Fyzikální praktikum 3 Studium činnosti fotonásobiče
|
|
- Bohuslav Viktor Tábor
- před 6 lety
- Počet zobrazení:
Transkript
1 Ústav fyzikální elekotroniky Přírodovědecká fakulta, Masarykova univerzita, Brno Úloha 1. Fyzikální praktikum 3 Studium činnosti fotonásobiče Úkoly 1. Stanovte závislost koeficientu sekundární emise na energii elektronů dopadajících na dynodu. Vyneste do grafu i závislost ln(σ/v ) = f(v ). Zjistěte, jestli koeficient sekundární emise σ závisí na intenzitě osvětlení fotokatody. 2. Stanovte a vyneste do grafu závislost integrální citlivosti fotonásobiče a zesílení fotonásobiče na napětí na násobiči S = f(u a ) a M = f(u a ). 3. Stanovte integrální citlivost fotokatody k = I f /Φ. 4. Prověřte vliv temného proudu na přesnost měření. Teorie Fotonásobič je elektro-optický přístroj používaný pro proměřování velmi nízkých světelných intenzit (například optických spekter). Příkladem použití jsou scintilační detektory, regulace jasu a expozice u některých rentgenových přístrojů nebo citlivé měřiče osvětlení a světelného toku. Jeho činnost je založena na využití dvou druhů elektronové emise: fotoemise a sekundární emise. Fotoemise Fotoemise nebo také vnější fotoefekt je charakterizována emisí elektronů z povrchu osvětleného tělesa. Podstatou jevu je přeměna energie světelného kvanta na výstupní práci a kinetickou energii elektronu, který pak může uskutečnit elektrickou vodivost průletem od jedné elektrody k druhé. Pro vnější fotoefekt platí následující zákony: 1. Počet elektronů emitovaných za jednotku času je úměrný intenzitě dopadajícího světla, tj. počtu dopadajících fotonů. Takto formulovaný Stoletovův zákon platí za předpokladu, že při změně intenzity světla zůstane spektrální složení světla nezměněno a že nedojde k saturaci fotokatody. 2. Rychlost elektronů vystupujících z povrchu fotokatody na intenzitě světla nezávisí. 3. Počáteční rychlost elektronů v 0 vystupujících z fotokatody roste se zvyšující se frekvencí dopadajícího záření podle Einsteinova zákona: hν = w + mv2 0 2, (1) kde hν je energie kvanta monochromatického světla o kmitočtu ν a w je efektivní výstupní práce elektronů z materiálu fotokatody.
2 Návody pro fyz. praktikum (verze 10. července 2017) 2 Einsteinův zákon vede k představě tzv. červeného práhu fotoefektu. Vyberme-li takový nejnižší kmitočet dopadajícího světla ν 0, že platí: hν 0 = w, (2) pak elektrony vystupují z katody s rychlostí v 0 = 0. Je-li efektivní výstupní práce w > hν nemohou z fotokatody vystoupit žádné elektrony, protože energie světelného kvanta je nedostatečná. Kmitočet ν 0 se nazývá červený práh fotoefektu, závisí na materiálu fotokatody. U většiny kovů leží v ultrafialové části spektra, jen u alkalických kovů spadá do viditelné části spektra. Stoletovův zákon definuje počet emitovaných elektronů - velikost fotoproudu z fotokatody pod vlivem dopadajícího světelného toku s konstantním spektrálním složením I f = k(λ)φ. (3) Konstanta úměrnosti k(λ) ve Stoletovově zákonu závisí na vlnové délce dopadajícího světla. V uvedeném vztahu je I f primární proud elektronů z fotokatody a Φ je světelný tok dopadající na fotokatodu. Závislost k(λ) = f(λ) se nazývá spektrální charakteristika fotokatody. Sekundární emise Dopadem urychlených elektronů s dostačující energií na vhodnou elektrodu (s energií vyšší jak výstupní práce materiálu elektrody), se z této elektrody mohou uvolnit nové elektrony. Mezi tyto tzv. sekundární elektrony zahrnujeme jak elektrony pouze odražené od povrchu, tak i nově uvolněné elektrony. Je-li energie primárních (dopadajících) elektronů dostatečně velká (několikanásobek výstupní práce materiálu elektrody), může počet sekundárních elektronů převýšit počet elektronů primárních. Poměr proudu sekundárních elektronů I sek a proudu primárních elektronů I prim se nazývá koeficientem sekundární emise σ a platí tedy: σ = I sek I prim (4) a jeho velikost závisí na materiálu elektrod a na urychlujícím napětí podle vztahu: σ = A E exp( µe), (5) kde A a µ jsou konstanty závislé na materiálu elektrod (tzv. dynod), E je energie elektronů dopadajících na dynodu, kterou je možné nastavit pomocí napětí mezi dvěma sousedními dynodami (V ). Princip činnosti fotonásobiče Zjednodušené základní schéma fotonásobiče je na Obr. 1, jeho hlavní součásti jsou fotokatoda F K, řada dynod D i a anoda A. Napětí přivedené na jednotlivé elektrody je voleno tak, že postupně roste od katody přes jednotlivé dynody až k anodě. Fotoelektrony emitované z fotokatody, například bílým světlem, dopadají na první dynodu, když jsou urychleny jejím potenciálem na dostatečnou energii. Na první dynodě dojde k sekundární emisi, takže ji opustí celkem I 1 = σi f elektronů. Tyto sekundární elektrony první dynody se stávají primárními elektrony druhé dynody, kde se děj opakuje. Tvar dynod a rozložení potenciálu kolem nich je takové, že téměř všechny elektrony, které opustí n - tou dynodu jsou urychleny polem n+1 dynody a na tuto dynodu dopadají. Elektrony z poslední dynody pak dopadají na anodu. Celý postup zesílení elektronového toku z fotokatody lze zjednodušeně popsat následujícími vztahy. Proud elektronů z fotokatody I f závisí na světelném toku dopadajícím na fotokatodu podle Stoletovova zákona pro bílé světlo: I f = k Φ, (6)
3 Návody pro fyz. praktikum (verze 10. července 2017) 3 Obrázek 1: Fotonásobič se šesti dynodami a koeficientem sekundární emise σ = 2. Φ je světelný tok, FK je fotokatoda, D 1 D 6 jsou jednotlivé dynody, A je anoda. Pro potenciály elektrod platí U A > U D6 > > U D1 > U F K. kde konstanta úměrnosti k odpovídá citlivosti fotokatody na bílé světlo obsahující fotony včech vlnových délek a proto se nazývá integrální citlivostí fotokatody. V použitém násobiči je mezi každou dvojicí dynod stejné napětí (V ). Nedochází-li v násobiči k žádným ztrátám elektronů, je tedy výsledný proud anody dán vztahem: I a = σ n I f, (7) kde n je počet dynod. Zesílení M fotonásobiče je pak dáno poměrem anodového proudu a fotoproudu podle vztahu: M = σ n = I a I f. (8) Vzájemným dosazením uvedených výrazů dostaneme vztahy mezi zesílením, světelným tokem a výsledným anodovým proudem: I a = Mk Φ = S Φ, S = Mk, (9) kde S je integrální citlivost fotonásobiče (citlivost na bílé světlo obsahující fotony všech vlnových délek), k je zmíněná integrální citlivost fotokatody. Závislost zesílení na napětí na násobiči M = f 1 (U a ) a závislost integrální citlivosti na napětí na násobiči S = f 2 (U a ) charakterizují vlastnosti fotonásobiče. Fotonásobič dává určitý nežádoucí proud i bez osvětlení - tzv. temný proud. Vzniká hlavně termoemisí z fotokatody a lze jej ochlazením fotokatody potlačit. Zpravidla je nutno tento temný proud při použití fotonásobiče respektovat a příslušné veličiny (proudy fotokatody, dynodami a anodou) na tento temný proud opravit. Postup měření Na Obr. 3 je znázorněno celé zapojení fotonásobiče. Veškerá měření provedeme v tomto zapojení. Počet dynod je 14. Část dynod je zapojena trvale, pouze mezi napěťový dělič a 10. a 12. dynodu zařaďte citlivé mikroampérmetry na měření proudu dynodami (určení koeficientu sekundární emise).
4 Návody pro fyz. praktikum (verze 10. července 2017) a b Obrázek 2: Aparatura pro měření úlohy: (1) Zdroj anodového proudu Ia. (2) Ochranný odpor. (3) Mikroampérmetr pro měření anodového proudu. (4) Komora fotonasobiče: a) Patice pro elektrické zapojení fotonásobiče. b) Otočný šroub šedého klínu. (5) Zdroj světla. (6) Zdroj vysokého nápětí Ua. Vysokonapěťový stejnosměrný zdroj dodává proměnné napětí V na napěťový dělič mezi fotokatodu a 14. dynodu. Mezi anodou a 14. dynodou je zařazen ochranný odpor, mikroampérmetr s rozsahem 100 µa a urychlující stejnosměrný zdroj 80 V s polaritou + obrácenou směrem k anodě. Osvětlení fotokatody je třeba provádět velmi pozorně, aby nedošlo k jejímu poškození. Světelný tok lze řízeně měnit šedým klínem, umístěným před vstupem světla na fotokatodu. Popis ovládání šedého klínu je k úloze připojen včetně přiloženého grafu z kterého lze odečítat hodnoty světelného toku Φ. Poškození citlivé vrstvy fotokatody může nastat při příliš silném osvětlení, kdy fotokatoda ztrácí trvale svoji citlivost. Při připojeném napětí Ua mezi fotokatodou a anodou, nesmí být fotokatoda vystavena dennímu světlu v žádném případě. Sestavená aparatura umožňuje nastavovat napětí na násobiči (Ua ) a světelný tok na fotokatodu (Φ). Měřit je možné anodový proud (Ia ), proudy desátou (I10 ) a dvanáctou (I12 ) dynodou a samozřejmě napětí Ua. Pro 3 různé hodnoty světelného toku naměřte všechny veličiny, které potřebujete ke získání závislosti koeficientu sekundární emise, integrální citlivosti fotonásobiče a zesílení násobiče na napětí. Při vypnutém zdroji světla stanovte vliv temného proudu na měření. Dále ověřte, zda koeficient sekundární emise (σ) závisí či nezávisí na intenzitě osvětlení fotokatody. To provedete tak, že pro konstantní napětí na násobiči změříte koeficient sekundární emise pro všech 7 různých světelných toků Φ1,..., Φ7. Předpokládáme-li, že dynody v násobiči jsou z téhož materiálu a že napětí mezi dvěma sousedními dynodami jsou stejná, lze koeficient sekundární emise určit z proudů I10 a I12 pomocí vztahu: r I12 σ= (10) I10 Pomocí zjištěné hodnoty σ můžeme určit i fotoproud If. Postup plnění zbývajících úkolů je zřejmý. Podle velikosti temného proudu na dynodách I10, I12 a na anodě Ia, při nulovém světelném toku
5 Návody pro fyz. praktikum (verze 10. července 2017) 5 Obrázek 3: Schéma elektrického zapojení fotonásobiče Napětí na násobiči U a je rozděleno napěťovým děličem a je přivedeno na jednotlivé dynody. Při zapojování fotonásobiče do obvodu je třeba zapojit jen výrazně vyznačené spoje. Ostatní spoje jsou zapojeny trvale. na fotokatodu Φ = 0, rozhodneme zda budeme provádět opravu při vyhodnocování měření s nenulovým světelným tokem (Φ 0). Tipy pro tvorbu protokolu: Výsledky měření budou přehlednější, když všechny analogické závislosti měřené pro různá osvětlení fotokatody vynesete společně do jednoho grafu a jednotlivé závislosti odlišíte např. barvou nebo typem symbolu. Pokud k měřené závislosti existuje teoretický vztah, je vhodné do příslušného grafu vynést kromě měřených hodnot i teoretickou závislost. Při měření budete pracovat i s napětím okolo V, proto dbejte na vlastní bezpečnost. Anodový proud I a použitého fotonásobiče nesmí přesáhnout 100 µa. Při vyšších proudech může dojít ke zničení anody. Užití v praxi Fotonásobiče jsou součástí detekčních systémů elementárních částic, kterých se v praxi využívá v mnoha oborech od lehkého průmyslu přes lékařství až po částicovou fyziku a astrofyziku. Z principu činnosti fotokatody je zřejmé, že samotný fotonásobič může sloužit pouze jako detektor viditelného světla a frekvenčně blízkých oblastí UV a IR záření. V detektorech jiných elementárních částic než jsou fotony ze zmiňované oblasti spektra (jedná se typicky o fotony rentgenového záření a elektrony) je před fotonásobič předřazen scintilační materiál. Při interakci detekované částice s materiálem scintilátoru vznikají fotony (nejčastěji se jedná o fotony z viditelné oblasti spektra), z nichž některé dopadají na fotokatodu fotonásobiče a předávají tak informaci o částicích zachycených ve scintilátoru. Detektory světla, UV a IR záření vybavené fotonásobičem Fotonásobiče se používají jako detektory světla ve spektrometrech (absorpčních, emisních), které slouží k chemické analýze látek.
6 Návody pro fyz. praktikum (verze 10. července 2017) 6 Snímání světla fotonásobičem se uplatňuje při monitorování životního prostředí. Lze tak měřit například optickou propustnost prostředí, ze které se dá následně určit množství prachu obsaženého v atmosféře. Dále se využívá excitace molekul plynu a následné detekce světla uvolňovaného při deexcitaci. Tímto způsobem se měří koncentrace škodlivin jako např. oxidů síry a oxidů dusíku. Fotonásobiče nacházejí široké uplatnění v oblasti biologie a biotechnologie. Využívá se jich k detekci světla emitovaného, nebo odraženého od zkoumaných biologických struktur v zařízeních jakými jsou například citometry, konfokální laserové mikroskopy, nebo DNA sekvenátory. V oblasti experimentální fyziky se fotonásobičů používá jako detektorů Čerenkovova záření vzniklého při brzdění částic vzniklých např. při různých srážkových procesech v urychlovačích. Speciálním experimentálním zařízením obsahujícím několik tisíc fotonásobičů je detektor neutrin v japonském Kamiokande. Detektory obsahující kombinaci scintilátoru a fotonásobiče V medicíně se se scintilačně-fotonásobičovými detektory můžeme setkat v různých rentgenových diagnostických přístrojích, jakými jsou například gama kamery nebo pozitronové emisní tomografy. V částicové fyzice se těchto detektorů používá v experimentálních zařízeních, mezi které patří například TOF čítače nebo kalorimetry, s jejichž pomocí lze určovat energie a trajektorie zkoumaných elementárních částic. Pomocí fotonásobičových detektorů umístěných na palubách družic je snímáno rentgenové záření přicházející z okolního vesmíru. Kombinace scintilátoru a fotonásobiče se dále využívá k měření radiace. Mezi monitorované oblasti typicky patří prostory kolem jaderných reaktorů, měření radiace se dále provádí například při celní kontrole zboží. V průmyslové praxi se používá sond vybavených rentgenovým zářičem a scintilačně-fotonásobičovým detektorem například k měření množství ropy obsažené v hornině, nebo k měření tloušťky materiálu např. při výrobě papíru. Kombinace scintilátoru a fotonásobiče se využívá k detekci elektronů při zobrazování vzorků v elektronových mikroskopech. V mnoha výše jmenovaných oblastech jsou fotonásobiče postupně nahrazovány polovodičovými detektory. Děje se tak jak z důvodu miniaturizace, tak z důvodu snížení ceny výsledného zařízení. Pro detekci zpětně odražených elektronů se tak v elektronové mikroskopii můžeme často setkat s PIN diodami. V oblasti detekce viditelného světla lze pro některé aplikace fotonásobič nahradit lavinovou fotodiodu (APD = Avalanche Photo-Diode). Literatura [1] Chudoba T. a kol.: Fyzikální praktikum III., skripta Přír. fak. UJEP v Brně (MU v Brně), SPN Praha [2] Čečik, Fajnštejn, Lifšic: Elektronnyje umnožitěli, Moskva [3] Ondráček Z. : Elektronika pro fyziky, Skriptum Přír. fak. MU, Brno 1998
Fyzikální praktikum 3. Studium činnosti fotonásobiče
Ústav fyzikální elekotroniky Přírodovědecká fakulta, Masarykova univerzita, Brno Fyzikální praktikum 3 Úloha 1. Studium činnosti fotonásobiče Úkoly 1. Stanovte závislost koeficientu sekundární emise na
Fyzikální praktikum č.: 1
Datum: 5.5.2005 Fyziální pratium č.: 1 ypracoval: Tomáš Henych Název: Studium činnosti fotonásobiče Úol: 1. Stanovte závislost oeficientu seundární emise na napětí mezi dynodami. yneste do grafu závislost
Fyzikální praktikum 3
Ústav fyzikální elekotroniky P írodov decká fakulta, Masarykova univerzita, Brno Fyzikální praktikum 3 Úloha 1. Studium innosti fotonásobi e Úkoly 1. Stanovte závislost koecientu sekundární emise na nap
Na základě toho vysvětlil Eisnstein vnější fotoefekt, kterým byla platnost tohoto vztahu povrzena.
Vlnově-korpuskulární dualismus, fotony, fotoelektrický jev vnější a vnitřní. Elmg. teorie záření vysvětluje dobře mnohé jevy v optice interference, difrakci, polarizaci. Nelze jí ale vysvětlit např. fotoelektrický
Speciální spektrometrické metody. Zpracování signálu ve spektroskopii
Speciální spektrometrické metody Zpracování signálu ve spektroskopii detekce slabých signálů synchronní detekce (Lock-in) čítaní fotonů měření časového průběhu signálů metoda fázového posuvu časově korelované
Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec
Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm
Fotoelektrické snímače
Fotoelektrické snímače Úloha je zaměřena na měření světelných charakteristik fotoelektrických prvků (součástek). Pro měření se využívají fotorezistor, fototranzistor a fotodioda. Zadání 1. Seznamte se
Měření charakteristik fotocitlivých prvků
Měření charakteristik fotocitlivých prvků Úkol : 1. Určete voltampérovou charakteristiku fotoodporu při denním osvětlení a při osvětlení E = 1000 lx. 2. Určete voltampérovou charakteristiku fotodiody při
Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace)
Referát z atomové a jaderné fyziky Detekce ionizujícího záření (principy, technická realizace) Měřicí a výpočetní technika Šimek Pavel 5.7. 2002 Při všech aplikacích ionizujícího záření je informace o
Studium fotoelektrického jevu
Studium fotoelektrického jevu Úkol : 1. Změřte voltampérovou charakteristiku přiložené fotonky 2. Zpracováním výsledků měření určete hodnotu Planckovy konstanty Pomůcky : - Ampérmetr TESLA BM 518 - Školní
Praktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 13 Název: Vlastnosti rentgenového záření Pracoval: Matyáš Řehák stud.sk.: 13 dne: 3. 4. 2008 Odevzdal
Vybrané spektroskopické metody
Vybrané spektroskopické metody a jejich porovnání s Ramanovou spektroskopií Předmět: Kapitoly o nanostrukturách (2012/2013) Autor: Bc. Michal Martinek Školitel: Ing. Ivan Gregora, CSc. Obsah přednášky
Detektory optického záření
Detektory optického záření Vrbová, Jelínková, Gavrilov, Úvod do laserové techniky, ČVUT FJFI, 1994 Kenyon, The light fantastic, Oxford Goldman, Lasers in Medicine, kapitola Optická a tepelná dozimetrie
Charakteristiky optoelektronických součástek
FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Spolupracoval Jan Floryček Jméno a příjmení Jakub Dvořák Ročník 1 Měřeno dne Předn.sk.-Obor BIA 27.2.2007 Stud.skup. 13 Odevzdáno dne Příprava Opravy Učitel
POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (40) Zveřejněno 31 07 79 N
ČESKOSLOVENSKÁ SOCIALISTICKÁ R E P U B L I K A (19) POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ 196670 (11) (Bl) (51) Int. Cl. 3 H 01 J 43/06 (22) Přihlášeno 30 12 76 (21) (PV 8826-76) (40) Zveřejněno 31 07
MĚŘENÍ PLANCKOVY KONSTANTY
Úloha č. 14a MĚŘENÍ PLANCKOVY KONSTANTY ÚKOL MĚŘENÍ: 1. Změřte napětí U min, při kterém se právě rozsvítí červená, žlutá, zelená a modrá LED. Napětí na LED regulujte potenciometrem. 2. Nakreslete graf
Emise vyvolaná působením fotonů nebo částic
Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová
Detektory. požadovaná informace o částici / záření. proudový puls p(t) energie. čas příletu. výstupní signál detektoru. poloha.
Detektory požadovaná informace o částici / záření energie čas příletu poloha typ citlivost detektoru výstupní signál detektoru proudový puls p(t) E Q p t dt účinný průřez objem vnitřní šum vstupní okno
OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Světlo jako částice Kvantová optika se zabývá kvantovými vlastnostmi optického
ZÁKLADNÍ POJMY KVANTOVÉ FYZIKY, FOTOELEKTRICKÝ JEV. E = h f, f je frekvence záření, h je Planckova
ZÁKLADNÍ POJMY KVANTOVÉ FYZIKY, FOTOELEKTRICKÝ JEV. KVANTOVÁ FYZIKA: Koncem 19. století byly zkoumány optické jevy, které nelze vysvětlit jen vlnovými vlastnostmi světla > vznikly nové fyzikální teorie,
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +
Měření šířky zakázaného pásu polovodičů
Měření šířky zakázaného pásu polovodičů Úkol : 1. Určete šířku zakázaného pásu ze spektrální citlivosti fotorezistoru pro šterbinu 1,5 mm. Na monochromátoru nastavujte vlnovou délku od 200 nm po 50 nm
PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka.
PSK1-14 Název školy: Autor: Anotace: Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Optické zdroje a detektory Vzdělávací oblast: Informační a komunikační technologie Předmět:
J = S A.T 2. exp(-eφ / kt)
Vakuové součástky typy a využití Obrazovky: - osciloskopické - televizní + monitory Elektronky: - vysokofrekvenční (do 1 GHz, 1MW) - mikrovlnné elektronky ( až do 20 GHz, 10 MW) - akustické zesilovače
Fotonásobič. fotokatoda. typicky: - koeficient sekundární emise = počet dynod N = zisk: G = fokusační elektrononová optika
Fotonásobič vstupní okno fotokatoda E h fokusační elektrononová optika systém dynod anoda e zesílení G N typicky: - koeficient sekundární emise = 3 4 - počet dynod N = 10 12 - zisk: G = 10 5-10 7 Fotonásobič
Senzory ionizujícího záření
Senzory ionizujícího záření Senzory ionizujícího záření dozimetrie α = β = He e 2+, e + γ, n X... elmag aktivita [Bq] (Becquerel) A = A e 0 λt λ...rozpadová konstanta dávka [Gy] (Gray) = [J/kg] A = 0.5
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 3
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Fyzikální praktikum 3 Zpracoval: Jakub Juránek Naměřeno: 24. duben 2013 Obor: UF Ročník: II Semestr: IV Testováno:
4. STANOVENÍ PLANCKOVY KONSTANTY
4. STANOVENÍ PLANCKOVY KONSTANTY Měřicí potřeby: 1) kompaktní zařízení firmy Leybold ) kondenzátor 3) spínač 4) elektrometrický zesilovač se zdrojem 5) voltmetr do V Obecná část: Při ozáření kovového tělesa
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části
Fyzikální praktikum 3 Operační zesilovač
Ústav fyzikální elekotroniky Přírodovědecká fakulta, Masarykova univerzita, Brno Fyzikální praktikum 3 Úloha 7. Operační zesilovač Úvod Operační zesilovač je elektronický obvod hojně využívaný téměř ve
25 A Vypracoval : Zdeněk Žák Pyrometrie υ = -40 C.. +10000 C. Výhody termovize Senzory infračerveného záření Rozdělení tepelné senzory
25 A Vypracoval : Zdeněk Žák Pyrometrie Bezdotykové měření Pyrometrie (obrázky viz. sešit) Bezdotykové měření teplot je měření povrchové teploty těles na základě elektromagnetického záření mezi tělesem
Charakteristika a mrtvá doba Geiger-Müllerova počítače
Charakteristika a mrtvá doba Geiger-Müllerova počítače Úkol : 1. Proměřte charakteristiku Geiger-Müllerova počítače. K jednotlivým naměřeným hodnotám určete střední kvadratickou chybu a vyznačte ji do
Fyzikální praktikum 3
Ústav fyzikální elektroniky Přírodovědecká fakulta, Masarykova univerzita, Brno Úloha 2. Fyzikální praktikum 3 Studium termoelektronové emise Úkoly. Změřte za pokojové teploty odpor katody a odhadněte
MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis
MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis Ivana Krestýnová, Josef Zicha Abstrakt: Absolutní vlhkost je hmotnost
Stručný úvod do spektroskopie
Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,
Měření výstupní práce elektronu při fotoelektrickém jevu
Měření výstupní práce elektronu při fotoelektrickém jevu Problém A. Změřit voltampérovou charakteristiku ozářené vakuové fotonky v závěrném směru. B. Změřit výstupní práci fotoelektronů na fotokatodě vakuové
Měření absorbce záření gama
Měření absorbce záření gama Úkol : 1. Změřte záření gama přirozeného pozadí. 2. Změřte záření gama vyzářené gamazářičem. 3. Změřte záření gama vyzářené gamazářičem přes absorbátor. 4. Naměřené závislosti
Balmerova série. F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3
Balmerova série F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3 Grepl.F@seznam.cz Abstrakt: Metodou dělených svazků jsme určili lámavý
Čím je teplota látky větší (vyšší frekvence kmitů), tím kratší je vlnová délka záření.
KVANTOVÁ FYZIKA 1. Záření tělesa Částice (molekuly, ionty) pevných a kapalných látek, které jsou zahřáté na určitou teplotu, kmitají kolem rovnovážných poloh. Při tomto pohybu kolem nich vzniká proměnné
Abstrakt. fotodioda a fototranzistor) a s jejich základními charakteristikami.
Název a číslo úlohy: 9 Detekce optického záření Datum měření: 4. května 2 Měření provedli: Vojtěch Horný, Jaroslav Zeman Vypracovali: Vojtěch Horný a Jaroslav Zeman společnými silami Datum: 4. května 2
[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka
10 KVANTOVÁ FYZIKA Vznik kvantové fyziky zapříčinilo několik základních jevů, které nelze vysvětlit pomocí klasické fyziky. Z tohoto důvodu musela vzniknout nová teorie, která by je přijatelně vysvětlila.
Plazmové metody. Základní vlastnosti a parametry plazmatu
Plazmové metody Základní vlastnosti a parametry plazmatu Atom je základní částice běžné hmoty. Částice, kterou již chemickými prostředky dále nelze dělit a která definuje vlastnosti daného chemického prvku.
Základy pyrometrie. - pyrometrie = bezkontaktní měření teploty. 0.4 µm... 25 µm - 40 0 C... 10 000 0 C
Základy pyrometrie - pyrometrie = bezkontaktní měření teploty 0.4 µm... 25 µm - 40 0 C... 10 000 0 C výhody: zanedbatelný vliv měřící techniky na objekt možnost měření rotujících nebo pohybujících se těles
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Praktikum z pevných látek (F6390)
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Praktikum z pevných látek (F6390) Zpracoval: Michal Truhlář Naměřeno: 6. března 2007 Obor: Fyzika Ročník: III Semestr:
Fluorescence (luminiscence)
Fluorescence (luminiscence) Patří mezi luminiscenční metody fotoluminiscence. Luminiscence efekt, kdy excitované molekuly či atomy vyzařují světlo při přechodu z excitovaného do základního stavu. Podle
Modulace a šum signálu
Modulace a šum signálu PATRIK KANIA a ŠTĚPÁN URBAN Nejlepší laboratoř molekulové spektroskopie vysokého rozlišení Ústav analytické chemie, VŠCHT Praha kaniap@vscht.cz a urbans@vscht.cz http://www.vscht.cz/anl/lmsvr
Určení Planckovy konstanty pomocí fotoelektrického jevu
Určení Planckovy konstanty pomocí fotoelektrickéo jevu Související témata: Externí fotoelektrický jev, výstupní práce elektronu z kovu, absorpce, energie fotonu Princip a úkol: Fotocitlivý prvek - fotonka
ELEKTRONIKA PRO ZPRACOVÁNÍ SIGNÁLU
ELEKTRONIKA PRO ZPRACOVÁNÍ SIGNÁLU Václav Michálek, Antonín Černoch Společná laboratoř optiky UP a FZÚ AV ČR Regionální centrum pokročilých technologií a materiálů CZ.1.07/2.2.00/07.0018 VM, AČ (SLO/RCPTM)
popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu
9. Čidla napětí a proudu Čas ke studiu: 15 minut Cíl Po prostudování tohoto odstavce budete umět popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu Výklad
Fotovodivost. Destička polovodiče s E g a indexem lomu n 1. Dopadající záření o intenzitě I 0 a hν E g. Do polovodiče pronikne záření o intenzitě:
Fotovodivost Destička polovodiče s E g a indexem lomu n 1. Dopadající záření o intenzitě I 0 a hν E g. Do polovodiče pronikne záření o intenzitě: Vznikne g párů díra elektron. Přírůstek koncentrace a vodivosti:
1 Elektronika pro zpracování optického signálu
1 Elektronika pro zpracování optického signálu Výběr elektroniky a detektorů pro měření optického signálu je odvislé od toho, jaký signál budeme detekovat. V první řadě je potřeba vědět, jakých intenzit
METODY ANALÝZY POVRCHŮ
METODY ANALÝZY POVRCHŮ (c) - 2017 Povrch vzorku 3 definice IUPAC: Povrch: vnější část vzorku o nedefinované hloubce (Užívaný při diskuzích o vnějších oblastech vzorku). Fyzikální povrch: nejsvrchnější
Jméno a příjmení. Ročník. Měřeno dne. 8.4.2013 Příprava Opravy Učitel Hodnocení. Fotoelektrický jev a Planckova konstanta
FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Petr Švaňa Ročník 1 Předmět IFY Kroužek Spolupracoval Měřeno dne Odevzdáno dne Ladislav Šulák 25. 3. 2013 8.4.2013 Příprava Opravy Učitel
Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení
FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Vojtěch Přikryl Ročník 1 Předmět IFY Kroužek 35 ID 143762 Spolupracoval Měřeno dne Odevzdáno dne Daniel Radoš 7.3.2012 21.3.2012 Příprava
Jméno a příjmení. Ročník. Měřeno dne. 11.3.2013 Příprava Opravy Učitel Hodnocení. Charakteristiky optoelektronických součástek
FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Petr Švaňa Ročník 1 Předmět IFY Kroužek 38 ID 155793 Spolupracoval Měřeno dne Odevzdáno dne Ladislav Šulák 25.2.2013 11.3.2013 Příprava Opravy
5. Měření výstupní práce elektronu při fotoelektrickém jevu
5. Měření výstupní práce elektronu při fotoelektrickém jevu Problém A. Změřit voltampérovou charakteristiku ozářené vakuové fotonky v závěrném směru. B. Změřit výstupní práci fotoelektronů na fotokatodě
POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II
POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II FOTOELEKTRICKÝ JEV VNĚJŠÍ FOTOELEKTRICKÝ JEV na intenzitě záření závisí jen množství uvolněných elektronů, ale nikoliv energie jednotlivých elektronů energie elektronů
Měřicí řetězec. měřicí zesilovač. převod na napětí a přizpůsobení rozsahu převodníku
Měřicí řetězec fyzikální veličina snímač měřicí zesilovač A/D převodník počítač převod fyz. veličiny na elektrickou (odpor, proud, napětí, kmitočet...) převod na napětí a přizpůsobení rozsahu převodníku
16. Franck Hertzův experiment
16. Franck Hertzův experiment Zatímco zahřáté těleso vysílá spojité spektrum elektromagnetického záření, mají např. zahřáté páry kovů nebo plyny, v nichž probíhá elektrický výboj, spektrum čárové. V uvedených
Obrazové snímače a televizní kamery
Obrazové snímače a televizní kamery Prof. Ing. Václav Říčný, CSc. Současná televizní technika a videotechnika kurz U3V Program semináře a cvičení Snímače obrazových signálů akumulační a neakumulační. Monolitické
Obrazové snímače a televizní kamery
Obrazové snímače a televizní kamery Prof. Ing. Václav Říčný, CSc. Současná televizní technika a videotechnika kurz U3V Program semináře a cvičení Snímače obrazových signálů akumulační a neakumulační. Monolitické
11. Polovodičové diody
11. Polovodičové diody Polovodičové diody jsou součástky, které využívají fyzikálních vlastností přechodu PN nebo přechodu kov - polovodič (MS). Nelinearita VA charakteristiky, zjednodušeně chápaná jako
Spektrometrie záření gama
Spektrometrie záření gama M. Kroupa, Gymnázium Děčín, trellac@centrum.cz B. Dvorský, Gymnázium Šternberk, bohuslav.dvorsky@seznam.cz Abstrakt Tento článek pojednává o spektroskopii záření gama. Bylo měřeno
1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin.
1 Pracovní úkoly 1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 2. Proměřte úhlovou závislost intenzity difraktovaného rentgenového záření při pevné orientaci
- Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl. - fluorescence - fosforescence
ROZPTYLOVÉ a EMISNÍ metody - Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl - fluorescence - fosforescence Ramanova spektroskopie Každá čára Ramanova spektra je svými vlastnostmi závislá
Spektroskopické metody. převážně ve viditelné, ultrafialové a blízké infračervené oblasti
Spektroskopické metody převážně ve viditelné, ultrafialové a blízké infračervené oblasti Elektromagnetické záření Elektromagnetické záření je postupné vlnění elektromagnetického pole složeného z kombinace
13. Spektroskopie základní pojmy
základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Ing. Stanislav Jakoubek
Ing. Stanislav Jakoubek Číslo DUMu III/2-1-3-3 III/2-1-3-4 III/2-1-3-5 Název DUMu Vnější a vnitřní fotoelektrický jev a jeho teorie Technické využití fotoelektrického jevu Dualismus vln a částic Ing. Stanislav
Molekulová spektroskopie 1. Chemická vazba, UV/VIS
Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická
1. Zadání Pracovní úkol Pomůcky
1. 1. Pracovní úkol 1. Zadání 1. Ověřte měřením, že směry výletu anihilačních fotonů vznikajících po β + rozpadu jader 22 Na svírají úhel 180. 2. Určete pološířku úhlového rozdělení. 3. Vysvětlete tvar
PRAKTIKUM II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XI Název: Charakteristiky diody Pracoval: Pavel Brožek stud. skup. 12 dne 9.1.2009 Odevzdal
24 Fotoelektrický jev a Planckova konstanta
24 Fotoelektrický jev a Planckova konstanta ÚKOL 1. Stanovte Planckovu konstantu z měření vnějšího fotoelektrického jevu. 2. Určete výstupní práci použité fotonky. TEORIE Planckova konstanta Světlo je
Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok
Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok 2014-15 Stavba hmoty Elementární částice; Kvantové jevy, vlnové vlastnosti částic; Ionizace, excitace; Struktura el. obalu atomu; Spektrum
6. STUDIUM SOLÁRNÍHO ČLÁNKU
6. STUDIUM SOLÁRNÍHO ČLÁNKU Měřicí potřeby 1) solární baterie 2) termoelektrická baterie 3) univerzální měřicí zesilovač 4) reostat 330 Ω, 1A 5) žárovka 220 V / 120 W s reflektorem 6) digitální multimetr
ZÁKLADY OBECNÉ A KLINICKÉ BIOCHEMIE
ZÁKLADY OBECNÉ A KLINICKÉ BIOCHEMIE 2004 Technologie kvantitativních metod Petr Štern kapitola ve skriptech - 4.2.2 Optické zdroje U V V I S I R Spektrální distribuční křivky W žárovky b.t. W ~ 3600 C
Teplota je nepřímo měřená veličina!!!
TERMOVIZE V PRAXI Roman Vavřička ČVUT v Praze, Fakulta strojní Ústav techniky prostředí 1/48 Teplota je nepřímo měřená veličina!!! Základní rozdělení senzorů teploty: a) dotykové b) bezdotykové 2/48 1
SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE)
SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE) Elektromagnetické vlnění SVĚTLO Charakterizace záření Vlnová délka - (λ) : jednotky: m (obvykle nm) λ Souvisí s povahou fotonu Charakterizace záření
PRAKTIKUM II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: X Název: Hallův jev Pracoval: Pavel Brožek stud. skup. 12 dne 19.12.2008 Odevzdal dne:
Relativní chybu veličiny τ lze určit pomocí relativní chyby τ 1. Zanedbáme-li chybu jmenovatele ve vzorci (2), platí *1+:
Pracovní úkol 1. Změřte charakteristiku Geigerova-Müllerova detektoru pro záření gamma a u jednotlivých měření stanovte chybu a vyznačte ji do grafu. Určete délku a sklon plata v charakteristice detektoru
Úloha č.9 - Detekce optického záření
Úloha č.9 Detekce optického záření 1 Teoretický úvod Detektory optického záření, tzv. fotodetektory, jsou nezbytnou pomůckou při práci s elektromagnetickým zářením. Společný princip většiny detektorů pro
Scintilace. Co zachytí oko? Pokud během 1/10 s nejméně 15 fotonů. Jedna z nejstarších detekčních metod (Rutherford a ZnS)
Scintilace Jedna z nejstarších detekčních metod (Rutherford a ZnS) scintilace -puls světla krátce po průchodu částice fluorescence světelný puls krátce (< 10 ns) po absorpci γ kvanta fosforescence emise
STEJNOSMĚRNÝ PROUD Nesamostatný výboj TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
STEJNOSMĚRNÝ PROUD Nesamostatný výboj TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Plyny jsou tvořeny elektricky neutrálními molekulami. Proto jsou za
Spektrální charakteristiky fotodetektorů
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická LABORATORNÍ ÚLOHA č. 3 Spektrální charakteristiky fotodetektorů Vypracovali: Jan HLÍDEK & Martin SKOKAN V rámci předmětu: Fotonika (X34FOT)
nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL
Inovace a rozvoj studia nanomateriálů na TUL nano.tul.cz Tyto materiály byly vytvořeny v rámci projektu ESF OP VK: Inovace a rozvoj studia nanomateriálů na Technické univerzitě v Liberci Experimentální
DOUTNAVÝ VÝBOJ. 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace
DOUTNAVÝ VÝBOJ 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace Doutnavý výboj Připomeneme si voltampérovou charakteristiku výboje v plynech : Doutnavý výboj Připomeneme si, jaké
Metody analýzy povrchu
Metody analýzy povrchu Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. 2 Povrch pevné látky: Poslední monoatomární vrstva + absorbovaná monovrstva Ovlivňuje fyzikální vlastnosti (ukončení
Úloha 8: Absorpce beta záření. Určení energie betarozpadu měřením absorpce emitovaného záření.
Petra Suková, 3.ročník 1 Úloha 8: Absorpce beta záření. Určení energie betarozpadu měřením absorpce emitovaného záření. 1 Zadání Vtétoúlozesepoužívázářič 90 Sr,kterýserozpadápodleschematunaobr.1.Spektrumemitovaných
2. Zdroje a detektory světla
2. Zdroje a detektory světla transmitance (%) Spektrální rozsah Krátkovlné limity: Absorpce vzduchu (O 2,N 2,vodní pára) - 190 nm Propustnost optiky Spektrální rozsah zdroje vlnová délka (nm) http://www.hellma-analytics.com/text/283/en/material-and-technical-information.html
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura
Úloha 5: Charakteristiky optoelektronických součástek
Petra Suková, 2.ročník, F-14 1 Úloha 5: Charakteristiky optoelektronických součástek 1 Zadání 1. Změřte voltampérové a světelné charakteristiky připravených luminiscenčních diod v propustném směru a určete,
Fyzikální podstata DPZ
Elektromagnetické záření Vlnová teorie vlna elektrického (E) a magnetického (M) pole šíří se rychlostí světla (c) Charakteristiky záření: vlnová délka (λ) frekvence (ν) Fyzikální podstata DPZ Petr Dobrovolný
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 11: Termická emise elektronů
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 15.4.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Úloha 11: Termická emise elektronů
PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. XXVI Název: Vláknová optika Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009 Odevzdal dne: Možný počet bodů
Úloha 4: Totální účinný průřez interakce γ záření absorpční koeficient záření gama pro některé elementy
Petra Suková, 3.ročník 1 Úloha 4: Totální účinný průřez interakce γ záření absorpční koeficient záření gama pro některé elementy 1 Zadání 1. UrčeteabsorpčníkoeficientzářenígamaproelementyFe,CdaPbvzávislostinaenergii
Dualismus vln a částic
Dualismus vln a částic Filip Horák 1, Jan Pecina 2, Jiří Bárdoš 3 1 Mendelovo gymnázium, Opava, Horaksro@seznam.cz 2 Gymnázium Jeseník, pecinajan.jes@mail.com 3 Gymnázium Teplice, jiri.bardos@post.gymtce.cz
1. Zadání Pracovní úkol
1. 1. Pracovní úkol 1. Zadání 1. Změřte charakteristiky Franck-Hertzovy trubice s parami rtuti při pokojové teplotě a při dvou vyšších teplotách baňky t 1, t 2. Při nejvyšší teplotě a při teplotě pokojové
Univerzita Tomáše Bati ve Zlíně
Univerzita Tomáše Bati ve Zlíně Ústav elektrotechniky a měření Optoelektronika Přednáška č. 8 Milan Adámek adamek@ft.utb.cz U5 A711 +420576035251 Optoelektronika 1 Optoelektronika zabývá se přeměnou elektrické
Úvod do spektrálních metod pro analýzu léčiv
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz
Počátky kvantové mechaniky. Petr Beneš ÚTEF
Počátky kvantové mechaniky Petr Beneš ÚTEF Úvod Stav fyziky k 1. 1. 1900 Hypotéza atomu velmi rozšířená, ne vždy však přijatá. Atomy bodové, není jasné, jak se liší atomy jednotlivých prvků. Elektron byl