Zpracování digitalizovaného obrazu (ZDO) - Popisy III
|
|
- Ivo Bednář
- před 5 lety
- Počet zobrazení:
Transkript
1 Zpracování digitalizovaného obrazu (ZDO) - Popisy III Statistické popisy tvaru a vzhledu Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování digitalizovaného obrazu (ZDO) - Popisy III
2 Obsah přednášky Úvod do statistických modelů pro popis Statistický model tvaru významné body statistická analýza algoritmus ASM Kombinovaný model statistický model vzhledu kombinace lineárních modelů tvaru a vzhledu algoritmus AAM Zpracování digitalizovaného obrazu (ZDO) - Popisy III 1 / 27
3 Statistické modely pro popis statistické modely jsou používány k popisu tvaru, nebo tvaru + oblasti jsou více sofistikované reprezentace objektů v obrázcích často přebírají částečně i roli segmentace využívají apriorní znalost o popisovaném objektu často jde o metodu učení s učitelem statistická analýza se pak aplikuje na data reprezentující určitý tvar popř. tvar + vzhled za účelem nalezení a vytvoření jeho modelu dva základní algoritmy, které se liší typem práce s obrazovou informací: Active Shape Model (ASM)... využívá pouze informaci o tvaru objektu (hranici) Active Appearance model (AAM)... kombinovaný; přidává navíc informaci o textuře objektu Zpracování digitalizovaného obrazu (ZDO) - Popisy III 2 / 27
4 Statistické modely tvaru Cíl: Popis tvaru (hranice) objektu vektorem (několika málo parametry) více možností jak reprezentovat tvar ve 2D obraze, zde jde často o sledování významných bodů (zlomů hran a rohů) obecně pro statistické modely tvaru vhodné uvažovat dobře odlišitelné místa obrazu od okoĺı místa vybíráme tak, aby se ideálně vyskytovaly ve všech obrazech z trénovací množiny Zpracování digitalizovaného obrazu (ZDO) - Popisy III 3 / 27
5 Statistické modely tvaru - významné body např. konec prstu nebo koutek úst souřadnice těchto bodů popř. oblasti obrázku mezi body jsou pak použity pro statistickou analýzu zjištění vzájemné závislosti mezi pohybem jednotlivých bodů např. Analýza hlavních komponent (Principal Component Analysis - PCA) tvar objektu pak dostaneme vhodným propojením bodů Zpracování digitalizovaného obrazu (ZDO) - Popisy III 4 / 27
6 Ukázka definování významných bodů pro popis tvaru rtů: Zpracování digitalizovaného obrazu (ZDO) - Popisy III 5 / 27
7 Analýza hlavních komponent - Principal Component Analysis (PCA) PCA je ortogonální transformace předpokládaně korelovaných příznaků na novou sadu příznaků, které jsou vyjádřeny lineární kombinací nekorelovaných tzv. hlavních komponent 1. slouží k dekorelaci dat, známa od r k redukci dimenze dat s možností ovlivnění množství ztracené informace jde o ortogonální transformaci množiny pozorování na soubor lineárně nezávislých proměnných výpočet založen na kovarianci naměřených dat x 1, x 2,... x n, dimenze x i je p C(i, j) = (x i µ i )(x j µ j ) T (1) C(i, j) je příslušný prvek kovarianční matice C, x i a x j jsou i-tá a j-tá dimenze vektor dat a µ i a µ j je příslušná střední hodnota Zpracování digitalizovaného obrazu (ZDO) - Popisy III 6 / 27
8 z kovarianční matice vypočteme matici vlastních vektorů V a vlastní čísla jako: V 1 CV = D tj. transformace kovarianční matice na diagonální matici vlastních čísel D hlavní komponenty jsou pak získané vlastní vektory velikost vlastních čísel udává jejich významnost vydělením vlastních čísel jejich celkovým součtem získáme procentuální významnost můžeme redukovat původní dimenzi zachováním např. 99% rozptylu dat (je zvykem zachovávat 95% či 99%). pozn. Procentuální hodnoty vlastních čísel pak sčítáme dokud nedostaneme požadovanou hodnotu a ostatní vlastní čísla a k nim náležící vektory vypustíme Zpracování digitalizovaného obrazu (ZDO) - Popisy III 7 / 27
9 Ukázka redukce dimenze vektoru dat z dimenze 3 do dimenze 2 Zpracování digitalizovaného obrazu (ZDO) - Popisy III 8 / 27
10 Vlastnosti transformovaných dat většina informace o variabilitě dat je soustředěna do první komponenty a nejméně informace je obsaženo v poslední komponentě získáme snížení dimenze úlohy čili redukce počtu příznaků bez velké ztráty informace pouze prvních několika hlavních komponent (v našem případě parametry modelu = získaný popis) nevyužité hlavní komponenty obsahují malé množství informace (předpokládejme šum), protože jejich rozptyl je příliš malý Zpracování digitalizovaného obrazu (ZDO) - Popisy III 9 / 27
11 Statistické modely tvaru - Lineární model tvaru princip pochází z PCA tvar objektu v obraze definován významnými body výpočet (určení) tvaru probíhá podle vzorce: x = x + Φ s b s (2) Φ je matice vlastních vektorů trénovacích dat tvaru x je střední hodnota trénovacích dat tvaru b s je vektor parametrů modelu x je vypočtený tvar výsledný (komplexní) tvar může být měněn pomocí změny několika málo parametrů modelu b s (s největší variancí) Zpracování digitalizovaného obrazu (ZDO) - Popisy III 10 / 27
12 Identifikace modelu v pozici objektu pozice lineárního modelu tvaru v obraze může být dále určena posunem (translací) po osách x a y, rotací θ a měřítkem s získáváme pak na těchto transformacích invariantní popis takovouto transformaci T (můžeme se s modelem pohybovat po obrázku, otáčet a zmenšovat/zvětšovat) vyjádříme jako x = T Xt,Y t,s,θ(x + Φ s b s ) (3) pro jeden významný bod (x, y) si lze transformační funkci představit jako: ( ) ( ) ( ) ( ) x Xt s cos θ s sin θ x T Xt,Yt,s,θ = + y s sin θ s cos θ y Y t princip: hledáme parametry modelu, pomocí kterých vypočteme tvar x odpovídající požadovaným bodům v obraze Y, minimalizujeme vlastně výraz: (4) Y T Xt,Y t,s,θ(x + Φ s b s ) 2 (5) Zpracování digitalizovaného obrazu (ZDO) - Popisy III 11 / 27
13 Tento postup se dá vyjádřit iterativním procesem: 1. Nastavení parametrů b s = 0 2. Výpočet tvaru z rovnice modelu x = x + Φ s b s 3. Nalezení parametrů t = (X t, Y t, s, θ), které nejlépe transformují x do bodů Y 4. Promítnutí bodů Y do souřadné soustavy 5. Aktualizace parametrů tvarového modelu y = T 1 X t,y t,s,θ (Y ) (6) b s = Φ T s (y x) (7) 6. Pokud se parametry b s výrazně liší od původních b s, pak b s b s návrat na krok 2 Pozn. porovnáním nových hodnot a hodnot z předchozího kroku, rozdíl se uvažuje v předem zvolené přesnosti Zpracování digitalizovaného obrazu (ZDO) - Popisy III 12 / 27
14 Active Shape Model (ASM) ASM (aktivní tvarový model) nejznámější algoritmus pro statistické modelování tvaru ASM iterativně deformuje svůj tvar tak nalezení nelepší shody se tvarem pozorovaném obraze na počátku hrubý odhad polohy hledaného objektu v obraze a průměrný tvar můžeme vytvořit instanci modelu: x = T Xt,Y t,s,θ(x + Φb) (8) k nasazení využijeme následující iterativní postup: Zpracování digitalizovaného obrazu (ZDO) - Popisy III 13 / 27
15 Algoritmus: 1. Prozkoumáme okoĺı každého bodu x i a najdeme nejlepší možný bod x i, kam by se měl bod X i přesunout, např. modelování profilů, viz teorie 2. Aktualizujeme parametry (X t, Y t, s, θ, b), tak aby co nejlépe seděli na nové body X 3. Opakujeme proces dokud nedokonverguje k řešení Zpracování digitalizovaného obrazu (ZDO) - Popisy III 14 / 27
16 Ukázka ASM modelu pro popis lidské tváře, ukázka konvergence pro jeden snímek: Zpracování digitalizovaného obrazu (ZDO) - Popisy III 15 / 27
17 Statistické modely vzhledu Statistické modely vzhledu byly vymyšleny jako rozšíření popisu tvaru jde o souběžný popis (modelování) textury (barevnosti, obrazové/jasové informace) v oblastech ohraničených tvarem pro vytvoření modelu opět potřeba předem znát trénovací obrazy s vyznačenými významnými body textura v daném tvaru je tzv. warpováním převedena na texturu ve střední hodnotě tvaru, tedy získáme tvarově nezávislou texturu (pro každý trénovací obraz) na tyto textury lze např. aplikovat PCA podobně jako u modelů tvaru Zpracování digitalizovaného obrazu (ZDO) - Popisy III 16 / 27
18 Zpracování digitalizovaného obrazu (ZDO) - Popisy III 17 / 27
19 Statistické modely vzhledu - Warpování obrazů warpování je mapování textury jednoho objektu (tvaru) na jiný objekt (tvar)... změna tvaru původní textury na tvar požadovaný nejjednodušší způsob je tzv. triangulace souřadnic oba objekty (tvary) nejdříve rozděĺıme na stejný počet trojúhelníků pro každý trojúhelník cílového objektu najdeme příslušný trojúhelník výchozího objektu pro každý bod cílového trojúhelníku najdeme příslušný bod výchozího trojúhelníku poloha bodu v trojúhelníku se dá vyjádřit pomocí souřadnic jeho vrcholů: [ ] [ ] [ ] [ ] x x1 x2 x3 = α + β + γ (9) y y 1 x 1,x 2 a x 3 jsou vrcholy trojúhelníku a x je souřadnice bodu vyjádřená pomocí těchto vrcholů Zpracování digitalizovaného obrazu (ZDO) - Popisy III 18 / 27 y 2 y 3
20 parametry α,β a γ vypočteme z rovnic: α = 1 (β + γ) (10) β = γ = yx 3 yx 1 x 3 y 1 xy 3 + x 1 y 3 + xy 1 x 2 y 3 + x 2 y 1 + x 1 y 3 + x 3 y 2 x 3 y 1 x 1 y 2 (11) xy 2 xy 1 x 1 y 2 yx 2 + x 2 y 1 + yx 1 x 2 y 3 + x 2 y 1 + x 1 y 3 + x 3 y 2 x 3 y 1 x 1 y 2 (12) x a y jsou souřadnice cílového bodu a x i a y i jsou souřadnice vrcholů cílového trojúhelníku souřadnice hledaného bodu získáme dosazením vrcholů výchozího trojúhelníku do rovnice 9 Zpracování digitalizovaného obrazu (ZDO) - Popisy III 19 / 27
21 Ukázka warpovené textury z instance modelu do středního tvaru: Zpracování digitalizovaného obrazu (ZDO) - Popisy III 20 / 27
22 Statistické modely vzhledu - Lineární model textury lineární model vzhledu vzniká aplikací PCA na nawarpované textury vektory stejné dimenze pak můžeme vyjádřit jako lineární model textury: g = g + Φ g b g (13) Φ g je matice vlastních vektorů trénovacích dat textury g je střední hodnota trénovacích dat textury b g je vektor parametrů modelu textury a g je vypočtená textura Zpracování digitalizovaného obrazu (ZDO) - Popisy III 21 / 27
23 Kombinovaný model pro vytvoření kombinovaného modelu definujeme závislost mezi parametry modelu tvaru a textury nejprve pro každý trénovací obraz provedeme výpočet příslušných parametrů a provedeme na nich PCA ( ) ( Ws b s Ws Φ T ) s (x x) b = = Φ T (14) g (g g) b g b je vektor parametrů složený z parametrů modelu textury b g a parametrů modelu tvaru b s W s je váhová matice... normalizace parametrů modelu tvaru s parametry modelu textury (souřadnice vs. pixely) Φ s a Φ g jsou vlastní vektory kovariančních matic trénovacích dat tvaru a textury x jsou skutečné souřadnice pro daný obraz, a jejich střední hodnota g je tvarově nezávislá textura příslušného obrazu a její střední hodnota Zpracování digitalizovaného obrazu (ZDO) - Popisy III 22 / 27
24 a pak opakováním PCA již nad spojeným vektorem b lze stanovit kombinovaný model jednoduše jako: b = Φ c c (15) Φ c jsou vlastní vektory kovarianční matice parametrů obou modelů c je vektor parametrů kombinovaného modelu pomocí (kombinovaných) parametrů c lze kontrolovat současně jak tvar tak texturu vypočítaného objektu Zpracování digitalizovaného obrazu (ZDO) - Popisy III 23 / 27
25 Active Appearance Model (AAM) AAM (aktivní vzhledový model) nejznámější algoritmus pro statistické modelování tvaru+vzhledu AAM vychází z ASM, kdy navíc pracuje s informací o textuře objektu, viz teorie... kombinovaný model kritérium kvality nasazení modelu na skutečný tvar je definováno jako vektor rozdílů: δi = I i I m (16) kde I i je vektor intenzit obrazu a I m je vektor intenzit textury vytvořené ze současných parametrů modelu Zpracování digitalizovaného obrazu (ZDO) - Popisy III 24 / 27
26 nalezení nejlepší shody minimalizujeme velikost = δi 2 změnou parametrů modelu c vzhledem k velkému počtu parametrů se toto může zdát jako složitá úloha ale každý pokus o nasazení instance modelu do obrazu je v podstatě stejná optimalizační úloha lze předem natrénovat jak se mají pro různé δi změnit parametry modelu c časově efektivní algoritmus vyhledávání Pozn. Při trénování systematicky odchylujeme jednotlivé parametry c a t od jejich známých optimálních hodnot a počítáme pro každou odchylku residuum r a tak určíme matici R. Zpracování digitalizovaného obrazu (ZDO) - Popisy III 25 / 27
27 Řešení optimalizačního problému AAM Z počátečních parametrů c 0 vytvoříme na startovní pozici instanci modelu s texturou g s Výpočet chybového vektoru δg 0 = g s g m Výpočet chyby E 0 = δg 0 2 Výpočet odchylky nových parametrů, δc = Rδg 0 Nastavení k = 1 c 1 = c 0 kδc Vytvoření instance modelu pomocí parametrů c 1, výpočet nového chybového vektoru δg 1 a chyby E 1 Když je E 1 < E 0 přijmeme c 1 jako nové parametry modelu V jiném případě zkoušíme k = 1.5, k = 0.5, k = 0.25 atd Zpracování digitalizovaného obrazu (ZDO) - Popisy III 26 / 27
28 Ukázka AAM modelu pro popis tvaru i podoby lidské tváře Zpracování digitalizovaného obrazu (ZDO) - Popisy III 27 / 27
Statistické modely tvaru a vzhledu
Kapitola 1 Statistické modely tvaru a vzhledu V této kapitole nastíním problematiku statistických modelů tvaru, jejich využití a metod potřebných pro jejich výpočet a použití. Existují dvě hlavní metody;
2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2
Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací
Přednáška 13 Redukce dimenzionality
Vytěžování Dat Přednáška 13 Redukce dimenzionality Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL) Redukce dimenzionality 1 /
Klasifikace a rozpoznávání. Extrakce příznaků
Klasifikace a rozpoznávání Extrakce příznaků Extrakce příznaků - parametrizace Poté co jsme ze snímače obdržely data která jsou relevantní pro naši klasifikační úlohu, je potřeba je přizpůsobit potřebám
VI. Derivace složené funkce.
VI. Derivace složené funkce. 17. Parciální derivace složené funkce Budeme uvažovat složenou funkci F = f(g, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce,
Regresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
Zpracování digitalizovaného obrazu (ZDO) - Analýza pohybu
Zpracování digitalizovaného obrazu (ZDO) - Analýza pohybu Úvod Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování digitalizovaného obrazu (ZDO)
Geometrické transformace pomocí matic
Geometrické transformace pomocí matic Pavel Strachota FJFI ČVUT v Praze 2. dubna 2010 Obsah 1 Úvod 2 Geometrické transformace ve 2D 3 Geometrické transformace ve 3D Obsah 1 Úvod 2 Geometrické transformace
TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY
TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY V PROSTŘEDÍ MATLAB K. Nováková, J. Kukal FJFI, ČVUT v Praze ÚPŘT, VŠCHT Praha Abstrakt Při rozpoznávání D binárních objektů z jejich diskrétní realizace se využívají
11 Analýza hlavních komponet
11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
Úvod do vícerozměrných metod. Statistické metody a zpracování dat. Faktorová a komponentní analýza (Úvod do vícerozměrných metod)
Úvod do vícerozměrných metod Statistické metody a zpracování dat Faktorová a komponentní analýza (Úvod do vícerozměrných metod) Petr Dobrovolný O řadě jevů či procesů máme k dispozici ne jeden statistický
Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA
Rovinné přetvoření Rovinné přetvoření, neboli, jak se také často nazývá, geometrická transformace je vlastně lineární zobrazení v prostoru s nějakou soustavou souřadnic. Jde v něm o přepočet souřadnic
III. MKP vlastní kmitání
Jiří Máca - katedra mechaniky - B325 - tel. 2 2435 4500 maca@fsv.cvut.cz III. MKP vlastní kmitání 1. Rovnice vlastního kmitání 2. Rayleighova Ritzova metoda 3. Jacobiho metoda 4. Metoda inverzních iterací
7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí
202-m3b2/cvic/7slf.tex 7. Derivace složené funkce. Budeme uvažovat složenou funkci F = fg, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce, které mají
Globální matice konstrukce
Globální matice konstrukce Z matic tuhosti a hmotnosti jednotlivých prvků lze sestavit globální matici tuhosti a globální matici hmotnosti konstrukce, které se využijí v řešení základní rovnice MKP: [m]{
1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.
VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:
Kvaterniony, duální kvaterniony a jejich aplikace
1 / 16 Kvaterniony, duální kvaterniony a jejich aplikace Jitka Prošková Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky 17. 6. 21 2 / 16 Zadání Základní charakteristika tělesa
Odhad stavu matematického modelu křižovatek
Odhad stavu matematického modelu křižovatek Miroslav Šimandl, Miroslav Flídr a Jindřich Duník Katedra kybernetiky & Výzkumné centrum Data-Algoritmy-Rozhodování Fakulta aplikovaných věd Západočeská univerzita
Přehled vhodných metod georeferencování starých map
Přehled vhodných metod georeferencování starých map ČVUT v Praze, katedra geomatiky 12. 3. 2015 Praha Georeferencování historická mapa vs. stará mapa georeferencování umístění obrazu mapy do referenčního
Statistické metody a zpracování dat. IX Faktorová a komponentní analýza (Úvod do vícerozměrných metod) Petr Dobrovolný
Statistické metody a zpracování dat IX Faktorová a komponentní analýza (Úvod do vícerozměrných metod) Petr Dobrovolný Úvod do vícerozměrných metod O řadě jevů či procesů máme k dispozici ne jeden statistický
AVDAT Mnohorozměrné metody, metody klasifikace
AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných
Eva Fišerová a Karel Hron. Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta Univerzity Palackého v Olomouci.
Ortogonální regrese pro 3-složkové kompoziční data využitím lineárních modelů Eva Fišerová a Karel Hron Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta Univerzity Palackého v Olomouci
Zpracování digitalizovaného obrazu (ZDO) - Segmentace II
Zpracování digitalizovaného obrazu (ZDO) - Segmentace II Další metody segmentace Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování digitalizovaného
OBSAH 1 Úvod Fyzikální charakteristiky Zem Referen ní plochy a soustavy... 21
OBSAH I. ČÁST ZEMĚ A GEODÉZIE 1 Úvod... 1 1.1 Historie měření velikosti a tvaru Země... 1 1.1.1 První určení poloměru Zeměkoule... 1 1.1.2 Středověké měření Země... 1 1.1.3 Nové názory na tvar Země...
AVDAT Mnohorozměrné metody metody redukce dimenze
AVDAT Mnohorozměrné metody metody redukce dimenze Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování vlastní čísla a vlastní vektory A je čtvercová matice řádu n. Pak
LINEÁRNÍ MODELY. Zdeňka Veselá
LINEÁRNÍ MODELY Zdeňka Veselá vesela.zdenka@vuzv.cz Genetika kvantitativních vlastností Jednotlivé geny nejsou zjistitelné ani měřitelné Efekty většího počtu genů poskytují variabilitu, kterou lze většinou
ANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. LINEÁRNÍ KLASIFIKACE PRINCIPY KLASIFIKACE pomocí diskriminačních funkcí funkcí,
1 Projekce a projektory
Cvičení 3 - zadání a řešení úloh Základy numerické matematiky - NMNM20 Verze z 5. října 208 Projekce a projektory Opakování ortogonální projekce Definice (Ortogonální projekce). Uvažujme V vektorový prostor
Kybernetika a umělá inteligence, cvičení 10/11
Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu
Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného)
Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného) 1 Obecný popis metody Particle Image Velocimetry, nebo-li zkráceně PIV, je měřící
oddělení Inteligentní Datové Analýzy (IDA)
Vytěžování dat Filip Železný Katedra počítačů oddělení Inteligentní Datové Analýzy (IDA) 22. září 2014 Filip Železný (ČVUT) Vytěžování dat 22. září 2014 1 / 25 Odhad rozdělení Úloha: Vstup: data D = {
transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím [1]
[1] Afinní transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím využití například v počítačové grafice Evropský sociální fond Praha & EU. Investujeme do
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 9. přednáška: Ortogonalita Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen
Lineární zobrazení. 1. A(x y) = A(x) A(y) (vlastnost aditivity) 2. A(α x) = α A(x) (vlastnost homogenity)
4 Lineární zobrazení Definice: Nechť V a W jsou vektorové prostory Zobrazení A : V W (zobrazení z V do W nazýváme lineárním zobrazením, pokud pro všechna x V, y V a α R platí 1 A(x y = A(x A(y (vlastnost
ODR metody Runge-Kutta
ODR metody Runge-Kutta Teorie (velmi stručný výběr z přednášek) Úloha s počátečními podmínkami (Cauchyova) 1 řádu Hledáme aprox řešení Y(x) soustavy obyčejných diferenciálních rovnic 1 řádu kde Y(x) =
Implementace Bayesova kasifikátoru
Implementace Bayesova kasifikátoru a diskriminačních funkcí v prostředí Matlab J. Havlík Katedra teorie obvodů Fakulta elektrotechnická České vysoké učení technické v Praze Technická 2, 166 27 Praha 6
9.5. Soustavy diferenciálních rovnic
Cíle Budeme se nyní zabývat úlohami, v nichž je cílem najít dvojici funkcí y(x), z(x), pro které jsou zadány dvě lineární rovnice prvního řádu, obsahující tyto funkce a jejich derivace. Výklad Omezíme-li
příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.
Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 40 regula Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague regula 1 2 3 4 5 regula 6 7 8 2 / 40 2 / 40 regula Iterační pro nelineární e Bud f reálná funkce
Extrémy funkce dvou proměnných
Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže
Analýza hlavních komponent
Analýza hlavních komponent Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz J. Neubauer, J. Michálek (Katedra ekonometrie UO) Analýza
Odhad parametrů N(µ, σ 2 )
Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný
Časové řady, typy trendových funkcí a odhady trendů
Časové řady, typy trendových funkcí a odhady trendů Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Jiří Neubauer (Katedra ekonometrie UO Brno) Časové
Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy
Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Autor práce : RNDr. Ivo Beroun,CSc. Vedoucí práce: prof. RNDr. Milan Meloun, DrSc. PROFILOVÁNÍ Profilování = klasifikace a rozlišování
Zpracování digitalizovaného obrazu (ZDO) - Segmentace
Zpracování digitalizovaného obrazu (ZDO) - Segmentace úvod, prahování Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování digitalizovaného obrazu
Numerické metody 6. května FJFI ČVUT v Praze
Extrémy funkcí Numerické metody 6. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod 1D Více dimenzí Kombinatorika Lineární programování Programy 1 Úvod Úvod - Úloha Snažíme se najít extrém funkce, at už jedné
Časové řady, typy trendových funkcí a odhady trendů
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Stochastický proces Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2 } se nazývá stochastický proces
Vlastní čísla a vlastní vektory
5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi
4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr
SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1
SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 (Souřadnicové výpočty 4, Orientace osnovy vodorovných směrů) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec
Úvod do kvantového počítání
2. přednáška Katedra počítačů, Fakulta elektrotechnická České vysoké učení technické v Praze 17. března 2005 Opakování Část I Přehled z minulé hodiny Opakování Alternativní výpočetní modely Kvantové počítače
Fakulta chemicko-technologická Katedra analytické chemie. 3.2 Metody s latentními proměnnými a klasifikační metody
Fakulta chemicko-technologická Katedra analytické chemie 3.2 Metody s latentními proměnnými a klasifikační metody Vypracoval: Ing. Tomáš Nekola Studium: licenční Datum: 21. 1. 2008 Otázka 1. Vypočtěte
Popis objektů. Karel Horák. Rozvrh přednášky:
1 / 41 Popis objektů Karel Horák Rozvrh přednášky: 1. Úvod.. Příznakový vektor. 3. Příznakový prostor. 4. Členění příznaků. 5. Identifikace oblastí. 6. Radiometrické deskriptory. 7. Fotometrické deskriptory.
Faktorová analýza (FACT)
Faktorová analýza (FAC) Podobně jako metoda hlavních komponent patří také faktorová analýza mezi metody redukce počtu původních proměnných. Ve faktorové analýze předpokládáme, že každou vstupující proměnnou
Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je =
Příklad 1 Metodou nejmenších čtverců nalezněte odhad lineární regresní funkce popisující závislost mezi výnosy pšenice a množstvím použitého hnojiva na základě hodnot výběrového souboru uvedeného v tabulce.
Obecný Hookeův zákon a rovinná napjatost
Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou
Popisná statistika kvantitativní veličiny
StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali
Kapitola 11: Lineární diferenciální rovnice 1/15
Kapitola 11: Lineární diferenciální rovnice 1/15 Lineární diferenciální rovnice 2. řádu Definice: Lineární diferenciální rovnice 2-tého řádu je rovnice tvaru kde: y C 2 (I) je hledaná funkce a 0 (x)y +
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOS A SAISIKA Regresní analýza - motivace Základní úlohou regresní analýzy je nalezení vhodného modelu studované závislosti. Je nutné věnovat velkou pozornost tomu aby byla modelována REÁLNÁ
Aplikovaná numerická matematika - ANM
Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových
f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =
Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu
X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní
..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21.
Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 21. září 2018 Jiří Dvorský (VŠB TUO) Vyhledávání 242 / 433 Osnova přednášky
Circular Harmonics. Tomáš Zámečník
Circular Harmonics Tomáš Zámečník Úvod Circular Harmonics Reprezentace křivky, která je: podmonožinou RxR uzavřená funkcí úhlu na intervalu Dále budeme hovořit pouze o takovýchto křivkách/funkcích
7. Analýza rozptylu.
7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a
CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku
Aplikovaná numerická matematika
Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních
Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group
Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme
Parametrická rovnice přímky v rovině
Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou
Soustavy se spínanými kapacitory - SC. 1. Základní princip:
Obvody S - popis 1 Soustavy se spínanými kapacitory - S 1. Základní princip: Simulace rezistoru přepínaným kapacitorem viz známý obrázek! (a rovnice) Modifikace základního spínaného obvodu: Obr. 2.1: Zapojení
Stavový model a Kalmanův filtr
Stavový model a Kalmanův filtr 2 prosince 23 Stav je veličina, kterou neznáme, ale chtěli bychom znát Dozvídáme se o ní zprostředkovaně prostřednictvím výstupů Příkladem může býapř nějaký zašuměný signál,
MATEMATIKA II V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. 8 Ing. Petra Schreiberová, Ph.D. Ostrava 01 Ing. Petra Schreiberová, Ph.D. Vysoká škola báňská Technická
Měření dat Filtrace dat, Kalmanův filtr
Měření dat Filtrace dat, Matematické metody pro ITS (11MAMY) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 3. přednáška 11MAMY čtvrtek 28. února 2018 verze: 2018-03-21 16:45 Obsah
Lineární algebra : Metrická geometrie
Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních
Afinní transformace Stručnější verze
[1] Afinní transformace Stručnější verze je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím body a vektory: afinní prostor využití například v počítačové grafice a)
ACTIVE SHAPE MODELS. Metody registrace objekt ů v obrázku. Václav Krajíček
ACTIVE SHAPE MODELS Metody registrace objekt ů v obrázku Václav Krajíček Oblasti počítačového vidění Segmentace Registrace Active Shape Models Klasifikace Problémy počítačového vidění Šum Geometrické deformace
Kapitola 10: Diferenciální rovnice 1/14
Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou
Numerické metody a programování. Lekce 8
Numerické metody a programování Lekce 8 Optimalizace hledáme bod x, ve kterém funkce jedné nebo více proměnných f x má minimum (maximum) maximalizace f x je totéž jako minimalizace f x Minimum funkce lokální:
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:
Matematika I 12a Euklidovská geometrie
Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky
Iterační metody řešení soustav lineárních rovnic. 27. prosince 2011
Iterační metody řešení soustav lineárních rovnic Michal Čihák 27. prosince 2011 Přímé metody řešení soustav lineárních rovnic V přednáškách z lineární algebry jste se seznámili s několika metodami řešení
4EK213 LINEÁRNÍ MODELY
4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 Mgr. Sekničková Jana, Ph.D. 2. PŘEDNÁŠKA MATEMATICKÝ MODEL ÚLOHY LP Mgr. Sekničková Jana, Ph.D. 2 OSNOVA PŘEDNÁŠKY Obecná formulace MM Množina
Matematika pro geometrickou morfometrii
Matematika pro geometrickou morfometrii Václav Krajíček Vaclav.Krajicek@mff.cuni.cz Department of Software and Computer Science Education Faculty of Mathematics and Physics Charles University Přednáška
Projektivní geometrie. Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni
Metody Počítačového Vidění (MPV) - 3D počítačové vidění Projektivní geometrie Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Metody Počítačového Vidění
Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost
Poznámka. V některých literaturách se pro označení vektoru také používá symbolu u.
Vektory, operace s vektory Ž3 Orientovaná úsečka Mějme dvojici bodů, (na přímce, v rovině nebo prostoru), které spojíme a vznikne tak úsečka. Pokud budeme rozlišovat, zda je spojíme od k nebo od k, říkáme,
KOMPRESE OBRAZŮ. Václav Hlaváč, Jan Kybic. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání.
1/25 KOMPRESE OBRAZŮ Václav Hlaváč, Jan Kybic Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac KOMPRESE OBRAZŮ, ÚVOD
24.11.2009 Václav Jirchář, ZTGB
24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci
21. Úvod do teorie parciálních diferenciálních rovnic
21. Úvod do teorie parciálních diferenciálních rovnic Aplikovaná matematika IV, NMAF074 M. Rokyta, KMA MFF UK LS 2014/15 21.1 Základní termíny Definice Vektor tvaru α = (α 1,...,α m ), kde α j N {0}, j
Numerické metody a programování
Projekt: Inovace výuky optiky se zaměřením na získání experimentálních dovedností Registrační číslo: CZ.1.7/2.2./28.157 Numerické metody a programování Lekce 4 Tento projekt je spolufinancován Evropským
Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Základy fyzikální geodézie 3/19 Legendreovy přidružené funkce
Odhad parametrů N(µ, σ 2 )
Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný
Detekce neznámých typů mutantů na základě odlišnosti kinetiky fluorescence
Detekce neznámých typů mutantů na základě odlišnosti kinetiky fluorescence Jan Vaněk 1, Radek Tesař 1, Jan Urban 1, Karel Matouš 2 1 Katedra kybernetiky, Fakulta aplikovaných věd, Západočeská univerzita
5. cvičení z Matematiky 2
5. cvičení z Matematiky 2 21.-25. března 2016 5.1 Nalezněte úhel, který v bodě 1, 0, 0 svírají grafy funkcí fx, y ln x 2 + y 2 a gx, y sinxy. Úhel, který svírají grafy funkcí je dán jako úhel mezi jednotlivými
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky
Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení