VÍTEJTE V MIKROSVĚTĚ
|
|
- Žaneta Müllerová
- před 6 lety
- Počet zobrazení:
Transkript
1 VÍTEJTE V MIKROSVĚTĚ
2
3 Klasická vs. Moderní fyzika Klasická fyzika fyzika obyčejných věcí viditelných pouhým okem Moderní fyzika Relativita zabývá se tím co se pohybuje rychle nebo v silovém gravitačním poli Kvantová fyzika zabývá se světlem nebo věcmi velmi malými (molekuly ) Svět popsaný kvantovou teorií je náš svět jen na mikroskopické úrovní.
4 Makrosvět vs. mikrosvět V makrosvětě mohou nabývat částice prakticky libovolné energie V mikrosvětě dochází k tzv. kvantování energie. Přípustné energie vytvářejí soubor oddělených (diskrétních) energetických hladin. Přechod mezi hladinami je spojen s přijetím nebo odevzdáním E, která odpovídá energetické vzdálenosti hladin. E hν
5 Od tepelného záření ke kvantování energie Elektromagnetické záření vydávají všechna tělesa Chladná vyzařují okem neviditelné infračervené záření Zahřátá tělesa (asi nad 500 C) pak záření viditelné
6 Od tepelného záření k absolutně černému tělesu a zpět ke kvantování energie Konec 19. století se nesl ve znamení absolutně černého tělesa. Spousta fyziků podalo dílčí vysvětlení jeho záření, ale až Max Planck jej popsal přesně.
7 Absolutně černé těleso? Dokonale pohlcuje veškerou dopadající energii a následně tuto energii vyzařuje zpět ve formě elektromagnetických vln. Nedochází k žádnému odrazu záření, čímž se za nízké teploty jeví dokonale černé měření E dopadajícího záření pro jednotlivé vlnové délky při nižší teplotě (600 C) zahřáté těleso se jeví jako červené C se jeho barva mění na bílou, poněvadž jsou v záření zastoupeny všechny vlnové délky viditelné části spektra při ještě vyšších teplotách se barva tělesa mění v modrobílou a těleso vyzařuje i ultrafialové záření (elektrody při obloukovém svařování)
8 Od černého tělesa ke kvantování G. Kirchhoff celková intenzita vyzařování závisí pouze na teplotě černého tělesa Lord Rayleigh a J. Jeans popis rozložení intenzity pro dlouhé vlnové délky, pro kratší vlnové délky však vede k tzv. ultrafialové katastrofě, protože podle něj se zkracováním vlnové délky roste intenzita vyzařování nade všechny meze. W. Wien s rostoucí teplotou černého tělesa se zkracuje vlnová délka, ve které černé těleso vyzáří nejvíce energie. Tato vlnová délka je nepřímo úměrná termodynamické teplotě. M. Planck těleso vyzařuje jen záření určitých vlnových délek. Světelná energie je vyzařována po kvantech a ne spojitě (elementární kvantum foton quantum množství). E = hν ν je frekvence záření a h je Planckova konstanta (h = 6,626 J.s*)
9 Princip komplementarity Zjistíme-li pomocí fyzikálního měření přesnou hodnotu jedné veličiny, mají všechny možné výsledky měření druhé veličiny stejnou pravděpodobnost a jsou tudíž "nepředvídatelné'', neboťžádná z nich nenínikterak preferována.
10 Princip komplementarity Heisenbergův princip neurčitosti Není možno současně určit hybnost a polohu částice s libovolnou přesností. Podobně energie a čas /4π
11 Částice nebo vlna?
12 Částice nebo vlna? Částice! Důkaz měření energií elektronů vznikajících při fotoelektrickém jevu. Fotoelektrický jev (NC 1921) pokud na fotokatodu, záporně nabitou kovovou elektrodu umístěnou spolu s anodou v evakuované skleněné trubici, dopadá záření vhodné energie, lze pozorovat, že obvodem začne protékat proud (zvýší-li se intenzita, roste také proud).
13 Částice! Snižuje-li se frekvence světla po dosažení určité energie proud v obvodě přestane protékat. Minimální E fotonu (výstupní práce W elektronu potřebná k vyražení elektronu z kovu, záleží na materiálu řádově jednotky ev). Energie fotonu se transformuje do kinetické energie elektronu a výstupní práce E = hν = E k + W
14 Ne je to vlna! C. Davissonem a L. Germerem pozorovali difrakci elektronů na krystalu. Zopakováno i s molekulami (vodíkem). Difrakce je charakteristická vlastnost vln nastává při interferenci vln.
15 Ne je to vlna! L. de Broglie navrhl, že každá částice pohybující se s hybností p má vlnovou délku λ danou vztahem: λ = # $
16 Ne je to vlna! L. de Broglie navrhl, že každá částice pohybující se s hybností p má vlnovou délku λ danou vztahem: λ = # $ λ=10 35 m Pro difrakci musí být λ srovnatelná v řádech s velikostí! Čím vyšší rychlost, tím kratší λ.
17 Takže DUALISMUS! A. Einstein světelné kvantum nese hybnost De Broglie hmotná částice mající hybnost je popsatelná vlnovou délkou Jak danou částici popíšeme záleží jen na uspořádání experimentu a způsobu pozorování!
18 Vítejte v mikrosvětě Pro popis chování sytému podle počátečního stavu nelze použít klasickou Newtonovskou mechaniku kvantová mechanika Klasický pojem trajektorie je v kvantové mechanice nahrazen pojmem vlna vlnová funkce ψ.
19 Vlnová funkce Obsahuje všechny informace o částici Čím více vln pro jednu částici máme, tím lépe ji můžeme lokalizovat, ale ztratíme informaci o hybnosti.
20 Jak získáme vlnovou funkci? Vyhovuje Schrödingerově rovnici HΨ=EΨ (bezčasová S. rovnice) Pokud vlnová funkce částice nabývá hodnotu ψ v určitém bodě x, pravděpodobnost, že najdeme částici mezi x a x+dx je úměrná ψ 2 dx ψ 2 je hustota pravděpodobnosti
21 Schrödingerova rovnice HΨ=EΨ Diferenciální rovnicí druhého řádu, kde řešením jsou dvojice (ψ,ε), které splňují tuto rovnici. ψ je vlastní funkcí hamiltoniánu a konstanta E je vlastní hodnotou hamiltoniánu. Exaktně je možno řešit pouze vodíkovské atomy (H, He +, Li 2+, )
22 Schrödingerova rovnice HΨ=EΨ Diferenciální rovnicí druhého řádu, kde řešením jsou dvojice (ψ,ε), které splňují tuto rovnici. ψ je vlastní funkcí hamiltoniánu a konstanta E je vlastní hodnotou hamiltoniánu. Exaktně je možno řešit pouze vodíkovské atomy (H, He +, Li 2+, ) Toužíte-li poznat víc, je tu kvantová chemie! KFC / QCH
23 A k čemu vůbec vlnová funkce je? Určuje pravděpodobnost výskytu elektronu v atomu (vymezuje existenční oblast elektronu v atomu - AO) Každá vlnová funkce obsahuje 3 charakteristická celá čísla (kvantová čísla): Hlavní kvantové číslo (n) charakterizuje energii AO nabývá hodnot: n = 1, 2, 3,... Vedlejší kvantové číslo (l) určuje tvar AO nabývá hodnot: l = 0, 1, 2,..., n-1
24 A k čemu vůbec vlnová funkce je? Magnetické kvantové číslo (m l ): určuje orientaci AO k souřadnému systému nabývá hodnot: m l = -l, -l+1,..., -1, 0, 1,..., l-1, l
25 A k čemu vůbec vlnová funkce je? Spinové kvantové číslo (m s ) nabývá hodnot ±1/2 popisuje vnitřní moment rotace elektronu Spinová multiplicita 2S+1 Singlet (1), dublet (2), triplet (3) S=1/2(n α -n β )
26 Vlastnosti atomů Pokud známe kvantová čísla všech elektronů v atomu, známe elektronovou konfiguraci atomu Pauliho vylučovací princip Dva nerozlišitelné fermiony se nemohou nacházet ve stejném kvantovém stavu. Výstavbový princip Orbitaly se obsazují od energeticky nejnižších Hundovo pravidlo Nejstabilnější konfigurace je konfigurace s maximální multiplicitou.
27 Vlastnosti atomů Fyzikální a chemické vlastnosti prvků se pravidelně opakují (pravidelnost lze připsat praidelně se opakující elektronové konfiguraci a také náboji jádra) 1. Atomový poloměr zmenšuje se v rámci periody směrem z leva doprava a roste shora dolů
28 Vlastnosti atomů Fyzikální a chemické vlastnosti prvků se pravidelně opakují (pravidelnost lze připsat praidelně se opakující elektronové konfiguraci a také náboji jádra) 1. Atomový poloměr zmenšuje se v rámci periody směrem z leva doprava a roste shora dolů
29 Vlastnosti atomů 2. Ionizační potenciál (IE) Po pohlcení fotonu atomem, dojde k přesunu elektronu z hladiny v základním stavu do vyšší energetické hladiny až k vyražení el. z atomu. První ionizační potenciál Druhý ionizační potenciál. Kation Energie (kj/mol) Mg Mg Mg
30 Vlastnosti atomů 2. Ionizační potenciál Po pohlcení fotonu atomem, dojde k přesunu elektronu z hladiny v základním stavu do vyšší energetické hladiny až k vyražení el. z atomu. První ionizační potenciál Druhý ionizační potenciál. Kation Energie (kj/mol) Mg Mg Mg
31 Vlastnosti atomů 3. Elektronová afinita (EA) Energie potřebná k vytržení el. z aniontu
32 Vlastnosti atomů 4. Elektronegativita Schopnost atomu přitahovat elektrony společné chemické vazby
33 Hraniční orbitaly (Frontier orbitals) HOMO (highest occupied molecular orbital) Nejvyšší obsazený molekulový orbital LUMO (lowest unoccupied molecular orbital) Nejnižší neobsazený orbital
34 Hraniční orbitaly (Frontier orbitals) HOMO (highest occupied molecular orbital) Nejvyšší obsazený molekulový orbital LUMO (lowest unoccupied molecular orbital) Nejnižší neobsazený orbital Koopmansův teorém odhad EA a IE
35 Nejen atomové orbitaly Molekulové orbitaly lze získat řešením Schrödingerovy rovnice (pouze za cenu zavedení zjednodušení) nebo vyjádřením vlnové funkce MO pomocí vlnových funkcí AO. Metoda MO-LCAO (Molecular orbital - linear combination of AO). Metoda, která určuje vlnovou funkci MO pomocí lineární kombinace vlnových funkcí AO, jejíchž průnikem AO vznikl.
36 MO-LCAO Jak na to? Prostorový průnik dvou AO, patřících dvěma atomům, které se k sobě přiblížily na vazebnou vzdálenost, se nazývá překryv. Velikost překryvu vyjadřujeme tzv. integrálem překryvu. Hodnoty S jsou mírou relativního průniku AO a pohybují se v intervalu od S = 0 (pro vzdálené atomy) do S = 1 (pro pomyslnou situaci, kdy je vzdálenost jader 0).
37 MO-LCAO Dva pronikající se orbitaly AOʹ a AOʺ se při růstu hodnoty S mění na dvojici orbitalů MO b a MO*. AO' AO" AO' AO" AO'AO" S 0 S < 0 S << 0 MO b se nazývá vazebný orbital (symetrický orbital). Má menší energii než původní AOʹ a AOʺ. V tomto orbitalu se po vzniku vazby budou nacházet oba elektrony, účastnící se vazby (Vzniklý systém bude mít menší energii než původní systém). MO* se nazývá antivazebný orbital (antisymetrický orbital). má vyšší energii než původní AOʹ a AOʺ. Není většinou obsazován elektrony. Když k tomuto obsazení přece jenom dojde, tak působí proti vzniku vazby.
38 MO-LCAO Pro vlnové funkce ψ(mo b ) a ψ(mo*) molekulových orbitalů MO b a MO*, vzniklých průnikem atomových orbitalů AOʹ a AOʺ, platí: ψ(mo b ) = c ψ(aoʹ) + c ψ(ao ) ψ(mo*) = c ψ(aoʹ) - c ψ(ao ) c a c jsou váhové konstanty (popisují, jakým podílem přispívají původní AO do MO) E 1s σ σ H HF F 2p
39 MO-LCAO Překryv dvojice AO je účinný pouze pokud nemají původní AO přílišný rozdílnou energii a pokud mají AO stejnou symetrii k ose chemické vazby. Počet MO je roven počtu AO, které se překryvu účastní. Jednoduchá vazba Dvojná vazba
40 Ještě jednou vlnová funkce Co můžeme navíc získat z vlnové funkce: Měřitelné veličiny energie, dipolový moment, elektrostatický potenciál, magnetické vlastnosti, optická otáčivost Chemické veličiny parciální náboj na tomu, řád vazby, van der Waalsovský poloměr atomu... Pomocné veličiny atomové a molekulové orbitaly
41 Po suché teorii přichází praxe
42 Příprava vstupu pro výpočet: Kyslík GaussView
43 Uložení vstupu pro výpočet
44 Spuštění výpočtu Gaussian
45 Vizualizace
46
47
48
49
50 Oxid uhelnatý
51 železo
52
Od kvantové mechaniky k chemii
Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi
Elektronový obal atomu
Elektronový obal atomu Vlnění o frekvenci v se může chovat jako proud částic (kvant - fotonů) o energii E = h.v Částice pohybující se s hybností p se může chovat jako vlna o vlnové délce λ = h/p Kde h
Úvod do chemie. Petra Kührová
Úvod do chemie Petra Kührová Vymezení chemie Nauka o vlastnostech, složení a přeměnách látek Studium chemických jevů (změny látek a energeecké přeměny) Chemické jevy Chemické reakce zánik vazeb (zánik
[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka
10 KVANTOVÁ FYZIKA Vznik kvantové fyziky zapříčinilo několik základních jevů, které nelze vysvětlit pomocí klasické fyziky. Z tohoto důvodu musela vzniknout nová teorie, která by je přijatelně vysvětlila.
2. Elektrotechnické materiály
. Elektrotechnické materiály Předpokladem vhodného využití elektrotechnických materiálů v konstrukci elektrotechnických součástek a zařízení je znalost jejich vlastností. Elektrické vlastnosti materiálů
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Předmět: LRR/CHPB1/Chemie pro biology 1 Elektronový obal Mgr. Karel Doležal Dr. Cíl přednášky: seznámit posluchače se stavbou
Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =
Atom vodíku Nejjednodušší soustava: p + e Řešitelná exaktně Kulová symetrie Potenciální energie mezi p + e V 2 e = 4πε r 0 1 Polární souřadnice využití kulové symetrie atomu Ψ(x,y,z) Ψ(r,θ, φ) x =? y=?
ATOMOVÉ JÁDRO. Nucleus Složení: Proton. Neutron 1 0 n částice bez náboje Proton + neutron = NUKLEON PROTONOVÉ číslo: celkový počet nukleonů v jádře
ATOM 1 ATOM Hmotná částice Dělit lze: Fyzikálně ANO Chemicky Je z nich složena každá látka Složení: Atomové jádro (protony, neutrony) Elektronový obal (elektrony) NE Elektroneutrální částice: počet protonů
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
ATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.
Počátky kvantové mechaniky. Petr Beneš ÚTEF
Počátky kvantové mechaniky Petr Beneš ÚTEF Úvod Stav fyziky k 1. 1. 1900 Hypotéza atomu velmi rozšířená, ne vždy však přijatá. Atomy bodové, není jasné, jak se liší atomy jednotlivých prvků. Elektron byl
Teorie chemické vazby a molekulární geometrie Molekulární geometrie VSEPR
Geometrie molekul Lewisovy vzorce poskytují informaci o tom které atomy jsou spojeny vazbou a o jakou vazbu se jedná (topologie molekuly). Geometrické uspořádání molekuly je charakterizováno: Délkou vazeb
Elektronový obal atomu
Elektronový obal atomu Ondřej Havlíček.ročník F-Vt/SŠ Jsoucno je vždy něco, co jsme si sami zkonstruovali ve své mysli. Podstata takovýchto konstrukcí nespočívá v tom, že by byly odvozeny ze smyslových
Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A
Doporučená literatura Přípravný kurz Chemie 2006/07 07 RNDr. Josef Tomandl, Ph.D. Mailto: tomandl@med.muni.cz Předmět: Přípravný kurz chemie J. Vacík a kol.: Přehled středoškolské chemie. SPN, Praha 1990,
Jádro se skládá z kladně nabitých protonů a neutrálních neutronů -> nukleony
Otázka: Atom a molekula Předmět: Chemie Přidal(a): Dituse Atom = základní stavební částice všech látek Skládá se ze 2 částí: o Kladně nabité jádro o Záporně nabitý elektronový obal Jádro se skládá z kladně
ELEKTRONOVÝ OBAL ATOMU. kladně nabitá hmota. elektron
MODELY ATOMU ELEKTRONOVÝ OBAL ATOMU Na základě experimentálních výsledků byly vytvořeny různé teorie o struktuře atomu, tzv. modely atomu. Thomsonův model: Roku 1897 se jako první pokusil o popis stavby
Periodická tabulka prvků
Periodická tabulka prvků 17. století s objevem dalších a dalších prvků nutnost systematizace J. W. Döberreiner (1829) teorie o triádách prvků triáda kovů (lithium, sodík, draslík reagují podobným způsobem)
Studium fotoelektrického jevu
Studium fotoelektrického jevu Úkol : 1. Změřte voltampérovou charakteristiku přiložené fotonky 2. Zpracováním výsledků měření určete hodnotu Planckovy konstanty Pomůcky : - Ampérmetr TESLA BM 518 - Školní
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura
Molekuly 1 12/4/2011. Molekula definice IUPAC. Molekuly. Proč existují molekuly? Kosselův model. Představy o molekulách
1/4/011 Molekuly 1 Molekula definice IUPC elektricky neutrální entita sestávající z více nežli jednoho atomu. Přesně, molekula, v níž je počet atomů větší nežli jedna, musí odpovídat snížení na ploše potenciální
Nekovalentní interakce
Nekovalentní interakce Jan Řezáč UOCHB AV ČR 3. listopadu 2016 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 3. listopadu 2016 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii
Úvod do moderní fyziky. lekce 3 stavba a struktura atomu
Úvod do moderní fyziky lekce 3 stavba a struktura atomu Vývoj představ o stavbě atomu 1904 J. J. Thomson pudinkový model atomu 1909 H. Geiger, E. Marsden experiment s ozařováním zlaté fólie alfa částicemi
16. Franck Hertzův experiment
16. Franck Hertzův experiment Zatímco zahřáté těleso vysílá spojité spektrum elektromagnetického záření, mají např. zahřáté páry kovů nebo plyny, v nichž probíhá elektrický výboj, spektrum čárové. V uvedených
Nekovalentní interakce
Nekovalentní interakce Jan Řezáč UOCHB AV ČR 31. října 2017 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 31. října 2017 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii 4 Výpočty
Praktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 13 Název: Vlastnosti rentgenového záření Pracoval: Matyáš Řehák stud.sk.: 13 dne: 3. 4. 2008 Odevzdal
POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II
POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II FOTOELEKTRICKÝ JEV VNĚJŠÍ FOTOELEKTRICKÝ JEV na intenzitě záření závisí jen množství uvolněných elektronů, ale nikoliv energie jednotlivých elektronů energie elektronů
Úvod do laserové techniky
Úvod do laserové techniky Látka jako soubor kvantových soustav Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze petr.koranda@gmail.com 18. září 2018 Světlo jako elektromagnetické
OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Světlo jako částice Kvantová optika se zabývá kvantovými vlastnostmi optického
Teorie Molekulových Orbitalů (MO)
Teorie Molekulových Orbitalů (MO) Kombinace atomových orbitalů na všech atomech v molekule Vhodná symetrie Vhodná (podobná) energie Z n AO vytvoříme n MO Pro začátek dvouatomové molekuly: H 2, F 2, CO,...
Emise vyvolaná působením fotonů nebo částic
Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová
Elektronový obal atomu
Elektronový obal atomu Chemické vlastnosti atomů (a molekul) jsou určeny vlastnostmi elektronového obalu. Chceme znát energii a prostorové rozložení elektronů Znalosti o elektronovém obalu byly získány
Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan
Číslo projektu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0743 Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Chemie ATOM 1. ročník Datum tvorby 11.10.2013 Anotace a) určeno pro
Vybrané podivnosti kvantové mechaniky
Vybrané podivnosti kvantové mechaniky Pole působnosti kvantové mechaniky Středem zájmu KM jsou mikroskopické objekty Typické rozměry 10 10 až 10 16 m Typické energie 10 22 až 10 12 J Studované objekty:
Plazmové metody. Základní vlastnosti a parametry plazmatu
Plazmové metody Základní vlastnosti a parametry plazmatu Atom je základní částice běžné hmoty. Částice, kterou již chemickými prostředky dále nelze dělit a která definuje vlastnosti daného chemického prvku.
Na základě toho vysvětlil Eisnstein vnější fotoefekt, kterým byla platnost tohoto vztahu povrzena.
Vlnově-korpuskulární dualismus, fotony, fotoelektrický jev vnější a vnitřní. Elmg. teorie záření vysvětluje dobře mnohé jevy v optice interference, difrakci, polarizaci. Nelze jí ale vysvětlit např. fotoelektrický
Born-Oppenheimerova aproximace
Born-Oppenheimerova aproximace Oddělení elektronického a jaderného pohybu Jádra 2000 x těžší než elektrony elektrony kvantová chemie, popis systému (do 100 atomů) na základě vlastností elektronů (jádra
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +
Optické spektroskopie 1 LS 2014/15
Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)
Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO
1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu
Základy spektroskopie a její využití v astronomii
Ing. Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Základy spektroskopie a její využití v astronomii Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Světlo x záření Jak vypadá spektrum?
Struktura elektronového obalu
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Struktura elektronového obalu Představy o modelu atomu se vyvíjely tak, jak se zdokonalovaly možnosti vědy
Atomové jádro, elektronový obal
Atomové jádro, elektronový obal 1 / 9 Atomové jádro Atomové jádro je tvořeno protony a neutrony Prvek je látka skládající se z atomů se stejným počtem protonů Nuklid je systém tvořený prvky se stejným
ATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE doc. Ing. David MILDE, Ph.D. tel.: 585634443 E-mail: david.milde@upol.cz (c) -017 Doporučená literatura Černohorský T., Jandera P.: Atomová spektrometrie. Univerzita Pardubice 1997.
MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA
MAKRO- A MIKRO- MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA STAV... (v dřívějším okamţiku)...... info o vnějším působení STAV... (v určitém okamţiku) ZÁKLADNÍ INFO O... (v tomto okamţiku) VŠCHNY DALŠÍ
Atomové jádro Elektronový obal elektron (e) záporně proton (p) kladně neutron (n) elektroneutrální
STAVBA ATOMU Výukový materiál pro základní školy (prezentace). Zpracováno v rámci projektu Snížení rizik ohrožení zdraví člověka a životního prostředí podporou výuky chemie na ZŠ. Číslo projektu: CZ.1.07/1.1.16/02.0018
Orbitaly, VSEPR 1 / 18
rbitaly, VSEPR Rezonanční struktury, atomové a molekulové orbitaly, hybridizace, určování tvaru molekuly pomocí teorie VSEPR, úvod do symetrie molekul, dipólový moment 1 / 18 Formální náboj Rozdíl mezi
ATOM. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 7. 2012. Ročník: osmý
ATOM Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 25. 7. 2012 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Částicové složení látek a chemické prvky 1 Anotace: Žáci se seznámí se
Opakování: shrnutí základních poznatků o struktuře atomu
11. Polovodiče Polovodiče jsou krystalické nebo amorfní látky, jejichž elektrická vodivost leží mezi elektrickou vodivostí kovů a izolantů a závisí na teplotě nebo dopadajícím optickém záření. Elektrické
Orbitaly, VSEPR. Zdeněk Moravec, 16. listopadu / 21
rbitaly, VSEPR Rezonanční struktury, atomové a molekulové orbitaly, hybridizace, určování tvaru molekuly pomocí teorie VSEPR, úvod do symetrie molekul, dipólový moment Zdeněk Moravec, http://z-moravec.net
Laserová technika prosince Katedra fyzikální elektroniky.
Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program
Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1.
S použitím modelu volného elektronu (=částice v krabici) spočtěte vlnovou délku a vlnočet nejdlouhovlnějšího elektronového přechodu u molekuly dekapentaenu a oktatetraenu. Diskutujte polohu absorpčního
Hamiltonián popisující atom vodíku ve vnějším magnetickém poli:
Orbitální a spinový magnetický moment a jejich interakce s vnějším polem Vše na příkladu atomu H: Elektron (e - ) a jádro (u atomu H pouze p + ) mají vlastní magnetický moment (= spin). Tyto dva dipóly
Orbitaly ve víceelektronových atomech
Orbitaly ve víceelektronových atomech Elektrony jsou přitahovány k jádru ale také se navzájem odpuzují. Repulzní síly způsobené dalšími elektrony stíní přitažlivý účinek atomového jádra. Efektivní náboj
Protonové číslo Z - udává počet protonů v jádře atomu, píše se jako index vlevo dole ke značce prvku
Stavba jádra atomu Protonové Z - udává protonů v jádře atomu, píše se jako index vlevo dole ke značce prvku Neutronové N - udává neutronů v jádře atomu Nukleonové A = Z + N, udává nukleonů (protony + neutrony)
PROCESY V TECHNICE BUDOV 12
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 12 Dagmar Janáčová, Hana Charvátová, Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Předmět: LRR/CHPB1/Chemie pro biology 1 Chemická vazba II Mgr. Karel Doležal Dr. Cíl přednášky: seznámit posluchače s principem
Elektronový obal atomu
Elektronový obal atomu Chemické vlastnosti atomů (a molekul) jsou určeny vlastnostmi elektronového obalu. Chceme znát energii a prostorové rozložení elektronů Znalosti o elektronovém obalu byly získány
Dualismus vln a částic
Dualismus vln a částic Filip Horák 1, Jan Pecina 2, Jiří Bárdoš 3 1 Mendelovo gymnázium, Opava, Horaksro@seznam.cz 2 Gymnázium Jeseník, pecinajan.jes@mail.com 3 Gymnázium Teplice, jiri.bardos@post.gymtce.cz
17 Vlastnosti molekul
17 Vlastnosti molekul Experimentálně molekuly charakterizujeme pomocí nejrůznějších vlastností: můžeme změřit třeba NMR posuny, elektrické či magnetické parametry či třeba jejich optickou otáčivost. Tyto
ATOM VODÍKU MODEL : STOJÍCÍ BODOVÉ JÁDRO A ELEKTRON VZÁJEMNĚ ELEKTROSTATICKY INTERAGUJÍCÍ SCHRÖDINGEROVA ROVNICE PRO PŘÍPAD POTENCIÁLNÍ ENERGIE.
ATOMY + MOLEKULY ATOM VODÍKU MODEL : STOJÍCÍ BODOVÉ JÁDRO A ELEKTRON VZÁJEMNĚ ELEKTROSTATICKY INTERAGUJÍCÍ SCHRÖDINGEROVA ROVNICE H ˆψ = Eψ PRO PŘÍPAD POTENCIÁLNÍ ENERGIE Vˆ = Ze 2 4πε o r ŘEŠENÍ HLEDÁME
FYZIKA 4. ROČNÍK. Kvantová fyzika. Fotoelektrický jev (FJ)
Stěny černého tělesa mohou vysílat záření jen po energetických kvantech (M.Planck-1900). Velikost kvanta energie je E = h f f - frekvence záření, h - konstanta Fotoelektrický jev (FJ) - dopadající záření
Symetrie Platonovská tělesa
Symetrie Platonovská tělesa 1 Symetrie Virus rýmy Virus obrny Virus slintavky a kulhavky 2 Symetrie molekul Jak jsou atomy v molekule uspořádány = ekvivalentní atomy 3 Prvky a operace symetrie Značka Prvek
Stručný úvod do spektroskopie
Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,
Opakování
Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony
c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky
Harmonický kmitavý pohyb a) vysvětlení harmonického kmitavého pohybu b) zápis vztahu pro okamžitou výchylku c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky d) perioda
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 5 Číslo projektu: CZ..07/.5.00/34.040 Číslo šablony: 7 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek: Atom
Čím je teplota látky větší (vyšší frekvence kmitů), tím kratší je vlnová délka záření.
KVANTOVÁ FYZIKA 1. Záření tělesa Částice (molekuly, ionty) pevných a kapalných látek, které jsou zahřáté na určitou teplotu, kmitají kolem rovnovážných poloh. Při tomto pohybu kolem nich vzniká proměnné
Přirovnání. Elektrony = obyvatelé panelového domu Kde bydlí paní Kostková? Musíme udat patro a číslo bytu.
Kvantová čísla Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Přirovnání Elektrony = obyvatelé
Orbitalová teorie. 1.KŠPA Beránek Pavel
Orbitalová teorie 1.KŠPA Beránek Pavel Atom Základní stavební částice hmoty je atom Víme, že má vnitřní strukturu: jádro (protony + neutrony) a obal (elektrony) Už víme, že v jádře drží protony pohromadě
Symetrie Platonovská tělesa
Symetrie Platonovská tělesa 1 Symetrie Virus rýmy Virus obrny Virus slintavky a kulhavky 2 Symetrie molekul Jak jsou atomy v molekule uspořádány = ekvivalentní atomy 3 Prvky a operace symetrie Značk a
Stavba atomu. protony p + nukleony neutrony n 0. elektrony e -
Stavba atomu atom (elektroneutrální) jádro (kladně nabité) elektronový obal (záporně nabitý) protony p + nukleony neutrony n 0 elektrony e - Mikročástice Klidová hmotnost (kg) Klidová hmotnost (u) Náboj
Přednáška IX: Elektronová spektroskopie II.
Přednáška IX: Elektronová spektroskopie II. 1 Försterův resonanční přenos energie Pravděpodobnost (rychlost) přenosu je určená jako: k ret 1 = τ 0 D R r 0 6 0 τ D R 0 r Doba života donoru v excitovaném
VAROVÁNÍ Přemýšlení o kvantové mechanice způsobuje nespavost
VAROVÁNÍ Přemýšlení o kvantové mechanice způsobuje nespavost Od atomů (a molekul) ke kvantové mechanice Vojtěch Kapsa 1 Od atomů (a molekul) ke kvantové mechanice Od atomů (a molekul) ke kvantové mechanice
Mgr. Jakub Janíček VY_32_INOVACE_Ch1r0118
Chemická vazba Mgr. Jakub Janíček VY_32_INOVACE_Ch1r0118 Chemická vazba Většina atomů má tendenci se spojovat do větších celků (molekul), v nichž jsou vzájemně vázané chemickou vazbou. Chemická vazba je
Maturitní témata fyzika
Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený
Balmerova série. F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3
Balmerova série F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3 Grepl.F@seznam.cz Abstrakt: Metodou dělených svazků jsme určili lámavý
Laboratorní úloha č. 7 Difrakce na mikro-objektech
Laboratorní úloha č. 7 Difrakce na mikro-objektech Úkoly měření: 1. Odhad rozměrů mikro-objektů z informací uváděných výrobcem. 2. Záznam difrakčních obrazců (difraktogramů) vzniklých interakcí laserového
Fyzika opakovací seminář 2010-2011 tematické celky:
Fyzika opakovací seminář 2010-2011 tematické celky: 1. Kinematika 2. Dynamika 3. Práce, výkon, energie 4. Gravitační pole 5. Mechanika tuhého tělesa 6. Mechanika kapalin a plynů 7. Vnitřní energie, práce,
Teoretická chemie 3. cvičení
Teoretická chemie 3. cvičení Teoretická část K popisu částic nepoužívá kvantová mechanika klasické veličiny fázového prostoru (tj. polohu a hybnost), ale pracuje s tzv. vlnovou funkcí, která může být podle
Inovace výuky prostřednictvím šablon pro SŠ
Název projektu Číslo projektu Název školy Autor Název šablony Název DUMu Stupeň a typ vzdělávání Vzdělávací oblast Vzdělávací obor Tematický okruh Inovace výuky prostřednictvím šablon pro SŠ CZ.1.07/1.5.00/34.0748
8.STAVBA ATOMU ELEKTRONOVÝ OBAL
8.STAVBA ATOMU ELEKTRONOVÝ OBAL 1) Popiš Daltonovu atomovou teorii postuláty. (urči, které platí dodnes) 2) Popiš Rutherfordův planetární model atomu a jeho přínos. 3) Bohrův model atomu vysvětli kvantování
POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE III
POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE III FOTOELEKTRICKÝ JEV OBJEV ATOMOVÉHO JÁDRA 1911 Rutherford některé radioaktivní prvky vyzařují částice α, jde o kladné částice s nábojem 2e a hmotností 4 vodíkových
Zeemanův jev. 1 Úvod (1)
Zeemanův jev Tereza Gerguri (Gymnázium Slovanské náměstí, Brno) Stanislav Marek (Gymnázium Slovanské náměstí, Brno) Michal Schulz (Gymnázium Komenského, Havířov) Abstrakt Cílem našeho experimentu je dokázat
Úvod do nano a mikrotechnologií
Úvod do nano a mikrotechnologií 5. přednáška: Kvantová mechanika - Schrödingerova rovnice Tunelový jev a kvantové uvěznění Pásový diagram pevné látky a jeho závislost na struktuře materiálu Elektrofyzikální
Okruhy k maturitní zkoušce z fyziky
Okruhy k maturitní zkoušce z fyziky 1. Fyzikální obraz světa - metody zkoumaní fyzikální reality, pojem vztažné soustavy ve fyzice, soustava jednotek SI, skalární a vektorové fyzikální veličiny, fyzikální
10. Energie a její transformace
10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na
Stavba hmoty. Atomová teorie Korpuskulární model látky - chemické
Stavba hmoty Atomová teorie Korpuskulární model látky - chemické látky jsou složeny z mikroskopických, chemicky dále neděčástic atomů. Později byl model rozšířen na molekuly a ionty (chemický druh - specie).
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Vnitřní energie. Teplo. Tepelná výměna.
Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie
ÚVOD DO KVANTOVÉ MECHANIKY
ÚVOD DO KVANTOVÉ MECHANIKY KM popisuje vlastnosti hmoty a světla a fyzikální děje na úrovni atomů KVANTOVÁNÍ (fyzikální veličiny mohou mít pouze některé hodnoty) jedna z nejobecnějších vlastností našeho
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce
Maturitní témata profilová část
SEZNAM TÉMAT: Kinematika hmotného bodu mechanický pohyb, relativnost pohybu a klidu, vztažná soustava hmotný bod, trajektorie, dráha klasifikace pohybů průměrná a okamžitá rychlost rovnoměrný a rovnoměrně
OPVK CZ.1.07/2.2.00/
18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti
B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Fyzika.
4.8.13. Fyzikální seminář Předmět Fyzikální seminář je vyučován v sextě, septimě a v oktávě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Fyzikální seminář vychází ze vzdělávací oblasti