Přehled a klasifikace materiálů pro výrobu... 8 2 ZDROJE DŘEVA... 13

OBSAH 1 ÚVOD... 7. 1.1 Výrobek a materiál... 7 1.2 Přehled a klasifikace materiálů pro výrobu... 8 2 ZDROJE DŘEVA... 13 OBSAH 1 ÚVOD................................................. 7 1.1 Výrobek a materiál........................................ 7 1.2 Přehled a klasifikace materiálů pro výrobu..................... 8 2

Více

MIKROSKOPICKÁ STAVBA DŘEVA

MIKROSKOPICKÁ STAVBA DŘEVA MIKROSKOPICKÁ STAVBA DŘEVA JEHLIČNANY starší jednoduchá stavba pravidelnost JEHLIČNANY LISTNÁČE letní tracheida libriformní vlákno kambiální iniciála jarní tracheida tracheida parenchym céva parenchym

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.18 Dřeviny Kapitola 8 Mikroskopická stavba

Více

MIKROSKOPICKÁ STAVBA DŘEVA LISTNÁČE

MIKROSKOPICKÁ STAVBA DŘEVA LISTNÁČE MIKROSKOPICKÁ STAVBA DŘEVA LISTNÁČE JEHLIČNANY LISTNÁČE letní tracheida libriformní vlákno kambiální iniciála jarní tracheida tracheida parenchym céva parenchym LISTNATÉ DŘEVINY vývojově mladší složitější

Více

OCELOVÉ A DŘEVĚNÉ PRVKY A KONSTRUKCE Část: Dřevěné konstrukce

OCELOVÉ A DŘEVĚNÉ PRVKY A KONSTRUKCE Část: Dřevěné konstrukce OCELOVÉ A DŘEVĚNÉ PRVKY A KONSTRUKCE Část: Dřevěné konstrukce Přednáška č. 1 Doc. Ing. Antonín Lokaj, Ph.D. VŠB Technická univerzita Ostrava, Fakulta stavební, Katedra konstrukcí, Ludvíka Podéště 1875,

Více

Dřevo hlavní druhy dřeva, vlastnosti, anizotropie

Dřevo hlavní druhy dřeva, vlastnosti, anizotropie Dřevo hlavní druhy dřeva, vlastnosti, anizotropie Dřevo Dřevo je vnitřní zdřevnatělá část kmenu, větví a kořenů bez kůry a lýka. Strom obsahuje 70 až 90 objemových % dřeva. Tvorba dřevní hmoty probíhá

Více

Mikroskopická stavba dřeva jehličnatých dřevin cvičení

Mikroskopická stavba dřeva jehličnatých dřevin cvičení Mikroskopická stavba dřeva jehličnatých dřevin cvičení 2 Mikroskopická stavba dřeva Rostlinný organismus - základní stavební jednotkou jsou buňky (= anatomické elementy) různého typu (např. parenchymatická

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.18 Dřeviny Kapitola 6 Makroskopická stavba

Více

Přehled fyzikálních vlastností dřeva

Přehled fyzikálních vlastností dřeva Dřevo a jeho ochrana Přehled fyzikálních vlastností dřeva cvičení Dřevo a jeho ochrana 2 Charakteristiky dřeva jako materiálu Anizotropie = na směru závislé vlastnosti Pórovitost = porézní materiál Hygroskopicita

Více

Stavba dřeva. Chemické složení dřeva. Ústav nauky o dřevě

Stavba dřeva. Chemické složení dřeva. Ústav nauky o dřevě Stavba dřeva Chemické složení dřeva Ústav nauky o dřevě 2007/2008 1 Definice dřeva z chemického hlediska Dřevo - složitý komplex chemických látek, především biopolymerů - chemické složení submikroskopická

Více

ZÁKLADY ARBORISTIKY. Barbora Vojáčková, a kol. Mendelova univerzita v Brně Lesnická a dřevařská fakulta. Skriptum 2013

ZÁKLADY ARBORISTIKY. Barbora Vojáčková, a kol. Mendelova univerzita v Brně Lesnická a dřevařská fakulta. Skriptum 2013 ZÁKLADY ARBORISTIKY Barbora Vojáčková, a kol. Skriptum 2013 Mendelova univerzita v Brně Lesnická a dřevařská fakulta 1 2 Mendelova univerzita v Brně Lesnická a dřevařská fakulta 2013 Učební text pro předmět

Více

Makroskopická stavba dřeva

Makroskopická stavba dřeva Makroskopická stavba dřeva přednáška 2 Definice juvenilního dřeva nachází se u jehličnatých i listnatých dřevin výsledek normálních fyziologických pochodů centrální část kmene odlišná stavba a vlastnosti

Více

Ing. Lubomír Kacálek III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_TDŘ0513Vady dřeva I. vady struktury dřeva

Ing. Lubomír Kacálek III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_TDŘ0513Vady dřeva I. vady struktury dřeva Název školy Číslo projektu Autor Název šablony Název DUMu Stupeň a typ vzdělání Vzdělávací obor Tematický okruh Druh učebního materiálu Cílová skupina Anotace Klíčová slova Střední odborná škola Luhačovice

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.18 Dřeviny Kapitola 7 Mikroskopická stavba

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.20 Stavebně truhlářské výrobky a jejich

Více

Vypracoval Mgr. David Mikoláš, 22. 9. 2008 DŘEVO

Vypracoval Mgr. David Mikoláš, 22. 9. 2008 DŘEVO Vypracoval Mgr. David Mikoláš, 22. 9. 2008 DŘEVO CO JE TO DŘEVO Dřevo je pevné pletivo stonků vyšších rostlin, které označujeme jako dřeviny. Vzniká v rostlinách z meristémových buněk. CHEMICKÉ SLOŽENÍ

Více

Rozmnožování hub. Typy hniloby dřeva. Hlenky. Mechy. Lišejníky. Řasy

Rozmnožování hub. Typy hniloby dřeva. Hlenky. Mechy. Lišejníky. Řasy Rozmnožování hub Ostatní organizmy Dřevokazné houby - stopkovýtrusné Rozmnožování organizmů, které se řadí k houbám, je velmi variabilní a značně složité. Stopkovýtrusné houby, které jsou i níže uvedené

Více

Biologické základy péče o stromy II.

Biologické základy péče o stromy II. Biologické základy péče o stromy II. Ing. Jaroslav Kolařík, Ph.D. Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 PLETIVA VODIVÁ - lýko

Více

Určování dřev podle makroskopických znaků

Určování dřev podle makroskopických znaků Dřevo a jeho ochrana Určování dřev podle makroskopických znaků cvičení Dřevo a jeho ochrana 2 Zadání Úkoly: 1) Identifikujte základní řezy dřevem na vzorcích 2) Na vzorcích vyhledejte základní a doplňkové

Více

Degradace dřeva borovice lesní (Pinus sylvestris) napadeného dřevokaznou houbou dřevomorkou domácí (Serpula lacrymans)

Degradace dřeva borovice lesní (Pinus sylvestris) napadeného dřevokaznou houbou dřevomorkou domácí (Serpula lacrymans) MENDELOVA UNIVERZITA V BRNĚ LESNICKÁ A DŘEVAŘSKÁ FAKULTA ÚSTAV NAUKY O DŘEVĚ Degradace dřeva borovice lesní (Pinus sylvestris) napadeného dřevokaznou houbou dřevomorkou domácí (Serpula lacrymans) Bakalářská

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.18 Dřeviny Kapitola 11 Rozpoznávání dřevin

Více

DŘEVO pracovní list II.

DŘEVO pracovní list II. DŘEVO pracovní list II. Autor : Marie Provázková Stručný popis : Pracovní list seznamující žáky s druhy dřeva, jeho stavbou a využitím. Obsahuje různé typy úkolů - doplňovačky, přivazovačku,výpočtovou

Více

vznik: během růstu stromu během těžby a dopravy během uskladnění postihují kvalitu, zejména fyzikální a mechanické vlastnosti

vznik: během růstu stromu během těžby a dopravy během uskladnění postihují kvalitu, zejména fyzikální a mechanické vlastnosti VADY SUROVÉHO DŘÍVÍ VADA = změna vnějšího vzhledu dřeva, porušení jeho pravidelné struktury, odchylky od normální stavby dřeva, které nepříznivě ovlivňují jeho účelové využití. postihují kvalitu, zejména

Více

Chemické složení dřeva a kůry

Chemické složení dřeva a kůry Lesnická xylologie Chemické složení dřeva a kůry přednáška strana 2 Lesnická xylologie 2 Dřevo Znalost chemického složení je nezbytná pro: pochopení submikroskopické stavby dřeva pochopení činnosti biotických

Více

STAVBA ROSTLINNÉHO TĚLA

STAVBA ROSTLINNÉHO TĚLA STAVBA DŘEVA STAVBA ROSTLINNÉHO TĚLA JEDNODĚLOŽNÉ ROSTLINY X DVOJDĚLOŽNÉ ROSTLINY JEDNODĚLOŽNÉ ROSTLINY palmy, bambus Nemohou druhotně tloustnout (přirůstat)!! DVOUDĚLOŽNÉ ROSTLINY mají sekundární dělivé

Více

Dřevo je vnitřní zdřevnatělá část kmenu, větví a kořenů bez kůry a lýka. Strom obsahuje 70 až 90 objemových % dřeva.

Dřevo je vnitřní zdřevnatělá část kmenu, větví a kořenů bez kůry a lýka. Strom obsahuje 70 až 90 objemových % dřeva. Dřevo Dřevo je vnitřní zdřevnatělá část kmenu, větví a kořenů bez kůry a lýka. Strom obsahuje 70 až 90 objemových % dřeva. Tvorba dřevní hmoty probíhá fotosyntetickými a biochemickými reakcemi v kambiu

Více

Stavební systém EUROPANEL, materiálová složení, zkušenosti s dozorem nad výrobou Jitka Beránková Historie Dřevo jako stavební materiál dnes: Dřevo je jedním z nejstarších a nejpoužívanějších stavebních

Více

I kov, či keramika mají svoji strukturu, ale ve vlastnostech jsou v porovnání se dřevem velmi homogenní.

I kov, či keramika mají svoji strukturu, ale ve vlastnostech jsou v porovnání se dřevem velmi homogenní. Obsah: Cílem této části předmětu je přiblížit Vám přírodní dřevo a dřevní kompozity z hlediska jejich vlastností, abyste byli schopni při vaší pedagogické činnosti, ale i v praktickém životě použít dřevo

Více

Stavba dřeva. Reakční dřevo. přednáška

Stavba dřeva. Reakční dřevo. přednáška Reakční dřevo přednáška 2 Definice 3 Reakční dřevo používáme pro označení tlakového a tahového dřeva. tlakové dřevo se tvoří u jehličnatých dřevin tahové dřevo se tvoří u listnatých dřevin Místo výskytu

Více

Chemické složení dřeva

Chemické složení dřeva Dřevo a jeho ochrana Chemické složení dřeva cvičení strana 2 Dřevo a jeho ochrana 2 Dřevo Znalost chemického složení je nezbytná pro: pochopení submikroskopické stavby dřeva pochopení činnosti biotických

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.16 Vady dřeva Kapitola 14 Nepravé jádro

Více

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09, Karlovy Vary Autor: BOHUSLAV VINTER Název materiálu:

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09, Karlovy Vary Autor: BOHUSLAV VINTER Název materiálu: Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09, Karlovy Vary Autor: BOHUSLAV VINTER Název materiálu: VY_32_INOVACE_16_PŘÍPRAVA DŘEVA 7_T1 Číslo projektu: CZ 1.07/1.5.00/34.1077

Více

Mendelova zemědělská a lesnická univerzita v Brně

Mendelova zemědělská a lesnická univerzita v Brně Mendelova zemědělská a lesnická univerzita v Brně Měření vlhkosti dřeva a vlivu na hustotu Fyzikální vlastnosti dřeva Protokol č.2 Vypracoval: Pavel Lauko Datum cvičení: 24.9.22 Obor: DI Datum vypracování:

Více

Identifikace dřeva. Mikroskopické techniky rostlinných pletiv

Identifikace dřeva. Mikroskopické techniky rostlinných pletiv Mikroskopické techniky rostlinných pletiv Identifikace dřeva Osnova této prezentace identifikace dřeva makroskopická identifikace recentního dřeva mikroskopická identifikace recentního dřeva mikroskopická

Více

FAST VŠB - TECHNICKÁ UNIVERZITA OSTRAVA. Fakulta stavební. Stavební hmoty II. Filip Khestl, Pavel Mec

FAST VŠB - TECHNICKÁ UNIVERZITA OSTRAVA. Fakulta stavební. Stavební hmoty II. Filip Khestl, Pavel Mec FAST VŠB - TECHNICKÁ UNIVERZITA OSTRAVA Fakulta stavební Stavební hmoty II Filip Khestl, Pavel Mec 2013 OBSAH Obsah... 1 1 Úvod... 1 2 Dřevo... 2 2.1 Definice dřeva... 3 2.2 Rozdělení základních dřevin...

Více

Sortimentace surového dřeva

Sortimentace surového dřeva 30 Sortimentace surového dřeva Vady dřeva jsou vlastnosti, nemoci, poranění a poškození dřeva, které nepříznivě ovlivňují jeho účelové použití. K znehodnocování dřevní hmoty dochází v době růstu stromu,

Více

Interní norma č. 22-108-01/01 Rozlišení lnu a konopí ve formě vláken Kroucení vláken při dehydrataci

Interní norma č. 22-108-01/01 Rozlišení lnu a konopí ve formě vláken Kroucení vláken při dehydrataci Kroucení při dehydrataci Předmluva Text vnitřní normy byl vypracován v rámci Výzkumného centra Textil LN00B090 a schválen oponentním řízením dne 16.12. 2003. Předmět normy Len a konopí jsou celulózová

Více

1) Pokud dlouhé svisle zavěšené těleso (např. lano) neunese svou vlastní tíhu, jakým opatřením nedosáhneme zlepšení?

1) Pokud dlouhé svisle zavěšené těleso (např. lano) neunese svou vlastní tíhu, jakým opatřením nedosáhneme zlepšení? 1) Pokud dlouhé svisle zavěšené těleso (např. lano) neunese svou vlastní tíhu, jakým opatřením nedosáhneme zlepšení? a) Zvětšením průřezu tělesa b) Zkrácením tělesa c) Použitím pevnějšího materiálu d)

Více

ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ

ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ Ročník LVI 11 Číslo 5, 28 POROVNÁNÍ VLASTNOSTÍ DŘEVA SMRKU ZTEPILÉHO PICEA

Více

1 VLASTNOSTI DŘEVA (D)

1 VLASTNOSTI DŘEVA (D) 1 VLASTNOSTI DŘEVA (D) 11 ZKOUŠENÍ A TŘÍDY PEVNOSTI KONSTRUKČNÍHO DŘEVA (ČSN EN 10 81, ČSN EN 338, ČSN EN 384, ČSN EN 1438) Zkoušky dřeva provádíme na vzorcích bez suků, smolnatosti a jiných vad a z výsledků

Více

(cv03) Metody výroby mikroskopických preparátů z rostlinných pletiv

(cv03) Metody výroby mikroskopických preparátů z rostlinných pletiv Mikroskopické techniky rostlinných pletiv (cv03) Metody výroby mikroskopických preparátů z rostlinných pletiv Osnova této prezentace příprava vzorků měkčení vzorků mikrotomy výroba preparátů barvení řezů

Více

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09, Karlovy Vary Autor: BOHUSLAV VINTER Název materiálu:

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09, Karlovy Vary Autor: BOHUSLAV VINTER Název materiálu: Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09, Karlovy Vary Autor: BOHUSLAV VINTER Název materiálu: VY_32_INOVACE_12_PŘÍPRAVA DŘEVA 3_T1 Číslo projektu: CZ 1.07/1.5.00/34.1077

Více

Žák rozpoznává přirozené a výrobní vady dřeva a určuje vady dle ČSN

Žák rozpoznává přirozené a výrobní vady dřeva a určuje vady dle ČSN Střední škola umělecká a řemeslná Projekt Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Materiály (dřevoobory) Tříleté obory:

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.16 Vady dřeva Kapitola 18 Hniloba Tomáš

Více

Obr. 19.: Směry zkoušení vlastností dřeva.

Obr. 19.: Směry zkoušení vlastností dřeva. 8 ZKOUŠENÍ DŘEVA Zkoušky přírodního (rostlého) dřeva se provádí na rozměrově přesně určených vzorcích bez suků, smolnatosti, dřeně a jiných vad. Z výsledků těchto zkoušek usuzujeme na vlastnosti dřeva

Více

TŘÍLAMELOVÉ PARKETY. Může obsahovat dobře srostlé suky o průměru až 3 mm, ovšem jen

TŘÍLAMELOVÉ PARKETY. Může obsahovat dobře srostlé suky o průměru až 3 mm, ovšem jen TŘÍLAMELOVÉ PARKETY Dub Select Dřevo s poměrně homogenní barvou. Mezi jednotlivými lamelami mohou být patrné malé barevné odchylky. Materiál může obsahovat dřeňové paprsky. Může obsahovat dobře srostlé

Více

NAVRHOVÁNÍ DŘEVĚNÝCH KONSTRUKCÍ OCHRANA DŘEVĚNÝCH KONSTRUKCÍ PŘED ZNEHODNOCENÍM část 2.

NAVRHOVÁNÍ DŘEVĚNÝCH KONSTRUKCÍ OCHRANA DŘEVĚNÝCH KONSTRUKCÍ PŘED ZNEHODNOCENÍM část 2. Téma: NAVRHOVÁNÍ DŘEVĚNÝCH KONSTRUKCÍ OCHRANA DŘEVĚNÝCH KONSTRUKCÍ PŘED ZNEHODNOCENÍM část 2. Vypracoval: Ing. Roman Rázl TE NTO PR OJ E KT J E S POLUFINANC OVÁN EVR OPS KÝ M S OC IÁLNÍM FONDEM A STÁTNÍM

Více

Archeologie starého dřeva a spálenišť

Archeologie starého dřeva a spálenišť MINIATLAS obsahuje dvě části. MINIATLAS mikroskopie dřeva a uhlíků pro učitele a studenty Příloha k úloze Archeologie starého dřeva a spálenišť První obsahuje výběr z anatomických obrázků různých pozorovacích

Více

Závislost hustoty dřeva na šířce letokruhu a procentu letního dřeva

Závislost hustoty dřeva na šířce letokruhu a procentu letního dřeva prosinec 2009, Brno Závislost hustoty dřeva na šířce letokruhu a procentu letního dřeva Lesnická xylologie cvičení strana 2 Lesnická xylologie 2 Osnova cvičení 1) Teorie 2) Cíl cvičení 3) Materiál a metodika

Více

CHYBY V DŘEVOSTAVBÁCH

CHYBY V DŘEVOSTAVBÁCH CHYBY V DŘEVOSTAVBÁCH Petr Ptáček Volyně 28.3.2013 VADY DŘEVOSTAVEB VZNIK VAD DŘEVOSTAVEB - nedodržení konstrukčních zásad a požadavků statika, tepelná technika, akustika atd. - chyby při výstavbě - poruchy

Více

POROVNÁNÍ VLASTNOSTÍ DŘEVA BUKU LESNÍHO Fagus sylvatica (L.) V RŮZNÉM STAVU A STUPNI DEGRADACE DŘEVOKAZNÝMI HOUBAMI

POROVNÁNÍ VLASTNOSTÍ DŘEVA BUKU LESNÍHO Fagus sylvatica (L.) V RŮZNÉM STAVU A STUPNI DEGRADACE DŘEVOKAZNÝMI HOUBAMI ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ Ročník LVII 14 Číslo 5, 2009 POROVNÁNÍ VLASTNOSTÍ DŘEVA BUKU LESNÍHO Fagus

Více

Jak psát závěrečnou práci na LDF

Jak psát závěrečnou práci na LDF 17. 3. 2014, Brno Připravil: Hanuš Vavrčík Náležitosti a členění na kapitoly strana 2 Čím se řídit? Směrnice děkana č. 2/2007 O úpravě písemných prací a o citaci dokumentů užívaných v kvalifikačních pracích

Více

Ukazka knihy z internetoveho knihkupectvi www.kosmas.cz

Ukazka knihy z internetoveho knihkupectvi www.kosmas.cz Ukazka knihy z internetoveho knihkupectvi www.kosmas.cz Petr Ptáček Ochrana dřeva ve stavbách Vydala Grada Publishing, a.s. U Průhonu 22, Praha 7 obchod@grada.cz, www.grada.cz tel.: +420 220 386 401,

Více

5. Anatomická a morfologická stavba dřeva

5. Anatomická a morfologická stavba dřeva 5. Anatomická a morfologická stavba dřeva Stonek Stonek je vegetativní orgán vyšších rostlin, jehož základními funkcemi je růstem prodlužovat rostlinu ve směru pozitivního heliotropismu, nést listy a generativní

Více

Mendelova zemědělská a lesnická univerzita v Brně

Mendelova zemědělská a lesnická univerzita v Brně Mendelova zemědělská a lesnická univerzita v Brně Bobtnání dřeva Fyzikální vlastnosti dřeva Protokol č.3 Vypracoval: Pavel Lauko Datum cvičení: 24.9.2002 Obor: DI Datum vyprac.: 10.12.02 Ročník: 2. Skupina:

Více

13. DŘEVO A MATERIÁLY NA BÁZI DŘEVA

13. DŘEVO A MATERIÁLY NA BÁZI DŘEVA 13. DŘEVO A MATERIÁLY NA BÁZI DŘEVA HISTORIE DŘEVA VE STAVEBNICTVÍ DŘEVO PATŘÍ MEZI NEJSTARŠÍ STAVEBNÍ MATERIÁLY. SETKÁVÁME SE S NÍM U NEJRŮZNĚJŠÍCH DRUHŮ STAVEB A KONSTRUKCÍ. JE VELMI PRAVDĚPODOBNÉ, ŽE

Více

Vážení návštěvníci, Pracovníci Botanické zahrady PřF UP Olomouc.

Vážení návštěvníci, Pracovníci Botanické zahrady PřF UP Olomouc. Vážení návštěvníci, vítáme vás v Botanické zahradě Přírodovědecké fakulty Univerzity Palackého v Olomouci. V prostoru před zahradním domkem jsme pro vás připravili výstavu Krása dřeva našich jehličnanů

Více

Integrovaná střední škola, Slaný

Integrovaná střední škola, Slaný Označení materiálu: Název materiálu: Tematická oblast: Anotace: Očekávaný výstup: Klíčová slova: Metodika: Obor: Ročník: Autor: VY_32_INOVACEJANJA_TECHNOLOGIE_T_20 Hydrotermická úprava dřeva Technologie

Více

Praktické určování vybraných dřev listnatých dřevin s kruhovitě a polokruhovitě pórovitou stavbou podle mikroskopických znaků

Praktické určování vybraných dřev listnatých dřevin s kruhovitě a polokruhovitě pórovitou stavbou podle mikroskopických znaků Mendelova univerzita v Brně Lesnická a dřevařská fakulta Ústav nauky o dřevě Lesnická xylologie LEX-cv05 Praktické určování vybraných dřev listnatých dřevin s kruhovitě a polokruhovitě pórovitou stavbou

Více

Výřez kmenem listnáče. parenchymatická medula

Výřez kmenem listnáče. parenchymatická medula Xylotomie (nauka o struktuře a vlastnostech dřeva) Dřevo (z technického hlediska) = lignifikované vodivé pletivo kmenů stromů (deuteroxylém) vznikající dostředivým dělením buněk kambia. Kmeny manoxylické:

Více

Tepelné vlastnosti dfieva

Tepelné vlastnosti dfieva ZPRACOVÁNÍ D EVA část 2, díl 5, kapitola 1, str. 15 propustnost dřeva ovlivňují ztenčeniny buněčné stěny, je znatelný vliv bradavičnaté W vrstvy, jejíž přítomnost může jinak malou propustnost jehličnatých

Více

Identifikace neznámých vzorků dřev REJVÍZ, MALÉ MECHOVÉ JEZÍRKO

Identifikace neznámých vzorků dřev REJVÍZ, MALÉ MECHOVÉ JEZÍRKO MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ FAKULTA LESNICKÁ A DŘEVAŘSKÁ, ÚSTAV NAUKY O DŘEVĚ ZEMĚDĚLSKÁ 3, 613 00 BRNO,, TEL: + 420 545 134 547 Identifikace neznámých vzorků dřev REJVÍZ, MALÉ MECHOVÉ

Více

Mendelova univerzita v Brně. Analýza vybraných mechanických vlastností konstrukčních materiálů pro dřevostavby

Mendelova univerzita v Brně. Analýza vybraných mechanických vlastností konstrukčních materiálů pro dřevostavby Mendelova univerzita v Brně Lesnická a dřevařská fakulta Ústav základního zpracování dřeva Analýza vybraných mechanických vlastností konstrukčních materiálů pro dřevostavby Diplomová práce Vedoucí práce:

Více

Buňka cytologie. Buňka. Autor: Katka www.nasprtej.cz Téma: buňka stavba Ročník: 1.

Buňka cytologie. Buňka. Autor: Katka www.nasprtej.cz Téma: buňka stavba Ročník: 1. Buňka cytologie Buňka - Základní, stavební a funkční jednotka organismu - Je univerzální - Všechny organismy jsou tvořeny z buněk - Nejmenší životaschopná existence - Objev v 17. stol. R. Hooke Tvar: rozmanitý,

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.15 Konstrukční materiály Kapitola 4 Dřeviny

Více

Obecná charakteristika hub

Obecná charakteristika hub Fyziologie hub Prvá část: Charakteristiku hub na základě výživy Ekologická charakteristika výživy hub Chemické zdroje výživy hub Druhá část Fyziologie růstu a rozmnožování Způsoby stanovení růstu, způsoby

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.18 Dřeviny Kapitola 9 Submikroskopická stavba

Více

Rýmařovsk. ovská 15. (suky, trhliny, hniloba, točivost vláken, 26.05. / 2012. Ing. Martin Greško

Rýmařovsk. ovská 15. (suky, trhliny, hniloba, točivost vláken, 26.05. / 2012. Ing. Martin Greško Základní škola, Bruntál Rýmařovsk ovská 15 Výběr r vhodného materiálu vady dřevad (suky, trhliny, hniloba, točivost vláken, ) 26.05. / 2012 Ing. Martin Greško Vady dřeva Vady snižují pevnost dřeva, znesnadňují

Více

Název: POZOROVÁNÍ PLASTIDŮ,VAKUOL, BUNĚČNÉ STĚNY Autor: Paed.Dr.Ludmila Pipková

Název: POZOROVÁNÍ PLASTIDŮ,VAKUOL, BUNĚČNÉ STĚNY Autor: Paed.Dr.Ludmila Pipková Název: POZOROVÁNÍ PLASTIDŮ,VAKUOL, BUNĚČNÉ STĚNY Autor: Paed.Dr.Ludmila Pipková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět: biologie Mezipředmětové vztahy: ekologie Ročník: 2.a 3.

Více

SUŠENÍ DŘEVA (HUD) - NÁZVOSLOVÍ -

SUŠENÍ DŘEVA (HUD) - NÁZVOSLOVÍ - SUŠENÍ DŘEVA (HUD) - NÁZVOSLOVÍ - (upraveno podle ČSN 49 0007 Názvosloví - Sušení dřeva a EN 14298 Řezivo - Stanovení kvality sušení) Všeobecně: - vlhkost dřeva - obsah vody v různých skupenstvích - sušení

Více

MENDELOVA UNIVERZITA V BRNĚ LESNICKÁ A DŘEVAŘSKÁ FAKULTA ÚSTAV NAUKY O DŘĚVĚ

MENDELOVA UNIVERZITA V BRNĚ LESNICKÁ A DŘEVAŘSKÁ FAKULTA ÚSTAV NAUKY O DŘĚVĚ MENDELOVA UNIVERZITA V BRNĚ LESNICKÁ A DŘEVAŘSKÁ FAKULTA ÚSTAV NAUKY O DŘĚVĚ DIPLOMOVÁ PRÁCE Degradace dřeva akátu (Robinia pseudoakácia) napadeného dřevokaznou houbou (Trametes versicolor) 2010 Bc.Jan

Více

Vznik dřeva přednáška

Vznik dřeva přednáška Vznik dřeva přednáška strana 2 2 Rostlinné tělo a růst strana 3 3 Růst - nejcharakterističtější projev živých organizmů - nevratné zvětšování hmoty či velikosti spojené s činností živé protoplazmy - u

Více

Kvalita sanací historických krovů

Kvalita sanací historických krovů 1 Kvalita sanací historických krovů Jiří Krupka, Ondřej Slánský, Josef Vaněk Garant, přednášející a vedoucí cvičení: doc. Ing. Pavel Svoboda, CSc. Kat. technologie staveb Obor L Příprava, realizace a provoz

Více

ČVUT v Praze, Fakulta stavební. seminář Stanovení vlastností materiálů při hodnocení existujících konstrukcí Masarykova kolej, 3. 4.

ČVUT v Praze, Fakulta stavební. seminář Stanovení vlastností materiálů při hodnocení existujících konstrukcí Masarykova kolej, 3. 4. STANOVENÍ VLASTNOSTÍ KONSTRUKČNÍHO DŘEVA PETR KUKLÍK ČVUT v Praze, Fakulta stavební seminář Stanovení vlastností materiálů při hodnocení existujících konstrukcí Masarykova kolej, 3. 4. 2007 Inovace metod

Více

Střední odborná škola stavební a Střední odborné učiliště stavební Rybitví

Střední odborná škola stavební a Střední odborné učiliště stavební Rybitví Střední odborná škola stavební a Střední odborné učiliště stavební Rybitví Vzdělávací oblast: Materiály Název: Dřevokazné houby 1. část Autor: Ing. Zdenka Kubešová Datum, třída: 4.6.2012, 1.C Stručná anotace:

Více

Úvod do biochemie. Vypracoval: RNDr. Milan Zimpl, Ph.D.

Úvod do biochemie. Vypracoval: RNDr. Milan Zimpl, Ph.D. Úvod do biochemie Vypracoval: RNDr. Milan Zimpl, Ph.D. TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Co je to biochemie? Biochemie je chemií živých soustav.

Více

Modelování a aproximace v biomechanice

Modelování a aproximace v biomechanice Modelování a aproximace v biomechanice Během většiny lidské aktivity působí v jednom okamžiku víc než jedna skupina svalů. Je-li úkolem analyzovat síly působící v kloubech a svalech během určité lidské

Více

Hodnocení vlastností folií z polyethylenu (PE)

Hodnocení vlastností folií z polyethylenu (PE) Laboratorní cvičení z předmětu "Kontrolní a zkušební metody" Hodnocení vlastností folií z polyethylenu (PE) Zadání: Na základě výsledků tahové zkoušky podle norem ČSN EN ISO 527-1 a ČSN EN ISO 527-3 analyzujte

Více

Mendelova zemědělská a lesnická Univerzita v Brně

Mendelova zemědělská a lesnická Univerzita v Brně Mendelova zemědělská a lesnická Univerzita v Brně Vliv makroskopické stavby dřeva na hustotu dřeva Fyzikální vlastnosti dřeva Protokol č.1 Vypracoval: Pavel Lauko Datum cvičení: 24.9.2002 Obor: DI Datum

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.18 Dřeviny Kapitola 5 Části kmene Příčný

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.16 Vady dřeva Kapitola 2 Čelní trhliny

Více

Užitková tropická dřeva. Makroskopická stavba dřeva

Užitková tropická dřeva. Makroskopická stavba dřeva Makroskopická stavba dřeva Znaky makroskopické stavby dřeva - základní letokruhy a přírůstové zóny dřeňové paprsky cévy pryskyřičné kanálky dřeňové skvrny suky - doplňkové barva (jádro, běl, vyzrálé dřevo)

Více

MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ LESNICKÁ A DŘEVAŘSKÁ FAKULTA BAKALÁŘSKÁ PRÁCE BRNO 2007 ONDŘEJ TOMÁNEK

MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ LESNICKÁ A DŘEVAŘSKÁ FAKULTA BAKALÁŘSKÁ PRÁCE BRNO 2007 ONDŘEJ TOMÁNEK MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ LESNICKÁ A DŘEVAŘSKÁ FAKULTA BAKALÁŘSKÁ PRÁCE BRNO 2007 ONDŘEJ TOMÁNEK Mendelova zemědělská a lesnická univerzita v Brně Lesnická a dřevařská fakulta Ústav

Více

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška 1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební

Více

Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky

Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky Nauka o materiálu Přednáška č.2 Poruchy krystalické mřížky Opakování z minula Materiál Degradační procesy Vnitřní stavba atomy, vazby Krystalické, amorfní, semikrystalické Vlastnosti materiálů chemické,

Více

Lesnická fytopatologie a rostlinolékařství prezentace pro praktická cvičení

Lesnická fytopatologie a rostlinolékařství prezentace pro praktická cvičení Lesnická fytopatologie a rostlinolékařství prezentace pro praktická cvičení Ing. Dagmar Palovčíková Ing. Miloň Dvořák PhD. Ing. Petr Sedlák Tento projekt je spolufinancován Evropským sociálním fondem a

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.18 Dřeviny Kapitola 31 Vady tvaru kmene

Více

Jak psát závěrečnou práci na LDF

Jak psát závěrečnou práci na LDF 28. 2. 2019, Brno Připravil: Hanuš Vavrčík Jak psát závěrečnou práci na LDF Závazné dokumenty Zásady psaní závěrečných prací Další doporučení Jak psát závěrečnou práci na LDF Závazné dokumenty Jak psát

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.18 Dřeviny Kapitola 15 Modřín Ing. Hana

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.18 Dřeviny Kapitola 32 Jiné vady dřeva na

Více

DUM č. 7 v sadě. 22. Ch-1 Biochemie

DUM č. 7 v sadě. 22. Ch-1 Biochemie projekt GML Brno Docens DUM č. 7 v sadě 22. Ch- Biochemie Autor: Martin Krejčí Datum: 3.0.20 Ročník: 6AF, 6BF Anotace DUMu: Polysacharidy Materiály jsou určeny pro bezplatné používání pro potřeby výuky

Více

Projekt realizovaný na SPŠ Nové Město nad Metují

Projekt realizovaný na SPŠ Nové Město nad Metují Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 Přírodovědné předměty Hana Gajdušková 1 Viry

Více

Ing. Lubomír Kacálek III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_TDŘ0512Vady dřeva I. vady tvaru kmene

Ing. Lubomír Kacálek III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_TDŘ0512Vady dřeva I. vady tvaru kmene Název školy Číslo projektu Autor Název šablony Název DUMu Stupeň a typ vzdělání Vzdělávací obor Tematický okruh Druh učebního materiálu Cílová skupina Anotace Střední odborná škola Luhačovice CZ.1.07/1.5.00/34.0370

Více

Řezivo. Pořez podélné dělení výřezů, výroba řeziva. 1 středové řezivo 2 boční řezivo 3 krajina 4 řezná spára

Řezivo. Pořez podélné dělení výřezů, výroba řeziva. 1 středové řezivo 2 boční řezivo 3 krajina 4 řezná spára Řezivo Pořez podélné dělení výřezů, výroba řeziva 1 středové řezivo 2 boční řezivo 3 krajina 4 řezná spára Druhy řeziva Druhy řeziva - řezivo s oblinami - řezivo ostrohranné v celé délce (neomítané (omítané

Více

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ SPOLEČNÉ ZNAKY ŽIVÉHO - schopnost získávat energii z živin pro své životní potřeby - síla aktivně odpovídat na změny prostředí - možnost růstu, diferenciace a reprodukce

Více

TYPY SCHODIŠŤ: Zadlabané schodiště

TYPY SCHODIŠŤ: Zadlabané schodiště TYPY SCHODIŠŤ: Zadlabané schodiště Nejčastější a nejoblíbenější typ schodiště. Nosným prvkem jsou schodnice, do kterých jsou zadlabány nášlapy a popřípadě i podstupně. Toto schodiště je velice oblíbené

Více

Vitální barvení, rostlinná buňka, buněčné organely

Vitální barvení, rostlinná buňka, buněčné organely Vitální barvení, rostlinná buňka, buněčné organely Vitální barvení používá se u nativních preparátů a rozumíme tím zvýšení kontrastu určitých buněčných složek v živých buňkách, nebo tkáních pomocí barvení

Více

POŽADAVKY na systém řízení výroby impregnace dřeva

POŽADAVKY na systém řízení výroby impregnace dřeva Výzkumný a vývojový ústav dřevařský POŽADAVKY na systém řízení výroby impregnace dřeva Ing. Jitka Beránková, Ph.D. vedoucí střediska certifikace Výzkumný a vývojový ústav dřevařský, Praha, s. p. Na Florenci

Více

Produktová řada Samomazná a bezúdržbová Založen na obnovitelných zdrojích Univerzální použití

Produktová řada Samomazná a bezúdržbová Založen na obnovitelných zdrojích Univerzální použití Biopolymer Produktová řada Samomazná a bezúdržbová Založen na obnovitelných zdrojích Univerzální použití 575 Biopolymer. Z 54% je založen na obnovitelných zdrojích. I přesto tento nový materiál splňuje

Více

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník MATEMATICKÉ (OPTICKÉ) ZÁKLADY FOTOGRAMMETRIE

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník MATEMATICKÉ (OPTICKÉ) ZÁKLADY FOTOGRAMMETRIE SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník MATEMATICKÉ (OPTICKÉ) ZÁKLADY FOTOGRAMMETRIE MATEMATICKÉ ZÁKLADY FOTOGRAMMETRIE fotogrammetrie využívá ke své práci fotografické snímky, které

Více